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Welcome to Calculus

Calculus was first developed more than 300 years ago by Sir Isaac Newton and Gottfried Leibniz to help
them describe and understand the rules governing the motion of planets and moons. Since then, thousands
of other men and women have refined the basic ideas of calculus, developed new techniques to make the
calculations easier, and found ways to apply calculus to a wide variety of problems besides planetary motion.
They have used calculus to help understand physical, biological, economic and social phenomena and to
describe and solve related problems.

The discovery, development and application of calculus is a great intellectual achievement—and now you
have the opportunity to share in that achievement. You should feel exhilarated. You may also be somewhat
concerned (a common reaction among students just beginning to study calculus). You need to be concerned
enough to work to master calculus, yet confident enough to keep going when you (at first) don’t understand
something.

Part of the beauty of calculus is that it relies upon a few very simple ideas. Part of the power of calculus is
that these simple ideas can help us understand, describe and solve problems in a variety of fields. This book
tries to emphasize both the beauty and the power.

In Section 0.1 (Preview) we will look at the main ideas that will continue throughout the book: the problems
of finding tangent lines and computing areas. We will also consider a process that underlies both of those
problems: the limiting process of approximating a solution and then getting better and better approximations
until we finally get an exact solution.

Sections 0.2 (Lines), 0.3 (Functions) and 0.4 (Combinations of Functions) contain review material. These
sections emphasize concepts and skills you will need in order to succeed in calculus. You should have worked
with most of these concepts in previous courses, but the emphasis and use of the material here may be
different than in those earlier classes.

Section 0.5 (Mathematical Language) discusses a few key mathematical phrases. It considers their use and
meaning and some of their equivalent forms. It will be difficult to understand the meaning and subtleties of
calculus if you don’t understand how these phrases are used and what they mean.

0.1 A Preview of Calculus

Calculus can be viewed as an attempt—a historically successful attempt—to solve two fundamental problems.
In this section we begin to examine geometric forms of those two problems and some fairly simple attempts
to solve them. At first, the problems themselves may not appear very interesting or useful—and the methods
for solving them may seem crude—but these simple problems and methods have led to one of the most
beautiful, powerful and useful creations in mathematics: Calculus.
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Finding the Slope of a Tangent Line

Suppose we have the graph of a function y = f (x) and we want to find
an equation of a line tangent to the graph at a particular point P on the
graph (see margin). (We will offer a precise definition of “tangent” in
Section 1.0; for now, think of the tangent line as a line that touches the
curve at P and stays close to the graph of y = f (x) near P.)

We know that P is on the tangent line, so if its x-coordinate is x = a,
then the y-coordinate of P must be y = f (a): P = (a, f (a)). The only
other information we need to find an equation of the tangent line is its
slope, mtan, but that is where the difficulty arises.

In algebra, we needed two points in order to determine a slope. So
far, we only have the point P. Let’s simply pick a second point, call
it Q, on the graph of y = f (x). If the x-coordinate of Q is b, then the
y-coordinate is f (b): Q = (b, f (b)). So the slope of the line through P
and Q is

mPQ =
rise
run

=
f (b)− f (a)

b − a
If we drew the graph of y = f (x) on a wall, put nails at the points P

and Q, and laid a straightedge on the nails, then the straightedge would
have slope mPQ. But the slope mPQ can be very different from the value
we want (the slope mtan of the tangent line). The key idea is that when
the point Q is close to the point P, then the slope mPQ should be close to
the slope we want, mtan. Physically, if we slide the nail at Q along the
graph toward the fixed point P, then the slope, mPQ = f (b)− f (a)

b−a , of the
straightedge gets closer and closer to the slope, mtan, of the tangent
line. If the value of b is very close to a, then the point Q is very close to
P, and the value of mPQ is very close to the value of mtan.

Rather than defacing walls with graphs and nails, we can instead
calculate mPQ = f (b)− f (a)

b−a and examine the values of mPQ as b gets
closer and closer to a. We say that mtan is the limiting value of mPQ as
b gets very close to a, and we write:

mtan = lim
b→a

f (b)− f (a)
b − a

Eventually we will call the slope mtan of the tangent line the deriva-
tive of the function f (x) at the point P, and call this part of calculus
differential calculus. Chapters 2 and 3 begin the study of differential
calculus.

The slope of the tangent line to the graph of a function will tell us
important information about the function and will allow us to solve
problems such as:

• The U.S. Postal Service requires that the length plus the girth of a
package not exceed 84 inches. What is the largest volume that can
be mailed in a rectangular box?
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• An oil tanker was leaking oil and a 4-inch-thick oil slick had formed.
When first measured, the slick had a radius of 200 feet, and the
radius was increasing at a rate of 3 feet per hour. At that time, how
fast was the oil leaking from the tanker?

Derivatives will even help us find solutions to equations such as
x2 = sin(x) and x9 + 5x5 + x3 + 3 = 0.

Problems

1. Sketch the lines tangent to the curve shown below
at x = 1, 2 and 3. Estimate the slope of each of
the tangent lines you drew.

2. A graph of the weight of a “typical” child from
age 0 to age 24 months appears below. (Your
answers should have the units “kg per month.”)

(a) What was the average weight gain from
month 0 to month 24?

(b) What was the average weight gain from
month 9 to month 12? From month 12 to
month 15?

(c) Approximately how fast was the child gaining
weight at age 12 months? At age 3 months?

3. The graph below shows the temperature of a cup
of coffee during a 10-minute period. (Each of
your answers in (a)–(c) should have the units “de-
grees per minute.”)

(a) What was the average rate of cooling from
minute 0 to minute 10?

(b) What was the average rate of cooling from
minute 7 to minute 8? From minute 8 to
minute 9?

(c) What was the rate of cooling at minute 8? At
minute 2?

(d) When was cold milk added to the coffee?

4. Describe a method for determining the slope of a
steep hill at a point midway up the hill

(a) using a ruler, a long piece of string, a glass of
water and a loaf of bread.

(b) using a protractor, a piece of string and a
helium-filled balloon.
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Finding the Area of a Shape

Suppose we need to find the area of a leaf as part of a study of how
much energy a plant gets from sunlight. One method for finding the
area would be to trace the shape of the leaf onto a piece of paper
and then divide the region into “easy” shapes such as rectangles and
triangles (whose areas we can easily calculate). We could add all of
these “easy” areas together to approximate the area of the leaf.

A modification of this method would be to trace the shape onto a
piece of graph paper and then count the number of squares completely
inside the edge of the leaf to get a lower estimate of the area, and count
the number of squares that touch the leaf to get an upper estimate of
the area. If we repeat this process with smaller and smaller squares, we
will have to do more counting and adding, but our estimates should be
closer together—and closer to the actual area of the leaf.

(We could also approximate the area of the leaf using a sheet of
paper, scissors and an accurate scale. How?)

We can calculate the area A between the graph of a function y = f (x)
and the x-axis by using similar methods. We can divide the area into
strips of width w and determine the lower and upper values of y = f (x)
on each strip. Then we can approximate the area of each rectangle and
add all of the little areas together to get Aw, an approximation of the
exact area. The key idea is that if w is small, then the rectangles are
narrow, and the approximate area Aw should be very close to the actual
area A. If we take narrower and narrower rectangles, the approximate
areas get closer and closer to the actual area:

A = lim
w→0

Aw

The process described above is the basis for a technique called
integration, and this part of calculus is called integral calculus. Integral
calculus and integration will begin in Chapter 4.

The process of taking the limit of a sum of “little” quantities will
give us important information about a function and will also allow us
to solve problems such as:
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• Find the length of the graph of y = sin(x) over one period (from
x = 0 to x = 2π).

• Find the volume of a torus (“doughnut”) of radius 1 inch that has a
hole of radius 2 inches.

• A car starts at rest and has an acceleration of 5 + 3 sin(t) feet per
second per second in the northerly direction at time t seconds. Where
will the car be, relative to its starting position, after 100 seconds?

Problems

5. Approximate the area of the leaf on the previous page using

(a) the grid on the left.

(b) the grid on the right.

6. A graph showing temperatures during the month of November
appears below.

(a) Approximate the shaded area between the temperature curve and
the 65◦ line from Nov. 15 to Nov. 25.

(b) The area of the “rectangle” is (base)(height) so what are the units
of your answer in part (a)?

(c) Approximate the shaded area between the temperature curve and
the 65◦ line from Nov. 5 to Nov. 30.

(d) Who might use or care about these results?

7. Describe a method for determining the volume of a compact flu-
orescent light bulb using a ruler, a large can, a scale and a jug of
water.
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A Unifying Process: Limits

We used similar processes to “solve” both the tangent line problem
and the area problem. First, we found a way to get an approximate
solution, and then we found a way to improve our approximation.
Finally, we asked what would happen if we continued improving our
approximations “forever”: that is, we “took a limit.”

For the tangent line problem, we let the point Q get closer and closer
and closer to P, the limit as b approached a.

In the area problem, we let the widths of the rectangles get smaller
and smaller, the limit as w approached 0. Limiting processes underlie
derivatives, integrals and several other fundamental topics in calculus,
and we will examine limits and their properties in detail in Chapter 1.

Two Sides of the Same Coin: Differentiation and Integration

Just as the set-up of each of the two basic problems involved a limiting
process, the solutions to the two problems are also related. The process
of differentiation used to solve the tangent line problem and the process
of integration used to solve the area problem turn out to be “opposites”
of each other: each process undoes the effect of the other process. The
Fundamental Theorem of Calculus in Chapter 4 will show how this
“opposite” effect works.

Extensions of the Main Problems

The first five chapters present the two key ideas of calculus, show “easy”
ways to calculate derivatives and integrals, and examine some of their
applications. And there is more.

Through the ensuing chapters, we will examine new functions and
find ways to calculate their derivatives and integrals. We will extend
the approximation ideas to use “easy” functions, such as polynomials,
to approximate the values of “hard” functions, such as sin(x) and ex.

In later chapters, we will extend the notions of “tangent lines” and
“areas” to 3-dimensional space as “tangent planes” and “volumes.”

Success in calculus will require time and effort on your part, but
such a beautiful and powerful field is worth that time and effort.
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