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0.4 Combinations of Functions

Sometimes a physical or economic situation behaves differently depend-
ing on various circumstances. In these situations, a more complicated
formula may be needed to describe the situation.

Multiline Definitions of Functions: Putting Pieces Together

Sales Tax: Some states have different rates of sales tax depending
on the type of item purchased. As an example, for many years food
purchased at restaurants in Seattle was taxed at a rate of 10%, while
most other items were taxed at a rate of 9.5% and food purchased at
grocery stores had no tax assessed. We can describe this situation by
using a multiline function: a function whose defining rule consists of
several pieces. Which piece of the rule we need to use will depend on
what we buy. In this example, we could define the tax T on an item
that costs x to be:

T(x) =


0 if x is the cost of a food at a grocery store

0.10x if x is the cost of food at a restaurant
0.095x if x is the cost of any other item

To find the tax on a $2 can of stew, we would use the first piece of
the rule and find that the tax is $0. To find the tax on a $30 restaurant
bill, we would use the second piece of the rule and find that the tax is
$3.00. The tax on a $150 textbook requires using the third rule: the tax
would be $14.25.

Wind Chill Index: The rate at which a person’s body loses heat
depends on the temperature of the surrounding air and on the speed
of the air. You lose heat more quickly on a windy day than you do on a
day with little or no wind. Scientists have experimentally determined
this rate of heat loss as a function of temperature and wind speed, and
the resulting function is called the Wind Chill Index, WCI. The WCI
is the temperature on a still day (no wind) at which your body would
lose heat at the same rate as on the windy day. For example, the WCI
value for 30

◦F air moving at 15 miles per hour is 9
◦F: your body loses

heat as quickly on a 30
◦F day with a 15 mph wind as it does on a 9

◦F
day with no wind.

If T is the Fahrenheit temperature of the air and v is the speed of the
wind in miles per hour, then the WCI can be expressed as a multiline
function of the wind speed v (and of the temperature T):

WCI =


T if 0 ≤ v ≤ 4

91.4 − 10.45+6.69
√

v−0.447v
22 (91.5 − T) if 4 < v ≤ 45

1.60T − 55 if v > 45
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The WCI value for a still day (0 ≤ v ≤ 4 mph) is just the air
temperature. The WCI for wind speeds above 45 mph are the same
as the WCI for a wind speed of 45 mph. The WCI for wind speeds
between 4 mph and 45 mph decrease as the wind speeds increase. This
WCI function depends on two variables: the temperature and the wind
speed; but if the temperature is constant, then the resulting formula for
WCI only depends on the wind speed. If the air temperature is 30

◦F
(T = 30), then the formula for the Wind Chill Index is:

WCI30 =


30◦ if 0 ≤ v ≤ 4 mph

62.19 − 18.70
√

v + 1.25v if 4 mph < v ≤ 45 mph
−7◦ if v > 45 mph

The WCI graphs for temperatures of 40
◦F, 30

◦F and 20
◦F appear below:

From UMAP Module 658, “Windchill,”
by William Bosch and L.G. Cobb, 1984.

Practice 1. A Hawaiian condo rents for $380 per night during the tourist
season (from December 15 through April 30), and for $295 per night
otherwise. Define a multiline function that describes these rates.

Example 1. Define f (x) by:

f (x) =


2 if x < 0

2x if 0 ≤ x < 2
1 if 2 < x

Evaluate f (−3), f (0), f (1), f (4) and f (2). Graph y = f (x) on the
interval −1 ≤ x ≤ 4.

Solution. To evaluate the function at different values of x, we must
first decide which line of the rule applies. If x = −3 < 0, then we
need to use the first line, so f (−3) = 2. When x = 0 or x = 1, we
need the second line of the function definition, so f (0) = 2(0) = 0 and
f (1) = 2(1) = 2. At x = 4 we need the third line, so f (4) = 1. Finally,
at x = 2, none of the lines apply: the second line requires x < 2 and
the third line requires 2 < x, so f (2) is undefined. The graph of f (x)
appears in the margin. Note the “hole” above x = 2, which indicates
f (2) is not defined by the rule for f . ◀
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Practice 2. Define g(x) by:

g(x) =


x if x < −1
2 if − 1 ≤ x < 1

−x if 1 < x ≤ 3
1 if 4 < x

Graph y = g(x) for −3 ≤ x ≤ 6 and evaluate g(−3), g(−1), g(0), g( 1
2 ),

g(1), g(π
3 ), g(2), g(3), g(4) and g(5).

Practice 3. Write a multiline definition for the function whose graph
appears in the margin.

We can think of a multiline function as a machine that first examines
the input value to decide which line of the function rule to apply:

Composition of Functions: Functions of Functions

Basic functions are often combined with each other to describe more
complicated situations. Here we will consider the composition of
functions — functions of functions.

The composite of two functions f and g, written f ◦ g, is:

f ◦ g(x) = f (g(x))

The domain of the composite function f ◦ g(x) = f (g(x)) consists
of those x-values for which g(x) and f (g(x)) are both defined: we can
evaluate the composition of two functions at a point x only if each step
in the composition is defined.

If we think of our functions as machines, then composition is simply
a new machine consisting of an arrangement of the original machines.
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The composition f ◦ g of the function machines f and g shown in the
margin is an arrangement of the machines so that the original input
x goes into machine g, the output from machine g becomes the input
into machine f , and the output from machine f is our final output. The
composition of the function machines f ◦ g(x) = f (g(x)) is only valid
if x is an allowable input into g (that is, x is in the domain of g) and if
g(x) is then an allowable input into f .

The composition g ◦ f involves arranging the machines so the original
input goes into f , and the output from f then becomes the input for g
(see right side of margin figure).

Example 2. For f (x) =
√

x − 2, g(x) = x2 and

h(x) =

{
3x if x < 2

x − 1 if 2 ≤ x

evaluate f ◦ g(3), g ◦ f (6), f ◦ h(2) and h ◦ g(−3). Find the formulas
and domains of f ◦ g(x) and g ◦ f (x).

Solution. f ◦ g(3) = f (g(3)) = f (32) = f (9) =
√

9 − 2 =
√

7 ≈ 2.646;
g ◦ f (6) = g ( f (6)) = g(

√
6 − 2) = g(

√
4) = g(2) = 22 = 4; f ◦ h(2) =

f (h(2)) = f (2 − 1) = f (1) =
√

1 − 2 =
√
−1, which is undefined;

h ◦ g(−3) = h (g(−3)) = h(9) = 9 − 1 = 8; f ◦ g(x) = f (g(x)) =

f (x2) =
√

x2 − 2, and the domain of f ◦ g consists of those x-values for
which x2 − 2 ≥ 0, so the domain of f ◦ g is all x such that x ≥

√
2 or

x ≤ −
√

2; g ◦ f (x) = g ( f (x)) = g(
√

x − 2) =
(√

x − 2
)2

= x − 2, but
this last equality is true only when x − 2 ≥ 0 ⇒ x ≥ 2, so the domain
of g ◦ f is all x ≥ 2. ◀

Practice 4. For f (x) = x
x−3 , g(x) =

√
1 + x and

h(x) =

{
2x if x ≤ 1

5 − x if 1 < x

evaluate f ◦ g(3), f ◦ g(8), g ◦ f (4), f ◦ h(1), f ◦ h(3), f ◦ h(2) and
h◦g(−1). Find formulas for f ◦ g(x) and g ◦ f (x).

Shifting and Stretching Graphs

Some common compositions are fairly straightforward; you should
recognize the effect of these compositions on graphs of the functions.

Example 3. The margin figure shows the graph of y = f (x). Graph

(a) 2 + f (x)

(b) 3 · f (x)

(c) f (x − 1)
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Solution. All of the new graphs appear in the margin.

(a) Adding 2 to all of the values of f (x) rigidly shifts the graph of
f (x) upward 2 units.

(b) Multiplying all of the values of f (x) by 3 leaves all of the roots
(zeros) of f fixed: if x is a root of f then f (x) = 0 ⇒ 3 · f (x) =
3(0) = 0 so x is also a root of 3 · f (x). If x is not a root of f ,
then the graph of 3 f (x) looks like the graph of f (x) stretched
vertically by a factor of 3.

(c) The graph of f (x − 1) is the graph of f (x) rigidly shifted 1 unit
to the right. We could also get these results by examining the
graph of y = f (x), creating a table of values for f (x) and the
new functions:

x f (x) 2 + f (x) 3 f (x) x − 1 f (x − 1)

−1 −1 1 −3 −2 f (−2) not defined
0 0 2 0 −1 f (0 − 1) = −1
1 1 3 3 0 f (1 − 1) = 0
2 1 3 3 1 f (2 − 1) = 1
3 2 4 6 2 f (3 − 1) = 1
4 0 2 0 3 f (4 − 1) = 2
5 −1 1 −3 4 f (5 − 1) = 0

and then graphing those new functions. ◀

If k is a positive constant, then

• the graph of y = k + f (x) will be the graph of y = f (x) rigidly
shifted up by k units

• the graph of y = k f (x) will have the same roots as the graph of f (x)
and will be the graph of y = f (x) vertically stretched by a factor of k

• the graph of y = f (x − k) will be the graph of y = f (x) rigidly
shifted right by k units

• the graph of y = f (x + k) will be the graph of y = f (x) rigidly
shifted left by k units

Practice 5. The figure in the margin shows the graph of g(x). Graph:

(a) 1 + g(x)

(b) 2g(x)

(c) g(x − 1)

(d) −3g(x)



welcome to calculus 35

Iteration of Functions

Certain applications feed the output from a function machine back into
the same machine as the new input. Each time through the machine is
called an iteration of the function.

Example 4. Suppose f (x) =
5
x + x

2
and we start with the input x = 4

and repeatedly feed the output from f back into f . What happens?

Solution. Creating a table:

iteration input output

1 4 f (4) =
5
4+4

2 = 2.625000000

2 2.625000000 f ( f (4)) =
5

2.625+2.625
2 = 2.264880952

3 2.264880952 f ( f ( f (4))) = 2.236251251
4 2.236251251 2.236067985
5 2.236067985 2.236067977
6 2.236067977 2.236067977

Once we have obtained the output 2.236067977, we will just keep getting
the same output (to 9 decimal places). You might recognize this output
value as an approximation of

√
5.

This algorithm always finds ±
√

5. If we start with any positive input,
the values will eventually get as close to

√
5 as we want. Starting with

any negative value for the input will eventually get us close to −
√

5.
We cannot start with x = 0, as 5

0 is undefined. ◀

Practice 6. What happens if we start with the input value x = 1 and

iterate the function f (x) =
9
x + x

2
several times? Do you recognize the

resulting number? What do you think will happen to the iterates of

g(x) =
A
x + x

2
? (Try several positive values of A.)

Two Useful Functions: Absolute Value and Greatest Integer

Two functions (one of which should be familiar to you, the other
perhaps not) possess useful properties that let us describe situations in
which an object abruptly changes direction or jumps from one value to
another value. Their graphs will have corners and breaks, respectively.

The absolute value function evaluated at a number x, y = f (x) =
|x|, is the distance between the number x and 0. Some calculators and computer program-

ming languages represent the absolute
value function by abs(x) or ABS(x).

If x is greater than or equal to 0, then |x| is simply x − 0 = x. If x is
negative, then |x| is 0 − x = −x = −1 · x, which is positive because:

−1 · (negative number) = a positive number
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Definition of |x|:

|x| =
{

x if x ≥ 0
−x if x < 0

We can also write: |x| =
√

x2.
The domain of y = f (x) = |x| consists of all real numbers. The

range of f (x) = |x| consists of all numbers larger than or equal to zero
(all non-negative numbers). The graph of y = f (x) = |x| (see margin)
has no holes or breaks, but it does have a sharp corner at x = 0.

The absolute value will be useful for describing phenomena such
as reflected light and bouncing balls that change direction abruptly or
whose graphs have corners. The absolute value function has a number
of properties we will use later.

Properties of |x|: For all real numbers a and b,

• |a| = 0 · |a| = 0 if and only if a = 0

• |ab| = |a| · |b|

• |a + b| ≤ |a|+ |b|This last property is widely known as the
triangle inequality.

Taking the absolute value of a function has an interesting effect on
the graph of the function: for any function f (x), we have

| f (x)| =
{

f (x) if f (x) ≥ 0
− f (x) if f (x) < 0

In other words, if f (x) ≥ 0, then | f (x)| = f (x), so the graph of | f (x)|
is the same as the graph of f (x). If f (x) < 0, then | f (x)| = − f (x), so
the graph of | f (x)| is just the graph of f (x) “flipped” about the x-axis,
and it lies above the x-axis. The graph of | f (x)| will always be on or
above the x-axis.

Example 5. The figure in the margin shows the graph of f (x). Graph:

(a) | f (x)|
(b) |1 + f (x)|
(c) 1 + | f (x)|

Solution. The graphs appear below:
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In (b), we rigidly shift the graph of f up 1 unit before taking the
absolute value. In (c), we take the absolute value before rigidly shifting
the graph up 1 unit. ◀

Practice 7. The figure in the margin shows the graph of g(x). Graph:

(a) |g(x)|
(b) |g(x − 1)|
(c) g (|x|)

The greatest integer function evaluated at a number x, y = f (x) =
⌊x⌋, is the largest integer less than or equal to x.

The value of ⌊x⌋ is always an integer and ⌊x⌋ is always less than
or equal to x. For example, ⌊3.2⌋ = 3, ⌊3.9⌋ = 3 and ⌊3⌋ = 3. If x is
positive, then ⌊x⌋ truncates x (drops the fractional part of x). If x is
negative, the situation is different: ⌊−4.2⌋ ̸= −4 because −4 is not less
than or equal to −4.2: ⌊−4.2⌋ = −5, ⌊−4.7⌋ = −5 and ⌊−4⌋ = −4.

Historically, many textbooks have used the square brackets [ ] to
represent the greatest integer function, while calculators and many
programming languages use INT(x).

Definition of ⌊x⌋:

⌊x⌋ =
{

x if x is an integer
largest integer strictly less than x if x is not an integer

The domain of f (x) = ⌊x⌋ is all real numbers. The range of f (x) =
⌊x⌋ is only the integers. The graph of y = f (x) = ⌊x⌋ appears in the
margin. It has a jump break — a “step” — at each integer value of x,
so f (x) = ⌊x⌋ is called a step function. Between any two consecutive
integers, the graph is horizontal with no breaks or holes.

The greatest integer function is useful for describing phenomena that
change values abruptly, such as postage rates as a function of weight.
As of January 26, 2014, the cost to mail a first-class retail “flat” (such as
a manila envelope) was $0.98 for the first ounce and another $0.21 for
each additional ounce.

The ⌊x⌋ function can also be used for functions whose graphs are
“square waves,” such as the on and off of a flashing light.

Example 6. Graph y = ⌊1 + 0.5 sin(x)⌋.

Solution. One way to create this graph is to first graph y = 1 +

0.5 sin(x), the thin curve in margin figure, and then apply the greatest
integer function to y to get the thicker “square wave” pattern. ◀

Practice 8. Sketch the graph of y =
⌊

x2⌋ for −2 ≤ x ≤ 2.
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A Really “Holey” Function

The graph of ⌊x⌋ has a break or jump at each integer value, but how
many breaks can a function have? The next function illustrates just how
broken or “holey” the graph of a function can be.

Define a function h(x) as:

h(x) =

{
2 if x is a rational number
1 if x is an irrational number

Then h(3) = 2, h
( 5

3
)
= 2 and h

(
− 2

5
)
= 2, because 3, 5

3 and − 2
5 are all

rational numbers. Meanwhile, h(π) = 1, h(
√

7) = 1 and h(
√

2) = 1,
because π,

√
7 and

√
2 are all irrational numbers. These and some

other points are plotted in the margin figure.
In order to analyze the behavior of h(x) the following fact about

rational and irrational numbers is useful.

Fact: Every interval contains both rational and irrational numbers.

Equivalently: If a and b are real numbers and a < b, then there is

• a rational number R between a and b (a < R < b)

• an irrational number I between a and b (a < I < b).

The above fact tells us that between any two places where y =

h(x) = 1 (because x is rational) there is a place where y = h(x) is 2,
because there is an irrational number between any two distinct rational
numbers. Similarly, between any two places where y = h(x) = 2
(because x is irrational) there is a place where y = h(x) = 1, because
there is a rational number between any two distinct irrational numbers.

The graph of y = h(x) is impossible to actually draw, because every
two points on the graph are separated by a hole. This is also an example
of a function that your computer or calculator cannot graph, because in
general it can not determine whether an input value of x is irrational.

Example 7. Sketch the graph of

g(x) =

{
2 if x is a rational number
x if x is an irrational number

Solution. A sketch of the graph of y = g(x) appears in the margin.
When x is rational, the graph of y = g(x) looks like the “holey” hori-
zontal line y = 2. When x is irrational, the graph of y = g(x) looks like
the “holey” line y = x. ◀

Practice 9. Sketch the graph of

h(x) =

{
sin(x) if x is a rational number

x if x is an irrational number
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0.4 Problems

1. If T is the Celsius temperature of the air and v is the speed of the
wind in kilometers per hour, then

WCI =


T if 0 ≤ v ≤ 6.5

33 − 10.45+5.29
√

v−0.279v
22 (33 − T) if 6.5 < v ≤ 72

1.6T − 19.8 if v > 72

(a) Determine the Wind Chill Index for

i. a temperature of 0◦C and a wind speed of 49 km/hr

ii. a temperature of 11◦C and a wind speed of 80 km/hr.

(b) Write a multiline function definition for the WCI if the temperature
is 11◦C.

2. Use the graph of y = f (x) in the margin to evaluate f (0), f (1), f (2),
f (3), f (4) and f (5). Write a multiline function definition for f .

3. Use the graph of y = g(x) in the margin to evaluate g(0), g(1), g(2),
g(3), g(4) and g(5). Write a multiline function definition for g.

4. Use the values given in the table below, along with h(x) = 2x + 1, to
determine the missing values of f ◦ g, g ◦ f and h ◦ g.

x f (x) g(x) f ◦ g(x) g ◦ f (x) h ◦ g(x)

−1 2 0
0 1 2
1 −1 1
2 0 2

5. Use the graphs shown below and the function
h(x) = x − 2 to determine the values of

(a) f ( f (1)), f (g(2)), f (g(0)), f (g(1))

(b) g ( f (2)), g ( f (3)), g (g(0)), g ( f (0))

(c) f (h(3)), f (h(4)), h (g(0)), h (g(1))

6. Use the graphs shown below and the function
h(x) = 5 − 2x to determine the values of

(a) h ( f (0)), f (h(1)), f (g(2)), f ( f (3))

(b) g ( f (0)), g ( f (1)), g (h(2)), h ( f (3))

(c) f (g(0)), f (g(1)), f (h(2)), h (g(3))
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7. Defining h(x) = x − 2, f (x) as:

f (x) =


3 if x < 1

x − 2 if 1 ≤ x < 3
1 if 3 ≤ x

and g(x) as:

g(x) =

{
x2 − 3 if x < 0

⌊x⌋ if 0 ≤ x

(a) evaluate f (x), g(x) and h(x) for x = −1, 0, 1,
2, 3 and 4.

(b) evaluate f (g(1)), f (h(1)), h ( f (1)), f ( f (2)),
g (g(3.5)).

(c) graph f (x), g(x) and h(x) for −5 ≤ x ≤ 5.

8. Defining h(x) = 3, f (x) as:

f (x) =


x + 1 if x < 1

1 if 1 ≤ x < 3
2 − x if 3 ≤ x

and g(x) as:

g(x) =

{
|x + 1| if x < 0

2x if 0 ≤ x

(a) evaluate f (x), g(x) and h(x) for x = −1, 0, 1,
2, 3 and 4.

(b) evaluate f (g(1)), f (h(1)), h ( f (1)), f ( f (2)),
g (g(3.5)).

(c) graph f (x), g(x) and h(x) for −5 ≤ x ≤ 5.

9. You are planning to take a one-week vacation in
Europe, and the tour brochure says that Monday
and Tuesday will be spent in England, Wednes-
day in France, Thursday and Friday in Germany,
and Saturday and Sunday in Italy. Let L(d) be
the location of the tour group on day d and write
a multiline function definition for L(d).

10. A state has just adopted the following state in-
come tax system: no tax on the first $10,000

earned, 1% of the next $10,000 earned, 2% of
the next $20,000 earned, and 3% of all additional
earnings. Write a multiline function definition for
T(x), the state income tax due on earnings of x
dollars.

11. Write a multiline function definition for the curve
y = f (x) shown below.

12. Define B(x) to be the area of the rectangle whose
lower left corner is at the origin and whose up-
per right corner is at the point (x, f (x)) for the
function f shown below. For example, B(3) = 6.
Evaluate B(1), B(2), B(4) and B(5).

13. Define B(x) to be the area of the rectangle whose
lower left corner is at the origin and whose upper
right corner is at the point

(
x, 1

x

)
.

(a) Evaluate B(1), B(2) and B(3).

(b) Show that B(x) = 1 for all x > 0.

14. For f (x) = |9 − x| and g(x) =
√

x − 1:

(a) evaluate f ◦ g(1), f ◦ g(3), f ◦ g(5), f ◦ g(7),
f ◦ g(0).

(b) evaluate f ◦ f (2), f ◦ f (5), f ◦ f (−2).

(c) Does f ◦ f (x) = |x| for all values of x?
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15. The function g(x) is graphed below. Graph

(a) g(x)− 1

(b) g(x − 1)

(c) |g(x)|
(d) ⌊g(x)⌋

16. The function f (x) is graphed below. Graph

(a) f (x)− 2

(b) f (x − 2)

(c) | f (x)|
(d) ⌊ f (x)⌋

17. Find A and B so that f (g(x)) = g ( f (x)) when:

(a) f (x) = 3x + 2 and g(x) = 2x + A

(b) f (x) = 3x + 2 and g(x) = Bx − 1

18. Find C and D so that f (g(x)) = g ( f (x)) when:

(a) f (x) = Cx + 3 and g(x) = Cx − 1

(b) f (x) = 2x + D and g(x) = 3x + D

19. Graph y = f (x) = x − ⌊x⌋ for −1 ≤ x ≤ 3. This
function is called the “fractional part of x” and
its graph an example of a “sawtooth” graph.

20. The function f (x) = ⌊x + 0.5⌋ rounds off x to the

nearest integer, while g(x) =
⌊10x + 0.5⌋

10
rounds

off x to the nearest tenth (the first decimal place).
What function will round off x to:

(a) the nearest hundredth (two decimal places)?

(b) the nearest thousandth (three decimal places)?

21. Modify the function in Example 6 to produce a
“square wave” graph with a “long on, short off,
long on, short off” pattern.

22. Many computer languages contain a “signum” or
“sign” function defined by

sgn(x) =


1 if x > 0
0 if x = 0

−1 if x < 0

(a) Graph sgn(x).

(b) Graph sgn(x − 2).

(c) Graph sgn(x − 4).

(d) Graph sgn(x − 2) · sgn(x − 4).

(e) Graph 1 − sgn(x − 2) · sgn(x − 4).

(f) For real numbers a and b with a < b, describe
the graph of 1 − sgn(x − a) · sgn(x − b).

23. Define g(x) to be the slope of the line tangent to
the graph of y = f (x) (shown below) at (x, y).

(a) Estimate g(1), g(2), g(3) and g(4).

(b) Graph y = g(x) for 0 ≤ x ≤ 4.
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24. Define h(x) to be the slope of the line tangent to
the graph of y = f (x) (see figure below) at (x, y).

(a) Estimate h(1), h(2), h(3) and h(4).

(b) Graph y = h(x) for 0 ≤ x ≤ 4.

25. Using the cos (cosine) button on your calculator
several times produces iterates of f (x) = cos(x).
What number will the iterates approach if you
use the cos button 20 or 30 times starting with

(a) x = 1?

(b) x = 2?

(c) x = 10?

(Be sure your calculator is in radian mode.)

26. Let f (x) = 1 + sin(x).

(a) What happens if you start with x = 1 and
repeatedly feed the output from f back into f ?

(b) What happens if you start with x = 2 and
examine the iterates of f ?

(Be sure your calculator is in radian mode.)

27. Starting with x = 1, do the iterates of f (x) = x2+1
2x

approach a number? What happens if you start
with x = 0.5 or x = 4?

28. Let f (x) = x
2 + 3.

(a) What are the iterates of f if you start with
x = 2? x = 4? x = 6?

(b) Find a number c so that f (c) = c. This value
of c is called a fixed point of f .

(c) Find a fixed point of g(x) = x
2 + A.

29. Let f (x) = x
3 + 4.

(a) What are the iterates of f if you start with
x = 2? x = 4? x = 6?

(b) Find a number c so that f (c) = c.

(c) Find a fixed point of g(x) = x
3 + A.

30. Some iterative procedures are geometric rather than numerical. Start with an equilateral triangle with sides
of length 1, as shown at left in the figure below.

• Remove the middle third of each line segment.
• Replace the removed portion with two segments with the same length as the removed segment.

The first two iterations of this procedure are shown at center and right in the figure below. Repeat these
steps several more times, each time removing the middle third of each line segment and replacing it with
two new segments. What happens to the length of the shape with each iteration? (The result of iterating
over and over with this procedure is called Koch’s Snowflake, named for Helga von Koch.)
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31. Sketch the graph of

p(x) =

{
3 − x if x is a rational number

1 if x is an irrational number

32. Sketch the graph of

q(x) =

{
x2 if x is a rational number

x + 11 if x is an irrational number

0.4 Practice Answers

1. C(x) is the cost for one night on date x:

C(x) =

{
$380 if x is between December 15 and April 30

$295 if x is any other date

2. For the graph, see the figure in the margin.

x g(x) x g(x)

−3 −3 π
3 −π

3
−1 2 2 −2

0 2 3 −3
1
2 2 4 undefined
1 undefined 5 1

3. Define f (x) as:

f (x) =


1 if x ≤ −1

1 − x if − 1 < x ≤ 1
2 if 1 < x

4. f ◦ g(3) = f (2) = 2
−1 = −2; f ◦ g(8) = f (3) is undefined; g ◦ f (4) =

g(4) = 5; f ◦ h(1) = f (2) = 2
−1 = −2; f ◦ h(3) = f (2) = −2;

f ◦ h(2) = f (3) is undefined; h ◦ g(−1) = h(0) = 0; f ◦ g(x) =

f (
√

1 + x) = 1+x√
1+x−3

, g ◦ f (x) = g
( x

x−3
)
=

√
1 + x

x−3

5. See the figure below:
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6. Using f (x) =
9
x + x

2
, f (1) =

9
1+1

2 = 5, f (5) =
9
5+5

2 = 3.4, f (3.4) ≈
3.023529412 and f (3.023529412) ≈ 3.000091554. The next iteration
gives f (3.000091554) ≈ 3.000000001: these values are approaching 3,
the square root of 9.

With A = 6, f (x) =
6
x + x

2
, so f (1) =

6
1+1

2 = 3.5, f (3.5) =
6

3.5+3.5
2 = 2.607142857, and the next iteration gives f (2.607142857) ≈

2.45425636. Then f (2.45425636) ≈ 2.449494372, f (2.449494372) ≈
2.449489743 and f (2.449489743) ≈ 2.449489743 (the output is the
same as the input to 9 decimal places): these values are approaching
2.449489743, an approximation of

√
6.

For any positive value A, the iterates of f (x) =
A
x + x

2
(starting with

any positive x) will approach
√

A.

7. The figure below shows some intermediate steps and final graphs:

8. The figure in the margin shows the graph of y = x2 and the (thicker)
graph of y =

⌊
x2⌋.

9. The figure below shows the “holey” graph of y = x with a hole at
each rational value of x and the “‘holey” graph of y = sin(x) with a
hole at each irrational value of x. Together they form the graph of
r(x).

(This is a very crude image, since we can’t really see the individual
holes, which have zero width.)
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