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10.3 Representing Functions as Power Series

We know from our work with geometric series that the function:

G(x) =
∞

∑
k=0

xk = 1 + x + x2 + x3 + x4 + · · ·

has domain −1 < x < 1 (that is, the geometric series converges for
|x| < 1) and for values of x in that domain we know that:

G(x) =
∞

∑
k=0

xk =
1

1 − x
= (1 − x)−1

The function
1

1 − x
has a much larger domain, (−∞, 1) ∪ (1, ∞), than

the corresponding power series function G(x). But on their common
domain, (−1, 1), these two functions agree.

Can we find power series representations for other functions? If
so, on what interval does the power series converge to the same value
as the function? We will investigate the answers to these questions
throughout the next few sections.

In this section, we obtain power series representations for several

functions related to
1

1 − x
using our knowledge of the geometric se-

ries. We will also examine some applications of these power series
representations of functions.

Substitution in Power Series

One simple but powerful method for obtaining a power series for a func-
tion is to make a substitution into a known power series representation.
If we begin with the geometric series:

1
1 − u

=
∞

∑
k=0

uk = 1 + u + u2 + u3 + u4 + · · ·

and make the substitution u = −x we get:

1
1 − (−x)

=
∞

∑
k=0

(−x)k = 1 + (−x) + (−x)2 + (−x)3 + (−x)4 + · · ·

which we can rewrite as:

1
1 + x

=
∞

∑
k=0

(−1)k · xk = 1 − x + x2 − x3 + x4 + · · ·

This new power series is also a geometric series, and it converges when
(and only when) | − x| < 1 ⇒ |x| < 1 ⇒ −1 < x < 1.

Similar substitutions (along with some straightforward algebra) lead
to a variety of other power series representations.
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Example 1. Find power series for
1

1 − x2 and
x

1 − x
.

Solution. For the first function, use the substitution u = x2 in the
geometric series formula:

1
1 − u

=
∞

∑
k=0

uk = 1 + u + u2 + u3 + u4 + · · ·

⇒ 1
1 − x2 =

∞

∑
k=0

(x2)k = 1 + (x2) + (x2)2 + (x2)3 + (x2)4 + · · ·

⇒ 1
1 − x2 =

∞

∑
k=0

x2k = 1 + x2 + x4 + x6 + x8 + · · ·

which converges if x2 < 1 ⇒
√

x2 <
√

1 ⇒ |x| < 1 ⇒ −1 < x < 1. For
the second series, rewrite the function as a product:

x
1 − x

= x · 1
1 − x

= x ·
∞

∑
k=0

xk = x ·
[
1 + x + x2 + x3 + x4 + · · ·

]
=

∞

∑
k=0

xk+1 = x + x2 + x3 + x4 + x5 + · · ·

This is also a geometric series with ratio x, so it converges when
|x| < 1 ⇒ −1 < x < 1. ◀

Practice 1. Find power series for
1

1 − x3 ,
1

1 + x2 and
5x

1 + x
.

Differentiation and Integration of Power Series

One feature of polynomials that makes them very easy to differentiate
and integrate is that we can differentiate and integrate them term-by-
term. The same result holds true for power series.

Term-by-Term Differentiation of Power Series

If f (x) is defined by a power series:

f (x) =
∞

∑
k=0

ak xk = a0 + a1x + a2x2 + a3x3 + · · ·

that converges for −R < x < R, then:

f ′(x) =
∞

∑
k=1

k · ak xk−1 = a1 + 2 · a2x + 3 · a3x2 + 4 · a4x3 + · · ·

and this new power series also converges for −R < x < R.

The power series for f and the power
series for f ′ may differ in whether they
converge or diverge at the endpoints of
the interval of convergence, but they both
converge for −R < x < R.

The proof of this statement is rather long and highly technical, so
we will omit it, but this result allows us to find power series of even
more functions based on the geometric series.
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Example 2. Find a power series for
1

(1 − x)2 .

Solution. Because (1 − x)−2 is the derivative of (1 − x)−1, we can
write:

1
(1 − x)2 =

d
dx

[
1

1 − x

]
=

d
dx

[
∞

∑
k=0

xk

]
=

∞

∑
k=0

d
dx

(
xk
)

=
∞

∑
k=0

k · xk−1 =
∞

∑
k=1

k · xk−1 = 1 + 2x + 3x2 + 4x3 + 5x4 + · · ·

You can use the Ratio Test on the new power series to verify that its
interval of convergence is (−1, 1), the same as the original series. ◀

See Problem 41.

Term-by-Term Integration of Power Series

If f (x) is defined by a power series:

f (x) =
∞

∑
k=0

ak xk = a0 + a1x + a2x2 + a3x3 + · · ·

that converges for −R < x < R, then:∫
f (x) dx = C +

∞

∑
k=0

ak
k + 1

xk+1 = C + a0x +
a1

2
x2 +

a2

3
x3 + · · ·

and this new power series also converges for −R < x < R.

The power series for f and its antideriva-
tive may differ in whether they converge
or diverge at the endpoints of the interval
of convergence, but they both converge
for −R < x < R.

Here we use the result of the previous
theorem, which we did not prove.

Proof. Let F(x) =
∞

∑
k=0

ak
k + 1

xk+1 so that, using term-by-term differenti-

ation:

F′(x) =
∞

∑
k=0

(k + 1) · ak
k + 1

xk =
∞

∑
k=0

ak xk = f (x)

Therefore
∫

f (x) dx = F(x) + C. To find the interval of convergence for
F(x), note that:

k ≥ 0 ⇒ k + 1 ≥ 1 ⇒ 1
k + 1

≤ 1 ⇒ |ak|
k + 1

|x|k ≤ |ak| · |xk|

Because
∞

∑
k=0

ak xk converges for |x| < R, it converges absolutely on this

open interval, hence so does
∞

∑
k=0

ak
k + 1

xk (by the Basic Comparison

Test), and so does:

x ·
∞

∑
k=0

ak
k + 1

xk =
∞

∑
k=0

ak
k + 1

xk+1

(Convergence at the endpoints x = −R and x = R must be determined
on a case-by-case basis.)
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Example 3. Find power series for ln (1 − x) and arctan(x)

Solution. We need to recognize that these functions are integrals of
functions whose power series we already know. For the first function:

ln(1 − x) =
∫ −1

1 − x
dx = −

∫ [
∞

∑
k=0

xk

]
dx = C −

∞

∑
k=0

1
k + 1

· xk+1

= C − x − 1
2

x2 − 1
3

x3 − 1
4

x4 − · · ·

Substituting x = 0 into both sides of this equation yields:

0 = ln(1) = ln(1 − 0) = C − 0 − 1
2
· 02 − 1

3
· 03 − · · · = C ⇒ C = 0

so that:

ln(1 − x) = −x − 1
2

x2 − 1
3

x3 − 1
4

x4 − · · · = −
∞

∑
k=0

1
k + 1

· xk+1

You should be able to check that the interval of convergence for this
new power series is −1 ≤ x < 1, which agrees with the interval of
convergence of the original series (except at the left endpoint).

For the second series, we can use the second result from Practice 1:

1
1 + x2 =

∞

∑
k=0

(−x2)k =
∞

∑
k=0

(−1)k · x2k = 1 − x2 + x4 − x6 + x8 − · · ·

and then apply term-by-term integration to this power series to get:

arctan(x) =
∫ 1

1 + x2 dx =
∫ [

∞

∑
k=0

(−1)k · x2k

]
dx

= C +
∞

∑
k=0

(−1)k

2k + 1
x2k+1 = C + x − 1

3
x3 +

1
5

x5 − 1
7

x7 + · · ·

To determine the value of C, substitute x = 0 to get:

0 = arctan(0) = C + 0 − 1
3
· 03 +

1
5
· 05 − 1

7
· 07 + · · · = C ⇒ C = 0

so that:

arctan(x) =
∞

∑
k=0

(−1)k

2k + 1
x2k+1 = x − 1

3
x3 +

1
5

x5 − 1
7

x7 + · · ·

You should be able to check that the interval of convergence for this
new power series is −1 ≤ x ≤ 1, which agrees with the interval of
convergence of the original series (except at the endpoints). ◀

See Problem 37.

See Problem 39.

Practice 2. Find a power series for ln(1 + x).
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Applications of Power Series

An important application of power series is the use of these “infinite
polynomials” in place of a complicated integrand to help evaluate
difficult integrals.

Example 4. Express the definite integral
∫ 1

2

0
arctan

(
x2
)

dx as a numer-

ical series. Then approximate the value of the integral by calculating
the sum of the first four terms of that numerical series.

Solution. From Example 3, we know that:

arctan(u) =
∞

∑
k=0

(−1)k

2k + 1
u2k+1 = u − 1

3
u3 +

1
5

u5 − 1
7

u7 + · · ·

so substituting u = x2 into this power series give us:

arctan(x2) =
∞

∑
k=0

(−1)k

2k + 1
x4k+2 = x2 − 1

3
x6 +

1
5

x10 − 1
7

x14 + · · ·

Term-by-term integration of this power series yields:

∫ 1
2

0

[
∞

∑
k=0

(−1)k

2k + 1
x4k+2

]
dx =

∫ 1
2

0

[
x2 − 1

3
x6 +

1
5

x10 − 1
7

x14 + · · ·
]

dx

=
∞

∑
k=0

(−1)k

2k + 1

[
x4k+3

4k + 3

] 1
2

0

=

[
1
3

x3 − 1
21

x7 +
1

55
x11 − 1

105
x15 + · · ·

] 1
2

0

=
∞

∑
k=0

(−1)k

(2k + 1)(4k + 3) · 24k+3 =
1

3 · 23 − 1
21 · 27 +

1
55 · 211 − 1

105 · 215 + · · ·

Adding up the first four terms of this series gives the approximation:

∫ 1
2

0
arctan(x2) dx ≈ 0.04130323

Because this numerical series is an alternating series, the Alternating
Series Estimation Bound tells us that the difference between this ap-
proximation and the actual value of the integral is smaller than the
absolute value of the next term in the series:∣∣∣∣∣

∫ 1
2

0
arctan(x2) dx − 0.04130323

∣∣∣∣∣ ≤ 1
9 · 19 · 219 ≈ 0.0000000112

We can therefore say that the value of the definite integral is between
0.0413032188 and 0.0413032415. ◀

Practice 3. Express the definite integral
∫ 0.2

0
x2 ln (1 + x) dx as a numer-

ical series. Then approximate the value of the integral by calculating
the sum of the first four terms of the numerical series.
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Wrap-Up

We obtained all of the power series used in this section from the ge-
ometric series via substitution, differentiation and integration. Many
important functions, however, are not related to a geometric series,
so future sections will discuss methods for representing more general
functions using power series. The following table collects some of the
power series representations we have obtained in this section.

1
1 − x

=
∞

∑
k=0

xk = 1 + x + x2 + x3 + x4 + · · ·

1
1 + x

=
∞

∑
k=0

(−1)k · xk = 1 − x + x2 − x3 + x4 − · · ·

1
1 − x2 =

∞

∑
k=0

x2k = 1 + x2 + x4 + x6 + x8 + · · ·

1
1 + x2 =

∞

∑
k=0

(−1)k · x2k = 1 − x2 + x4 − x6 + x8 − · · ·

ln(1 − x) = −
∞

∑
k=1

1
k

xk = −x − 1
2

x2 − 1
3

x3 − 1
4

x4 − · · ·

ln(1 + x) =
∞

∑
k=1

(−1)k+1

k
· xk = x − 1

2
x2 +

1
3

x3 − 1
4

x4 + · · ·

arctan(x) =
∞

∑
k=0

(−1)k

2k + 1
· x2k+1 = x − 1

3
x3 +

1
5

x5 − 1
7

x7 + · · ·

1
(1 − x)2 =

∞

∑
k=1

k · xk−1 = 1 + 2x + 3x2 + 4x3 + 5x4 + · · ·

10.3 Problems

In Problems 1–14, use substitution and a known
power series to find a power series for the function.

1.
1

1 − x4 2.
1

1 − x5 3.
1

1 + x4

4.
1

1 + x5 5.
1

5 + x
6.

1
3 − x

7.
x2

1 + x3
8.

x
1 + x4 9. ln

(
1 + x2

)
10. ln

(
1 + x3

)
11. x arctan(x2) 12. arctan(x3)

13.
1

(1 − x2)
2 14.

1

(1 + x2)
2 15.

1

(1 − x)3

16.
1

(1 − x2)
3 17.

1

(1 + x2)
3 18.

1

(1 − x)4

In 19–26, represent each integral as a series, then
calculate the sum of the first three terms.

19.
∫ 1

2

0

1
1 − x3 dx 20.

∫ 1
2

0

1
1 + x3 dx

21.
∫ 3

5

0
ln(1 + x) dx 22.

∫ 1
2

0
ln(1 + x2) dx

23.
∫ 1

2

0
x2 arctan(x) dx 24.

∫ 1
2

0
arctan(x3) dx

25.
∫ 0.3

0

1
(1 − x)2 dx 26.

∫ 0.7

0

x3

(1 − x)2 dx
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In 27–32, represent each numerator as a power series,
then use the power series to help find the limit.

27. lim
x→0

arctan(x)
x

28. lim
x→0

ln(1 − x)
2x

29. lim
x→0

ln(1 + x)
2x 30. lim

x→0

arctan
(

x2)
x

31. lim
x→0

arctan
(

x2)
x2

32. lim
x→0

arctan (x)− x
x3

33. lim
x→0

ln
(
1 − x2)
3x

34. lim
x→0

ln
(
1 + x2)
3x

In Problems 35–42, determine a power series for
each function and then determine the interval of
convergence of each power series.

35.
1

1 + x
36.

1
1 − x2

37. ln (1 − x) 38. ln (1 + x)

39. arctan(x) 40. arctan(x2)

41.
1

(1 − x)2 42.
1

(1 + x)2

10.3 Practice Answers

1. For the first function, use the substitution u = x3 in the geometric
series formula:

1
1 − u

=
∞

∑
k=0

uk = 1 + u + u2 + u3 + u4 + · · ·

⇒ 1
1 − x3 =

∞

∑
k=0

(x3)k = 1 + (x3) + (x3)2 + (x3)3 + (x3)4 + · · ·

⇒ 1
1 − x3 =

∞

∑
k=0

x3k = 1 + x3 + x6 + x9 + x12 + · · ·

For the second function, use the substitution u = −x2:

1
1 − u

=
∞

∑
k=0

uk = 1 + u + u2 + u3 + u4 + · · ·

⇒ 1
1 − (−x2)

=
∞

∑
k=0

(−x2)k = 1 + (−x2) + (−x2)2 + (−x2)3 + · · ·

⇒ 1
1 + x2 =

∞

∑
k=0

(−1)k · x2k = 1 − x2 + x4 − x6 − · · ·

For the third function, use the substitution u = −x:

1
1 − u

=
∞

∑
k=0

uk = 1 + u + u2 + u3 + u4 + · · ·

⇒ 1
1 − (−x)

=
∞

∑
k=0

(−x)k = 1 + (−x) + (−x)2 + (−x)3 + · · ·

⇒ 1
1 + x

=
∞

∑
k=0

(−1)k · xk = 1 − x + x2 − x3 − · · ·



power series 723

and then multiply both sides of this last equation by 5x:

5x
1 + x

= 5x ·
∞

∑
k=0

(−1)k · xk = 5x
[
1 − x + x2 − x3 − · · ·

]
=

∞

∑
k=0

5(−1)k · xk+1 = 5x − 5x2 + 5x3 − 5x4 + · · ·

2. Use the first result from Example 3:

ln(1 − u) = −u − 1
2

u2 − 1
3

u3 − 1
4

u4 − · · · = −
∞

∑
k=0

1
k + 1

· uk+1

and substitute u = −x:

ln (1 − (−x)) = x − 1
2

x2 +
1
3

x3 − 1
4

x4 + · · · =
∞

∑
k=0

(−1)k

k + 1
· xk+1

3. Multiply the result of Practice 2 by x2:

x2 · ln (1 + x) = x3 − 1
2

x4 +
1
3

x5 − 1
4

x6 + · · · =
∞

∑
k=0

(−1)k

k + 1
· xk+3

and then apply term-by-term integration to get:

∫ 0.2

0
x2 · ln (1 + x) dx =

[
∞

∑
k=0

(−1)k

(k + 1)(k + 4)
· xk+4

]0.2

0

=

[
1
4

x4 − 1
10

x5 +
1

18
x6 − 1

28
x7 + · · ·

]0.2

0

=
1
4
(0.2)4 − 1

10
(0.2)5 +

1
18

(0.2)6 − 1
28

(0.2)7 + · · ·

≈ 0.000371
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