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10.4 MacLaurin and Taylor Series

Having found several power series (all variations of the geometric series)
that converge to familiar functions such as ln(1 + x) and arctan(x), we
turn our attention to more general functions, asking:

• Does the function have a power series expansion?

• Where does this power series converge?

• Where does this power series converge to the original function?

Once we determine a power series for a new function, we can use it to
approximate function values, compute integrals and evaluate limits.

MacLaurin Series

Our first result tells us that if a function has a power series expansion,
the coefficients of that power series must follow a familiar pattern.

Theorem:

If a function f (x) has a power series representation

f (x) =
∞

∑
k=0

akxk valid for |x| < R

then the coefficients of the power series must be:

ak =
f (k)(0)

k!

We use the conventions that 0! = 1 and
that f (0)(x) = f (x).

Proof. Suppose that:

f (x) =
∞

∑
k=0

akxk = a0 + a1x + a2x2 + a3x3 + · · ·+ anxn + · · ·

Putting x = 0 into this equation yields:

f (0) = a0 + a1 · 0 + a2 · 02 + a3 · 03 + · · ·+ an · 0n + · · · = a0

so we know that a0 = f (0) =
f (0)(0)

0!
, proving the coefficient formula

for k = 0. Differentiating the equation in the hypothesis yields:

f ′(x) = a1 + 2a2x + 3a3x2 + · · ·+ n · anxn−1 + · · ·
⇒ f ′(0) = a1 + 2a2 · 0 + 3a3 · 02 + · · ·+ n · an · 0n−1 + · · · = a1

so that a1 = f ′(0) =
f ′(0)

1!
, proving the coefficient formula for k = 1.

Differentiating again yields:

f ′′(x) = 2a2 + 3 · 2a3x + · · ·+ n(n − 1) · anxn−2 + · · ·
⇒ f ′′(0) = 2a2 + 3 · 2a3 · 0 + · · ·+ n(n − 1) · an · 0n−2 + · · · = 2a2
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so that a2 =
f ′′(0)

2
=

f ′′(0)
2!

, proving the coefficient formula for k = 2.
Differentiating yet again:

f ′′′(x) = 3 · 2 · 1a3 + · · ·+ n(n − 1)(n − 1) · anxn−3 + · · ·
⇒ f ′′′(0) = 3 · 2 · 1a3 + · · ·+ n(n − 1)(n − 2) · an · 0n−3 + · · · = 3 · 2 · 1a3

so that a3 =
f ′′′(0)

3 · 2 · 1
=

f ′′′(0)
3!

, proving the coefficient formula for k = 3.
In general:

f (n)(x) = n(n − 1)(n − 2) · · · 3 · 2 · 1an + [terms containing powers of x]

⇒ f (n)(0) = n(n − 1)(n − 2) · · · 3 · 2 · 1an + [0] = n! · an

so that an =
f (n)(0)

n!
.

You may recognize this coefficient pattern from Section 8.7, where we
called the polynomial:

P(x) = f (0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 +
f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!

the MacLaurin polynomial for f (x). If we continue to add terms
(forever) to this polynomial, we get the MacLaurin series for f (x).

The MacLaurin series for f (x) is:

∞

∑
k=0

f (k)(0)
k!

xk = f (0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 +
f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · ·

This definition of a MacLaurin series and the preceding result about
the form of its coefficients do not say that every function can be written
as a power series. But if a function can be written as a power series, its
coefficients must follow the above pattern. Fortunately, many important
functions (such as sin(x) and ex) can be written as power series.

The preceding proof also does not tell us where a MacLaurin series
converges: we will need to apply techniques from Chapter 9 (typically
the Ratio Test) to determine the interval of convergence for a MacLaurin
series. Nor does the proof tell us that the series actually converges
to the original function at any point (other than x = 0): to show that
the series actually converges to the original function on its interval of
convergence, we will need a result to be proved in Section 10.5.

Example 1. Find the MacLaurin series for f (x) = sin(x) and determine
the radius of convergence of the series.
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Solution. f (x) = sin(x) ⇒ f (0) = sin(0) = 0 ⇒ a0 = f (0) = 0.
Computing the derivatives of sin(x):

f ′(x) = cos(x) ⇒ f ′(0) = cos(0) = 1 ⇒ a1 =
f ′(0)

1!
=

1
1
= 1

f ′′(x) = − sin(x) ⇒ f ′′(0) = − sin(0) = 0 ⇒ a2 =
f ′′(0)

2!
=

0
2
= 0

f ′′′(x) = − cos(x) ⇒ f ′′′(0) = − cos(0) = −1 ⇒ a3 =
f ′′′(0)

3!
=

−1
6

f (4)(x) = sin(x) ⇒ f (4)(0) = sin(0) = 0 ⇒ a4 =
f (4)(0)

4!
=

0
24

= 0

This derivative pattern repeats, cycling through the values 1, 0, −1 and

0 so that a5 =
1
5!

, a6 =
0
6!

= 0, a7 =
−1
7!

, a8 = 0, a9 =
1
9!

, and so on:

sin(x) = x − 1
3!

x3 +
1
5!

x5 − 1
7!

x7 +
1
9!

x9 − · · · =
∞

∑
k=0

(−1)k

(2k + 1)!
x2k+1

To find the radius of convergence, apply the Ratio Test:∣∣∣∣∣∣
(−1)k+1

(2(k+1)+1)! x2(k+1)+1

(−1)k

(2k+1)! x2k+1

∣∣∣∣∣∣ =
∣∣∣∣∣ x2k+3

(2k + 3)!
· (2k + 1)!

x2k+1

∣∣∣∣∣ = (2k + 1)!
(2k + 3)!

x2

=
x2

(2k + 3)(2k + 2)
−→ 0 < 1

for any value of x, so the interval of convergence is (−∞, ∞), hence the
radius of convergence is R = ∞. ◀

Notice that the MacLaurin series for
sin(x), an odd function, contains only
odd powers of x. Also notice that it al-
ternates between positive and negative
coefficients.

You have two options here: proceed as in
Example 1, or differentiate the result of
Example 1.

Practice 1. Find the MacLaurin series for f (x) = cos(x) and determine
the radius of convergence of the series.

Example 2. Find the MacLaurin series for f (x) = ex and determine the
radius of convergence of the series.

Solution. With f (x) = ex, f ′(x) = ex ⇒ f ′′(x) = ex ⇒ f ′′′(x) = ex

and in fact f (k)(x) = ex for any integer k ≥ 0, so f (k)(0) = e0 = 1 for all
such k. Therefore the coefficients of the MacLaurin series for f (x) = ex

all have the form ak =
1
k!

, so we can write:

ex =
∞

∑
k=0

1
k!

xk = 1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 + · · ·+ 1
n!

xn + · · ·

To find the radius of convergence for this series, apply the Ratio Test:∣∣∣∣∣∣
1

(k+1)! xk+1

1
k! xk

∣∣∣∣∣∣ = k!
(k + 1)!

|x| = |x|
k + 1

−→ 0

for any value of x, so the interval of convergence this MacLaurin series
is (−∞, ∞) and its radius of convergence is R = ∞. ◀
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Approximation Using MacLaurin Series

The MacLaurin series for sin(x) converges for every value of x (although
we have not yet shown that it actually converges to sin(x) anywhere
other than x = 0). The margin figure shows the graphs of sin(x) and

the first few MacLaurin polynomials x, x − 1
6

x3 and x − 1
6

x3 +
1

120
x5

for −π ≤ x ≤ π. While these low-degree MacLaurin polynomials
appear to approximate sin(x) well near x = 0, the farther x gets from 0,
the worse the approximation.

Example 3. Use a MacLaurin series to represent sin(0.5) as a numerical
series. Approximate the value of sin(0.5) by computing the partial sum
of the first three non-zero terms of this series and give a bound on the
“error” between this approximation and the exact value of sin(0.5).

Solution. Putting x = 0.5 into the MacLaurin Series for sin(x):

sin(0.5) = (0.5)− 1
3!
(0.5)3 +

1
5!
(0.5)5 − 1

7!
(0.5)7 +

1
9!
(0.5)9 − · · ·

so that:

sin(0.5) ≈ (0.5)− 1
3!
(0.5)3 +

1
5!
(0.5)5

=
1
2
− 1

48
+

1
3840

≈ 0.479427083333

Because the series in question is an alternating series, the difference
between the approximation of sin(0.5) and the exact value of sin(0.5)
is less than the absolute value of the next term in the alternating series:

“error” <
1
7!
(0.5)7 =

1
645120

≈ 0.00000155

If you use the first four nonzero terms to approximate sin(0.5):

sin(0.5) ≈ (0.5)− 1
3!
(0.5)3 +

1
5!
(0.5)5 − 1

7!
(0.5)7 ≈ 0.47942553323

then the “error” is less than
1
9!
(0.5)9 =

1
185794560

≈ 5.4 × 10−9. ◀

We were able to obtain a bound for the error in the approximation
of sin(0.5) because the series in question was an alternating series, a
type of series for which we have an error bound.

Many power series, however, are not
alternating series. In Section 10.5 we
will develop a general error bound for
MacLaurin series.

Practice 2. Use the sum of the first two nonzero terms of the MacLaurin
series for cos(x) to approximate the value of cos(0.2). Give a bound on
the “error” between this approximation and the exact value of cos(0.2).

The numerical series for e is not an alter-
nating series, so we do not have a bound
for the approximation yet. We will in the
next section.

Practice 3. Evaluate the partial sums of the first six terms of the numer-

ical series for e = e1 and
1√

e
= e−

1
2 . Compare these partial sums with

the values your calculator gives.
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Substitution in MacLaurin SeriesCalculator Note: When you press the
buttons on your calculator to evaluate
sin(0.5) or cos(0.2), the calculator does
not look up the answer in a table. Instead,
it has been programmed with series rep-
resentations for sine, cosine and other
functions, and it calculates a partial sum
of an appropriate series to obtain a nu-
merical answer. It adds enough terms so
that the eight or nine digits shown on the
display are (usually) correct. In Section
10.5 we examine these methods in more
detail and consider how to determine the
number of terms needed in the partial
sum to achieve the desired number of
accurate digits in the answer.

Now that we know MacLaurin series for sin(x), cos(x) and ex, we can
use techniques from Section 10.3 to quickly determine MacLaurin series
representations of more complicated functions.

Example 4. Represent sin
(
x3) and

∫
sin

(
x3
)

dx as power series. Use

the first three non-zero terms of the second series to approximate∫ 1

0
sin

(
x3
)

dx and obtain a bound for the “error.”

Solution. Starting with the MacLaurin series for sin(u):

sin(u) = u − 1
3!

u3 +
1
5!

u5 − 1
7!

u7 + · · ·

put u = x3 to get:

sin
(

x3
)
= x3 − 1

3!

(
x3
)3

+
1
5!

(
x3
)5

− 1
7!

(
x3
)7

+ · · ·

= x3 − 1
3!

x9 +
1
5!

x15 − 1
7!

x21 + · · ·

Integrating this result term by term yields:

∫
sin

(
x3
)

dx =
∫ [

x3 − 1
6

x9 +
1

120
x15 − 1

5040
x21 + · · ·

]
dx

= C +
1
4

x4 − 1
60

x10 +
1

1920
x16 − 1

110880
x22 + · · ·

Approximating the definite integral:

∫ 1

0
sin

(
x3
)

dx ≈ 1
4
− 1

60
+

1
1920

≈ 0.2338542

A bound for the “error” between this approximation and the exact

value of the definite integral is
1

22 · 7!
=

1
110880

≈ 0.0000090. Using
just one more term:

∫ 1

0
sin

(
x3
)

dx ≈ 1
4
− 1

60
+

1
1920

− 1
110880

≈ 0.233845515

gives an estimate within
1

28 · 9!
≈ 0.000000098 of the exact value. ◀

Practice 4. Represent x · cos
(
x3) and

∫
x · cos

(
x3
)

dx as MacLaurin

series. Use the first two nonzero terms of the second series to approxi-

mate
∫ 1

2

0
x · cos

(
x3
)

dx and obtain a bound for the “error.”
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Taylor Series

The coefficients for a MacLaurin series (or polynomial) for a function
f (x) depend only on the values f (0) and f (k)(0). As a consequence,
the MacLaurin polynomials for f (x) typically do a very good job of
approximating the values of the original function near x = 0, as you can
observe in this graph of sin(x) and its first few MacLaurin polynomials:

The figure above also demonstrates, however, that for values of x not
close to 0, the values of the MacLaurin polynomials for f (x) can be
quite far from the values of the original function f (x). Even though we
know that the MacLaurin series for sin(x) converges for any value of
x, for values of x far away from 0 we might need to add up hundreds
of terms in order to achieve a good approximation of sin(x). For
example, the first two nonzero terms of the MacLaurin series for sin(x)
approximate sin(0.1) correctly to six decimal places, but you need 11

terms to approximate sin(5) with the same accuracy.
If you need to approximate a function with polynomials near a

value away from x = 0, you can either use significantly more terms
in a MacLaurin polynomial for that function, or you can “shift” the
power series to center it at another value x = c. We call these “shifted”
power series Taylor series and their partial sums Taylor polynomials.
Typically the Taylor polynomials of a function centered at x = c provide
good approximations to f (x) when x is close to c.

Theorem:

If a function f (x) has a power series representation

f (x) =
∞

∑
k=0

ak(x − c)k valid for |x − c| < R

then the coefficients of the power series must be:

ak =
f (k)(c)

k!
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This theorem generalizes the corresponding result about MacLaurin
series from the beginning of this section. To prove the new theorem,
merely replace 0 with c in the original proof.

The Taylor series for f (x) centered at x = c is:

∞

∑
k=0

f (k)(c)
k!

(x − c)k = f (c) +
f ′(c)

1!
(x − c) +

f ′′(c)
2!

(x − c)2 + · · ·

A Maclaurin series is merely a Taylor series centered at c = 0, hence a
MacLaurin series is a special case of Taylor series.

Taylor series and MacLaurin series were
developed by the Scottish mathematician
and astronomer James Gregory (1638–
1675), but the results were not published
until after his death. The English mathe-
matician Brook Taylor (1685–1731) inde-
pendently rediscovered these results and
included them in a 1715 book. The Scot-
tish mathematician and engineer Colin
MacLaurin (1698–1746) quoted Taylor’s
work in his widely read 1742 Treatise on
Fluxions, with the result that Taylor se-
ries centered at c = 0 became known as
MacLaurin series.

You should notice that the first term of the Taylor series for f (x) is
simply the value of the function f at the point x = c: it provides the
best constant-function approximation of f (x) near x = c. The sum of
the first two terms of the Taylor series for a function f (x):

f (c) + f ′(c) · (x − c)

resembles our usual formula in an equation of the line tangent to the
graph of f (x) at x = c and gives the linear approximation of f (x) near
x = c that we first examined in Chapter 2. The Taylor series formula
extends these approximations to higher-degree polynomials, and the
partial sums of the Taylor series provide higher-degree polynomial
approximations of f (x) near x = c.

Multiplying Power Series

We can add and subtract power series term by term, and you have
already multiplied a power series by monomials such as x and x2

to create new power series. Occasionally, you may find it useful to
multiply a power series by another power series. The method for
multiplying series is the same method used to multiply a polynomial
by another polynomial, but it becomes very tedious to obtain more
than the first few terms of the resulting product.

Example 5. Find the first five nonzero terms of the MacLaurin series

for
1

1 − x
· sin(x).

Solution. Starting with the MacLaurin series for
1

1 − x
and sin(x):

1
1 − x

= 1 + x + x2 + x3 + x4 + · · ·

sin(x) = x − 1
6

x3 +
1

120
x5 − · · ·
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multiply each term in the first series by each term in the second series:

1
1 − x

· sin(x) =
[
1 + x + x2 + x3 + · · ·

]
·
[

x − 1
6

x3 +
1

120
x5 − · · ·

]
= 1 ·

[
x − 1

6
x3 +

1
120

x5 − · · ·
]
+ x

[
x − 1

6
x3 +

1
120

x5 − · · ·
]
+ x2

[
x − 1

6
x3 +

1
120

x5 − · · ·
]

+ x3
[

x − 1
6

x3 +
1

120
x5 − · · ·

]
+ x4

[
x − 1

6
x3 +

1
120

x5 − · · ·
]
+ · · ·

=

[
x − 1

6
x3 +

1
120

x5 − · · ·
]
+

[
x2 − 1

6
x4 + · · ·

]
+

[
x3 − 1

6
x5 + · · ·

]
+

[
x4 · · ·

]
+

[
x5 · · ·

]
= x + x2 +

5
6

x3 +
5
6

x4 +
101
120

x5 + · · ·

We know that if the function
1

1 − x
· sin(x) has a MacLaurin series,

these must be the first five non-zero terms of that series. In order to
show that this power series actually converges to

1
1 − x

· sin(x) on its

interval of convergence, we need a theorem due to Abel (proved in
more advanced courses) that says the product of two convergent power
series also converges on their common interval of convergence. ◀

Practice 5. Find the first three nonzero terms of the MacLaurin series
for ex · sin(x).

It is also possible to divide one power series by another power series
using a procedure similar to “long division” of a polynomial by a
polynomial, but we will not discuss that (quite tedious) process here.

Wrap-Up

The table below collects information about several important MacLaurin
series developed in this section and the previous one.

valid on (−∞, ∞)

valid on (−∞, ∞)

valid on (−∞, ∞)

valid on (−1, 1)

valid on (−1, 1]

valid on [−1, 1]

ex =
∞

∑
k=0

1
k!

xk = 1 + x +
1
2!

x2 +
1
3!

x3 + · · ·

sin(x) =
∞

∑
k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 +

1
5!

x5 − 1
7!

x7 +
1
9!

x9 − · · ·

cos(x) =
∞

∑
k=0

(−1)k

(2k)!
x2k = 1 − 1

2!
x2 +

1
4!

x4 − 1
6!

x6 +
1
8!

x8 − · · ·

1
1 − x

=
∞

∑
k=0

xk = 1 + x + x2 + x3 + x4 + · · ·

ln(1 + x) =
∞

∑
k=1

(−1)k+1 · xk

k
= x − 1

2
x2 +

1
3

x3 − 1
4

x4 + · · ·

arctan(x) =
∞

∑
k=0

(−1)k · x2k+1

2k + 1
= x − 1

3
x3 +

1
5

x5 − 1
7

x7 + · · ·



732 contemporary calculus

10.4 Problems

In Problems 1–14, use the MacLaurin series coeffi-
cient formula to find the first several terms of the
MacLaurin series for the given function, then com-
pare the result with the series representation found
in Section 10.3.

1. ln(1 + x) 2. ln(1 + x)

3. arctan(x)
4.

1
1 − x

In Problems 5–8, find the first several terms of the
MacLaurin series for the given function.

5. cos(x) to the x6 term 6. tan(x) to the x5 term

7. sec(x) to the x4 term 8. e3x to the x4 term

In Problems 9–13, find the first several terms of the
Taylor series for the given function centered at the
given point c.

9. ln(x) for c = 1 10. sin(x) for c = π

11. sin(x) for c =
π

2

12.
√

x for c = 1 13.
√

x for c = 9

In Problems 14–17, use the first three nonzero terms
of a MacLaurin series to approximate the given nu-
merical values. Then compare the approximation
with the value your calculator provides.

14. sin(0.1), sin(0.2), sin(0.5), sin(1) and sin(2)

15. cos(0.1), cos(0.2), cos(0.5), cos(1) and cos(2)

16. ln(1.1), ln(1.2), ln(1.3), ln(2) and ln(3)

17. arctan(0.1), arctan(0.2), arctan(0.5), arctan(1),
arctan(2)

In Problems 18–29, find the first three nonzero terms
of a power series for the integral.

18.
∫

cos
(

x2
)

dx 19.
∫

sin
(

x2
)

dx

20.
∫

cos
(

x3
)

dx 21.
∫

sin
(

x3
)

dx

22.
∫

ex2
dx 23.

∫
e−x2

dx

24.
∫

ex3
dx 25.

∫
e−x3

dx

26.
∫

ln(x) dx 27.
∫

x sin(x) dx

28.
∫

x ln(x) dx 29.
∫

x2 sin(x) dx

In Problems 30–37, use a series representation to
help compute the limit.

30. lim
x→0

1 − cos(x)
x

31. lim
x→0

1 − cos(x)
x2

32. lim
x→0

ln(x)
x − 1

33. lim
x→0

1 − ex

x

34. lim
x→0

1 + x − ex

x2 35. lim
x→0

sin(x)
x

36. lim
x→0

x − sin(x)
x3 37. lim

x→0

x − 1
6 x3 − sin(x)

x5

38. Use MacLaurin series for ex and e−x to find a

series representation for cosh(x) =
ex + e−x

2
.

39. Use MacLaurin series for ex and e−x to find a

series representation for sinh(x) =
ex − e−x

2
.

40. Use results from the previous two problems to
show that D (cosh(x)) = sinh(x).

41. Use results from previous problems to show that
D (sinh(x)) = cosh(x).

Euler’s Formula: So far we have only discussed
series involving real numbers, but sometimes it is
useful to replace the variable in a power series with
a complex number. Problems 42–44 ask you to make
such a substitution and then to obtain and use one
of the most famous formulas in mathematics: Eu-
ler’s formula. Recall that i =

√
−1 is called the

complex unit and that its powers follow the pattern
i2 = −1, i3 =

(
i2
)
(i) = −i, i4 = (i2)2 = (−1)2 = 1,

i5 = (i4)(i) = i, and so on.

42. (a) Substitute x = iθ into the MacLaurin series
for ex to obtain a series for eiθ .

(b) Simplify each power of i to rewrite the series
for eiθ .
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(c) Sort the terms in the simplified series into those terms that do
not contain i and those terms that do contain i. Then rewrite the
series for eiθ in the form:

eiθ = [terms that do not contain i] + i · [terms that do contain i]

(d) You should recognize the sum in each bracket as the MacLaurin
series for an elementary function. Rewrite the series for eiθ as:

eiθ = [function of θ] + i · [other function of θ]

43. In Problem 42 you should have obtained the result:

eiθ = cos(θ) + i · sin(θ)

Use Euler’s formula to compute the values of ei( π
2 ) and eπi.

44. Use Euler’s formula to show that eπi + 1 = 0. This is one of the
most remarkable and beautiful formulas in mathematics because
it connects five of the most fundamental constants: the additive
identity 0, the multiplicative identity 1, the complex unit i and the
two most commonly used transcendental numbers (π and e) in a
simple yet non-obvious way.

The Binomial Theorem

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Notice that each entry in the interior of
Pascal’s triangle is the sum of the two
numbers immediately above it.

You have probably seen the pattern for expanding (1 + x)n where n is
a non-negative integer:

(1 + x)0 = 1

(1 + x)1 = 1 + x

(1 + x)2 = 1 + 2x + x2

(1 + x)3 = 1 + 3x + 3x2 + x3

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

(1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5

using either Pascal’s triangle (see margin) or binomial coefficients:(
n
k

)
=

n(n − 1)(n − 2) · · · (n − k + 1)
k!

=
n!

k! · (n − k)!

for any positive integers n and k with k ≤ n, defining
(

n
0

)
= 1.

Binomial coefficients allow us to write the expansion of (1 + x)n for
non-negative integer powers n in a very compact way:

(1 + x)n =
n

∑
k=0

(
n
k

)
xk
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When n is a positive integer, (1 + x)n expands into a polynomial
of degree n, but what happens when n is a negative integer? Or a
non-integer? Newton himself investigated this question, leading him to
a general pattern that allowed him to quickly write a MacLaurin series
expansion for (1 + x)m when m is any real number:

Binomial Series Theorem:

If m is any real number and |x| < 1

then (1 + x)m =
∞

∑
k=0

(
m
k

)
xk where:

(
m
k

)
=

m(m − 1)(m − 2) · · · (m − k + 1)
k!

The remaining problems guide you through an investigation and (the
idea behind a) proof of this theorem.

As before, we define:
(

m
0

)
= 1

45. Calculate
(

3
0

)
,
(

3
1

)
,
(

3
2

)
and

(
3
3

)
, then verify that:

(a) they agree with the entries in the third row of Pascal’s triangle.

(b) they agree with the coefficients in the expansion of (1 + x)3.

46. Calculate
(

4
0

)
,
(

4
1

)
,
(

4
2

)
,
(

4
3

)
and

(
4
4

)
, then verify that:

(a) they agree with the entries in the fourth row of Pascal’s triangle.

(b) they agree with the coefficients in the expansion of (1 + x)4.

47. Determine the first five terms of the MacLaurin series for (1 + x)
5
2 .

48. Determine the first five terms of the MacLaurin series for (1 + x)−
3
2 .

49. Determine the first five terms of the MacLaurin series for (1 + x)−
1
2

and use this result to find the first five non-zero terms in the MacLau-
rin series for arcsin(x).

50. Use the first result from the preceding problem to approximate
√

2.

51. Determine the first four terms of the MacLaurin series for (1 + x)m.
(This is the beginning of a proof of the Binomial Series Theorem.)
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10.4 Practice Answers

1. Differentiating the MacLaurin series for sin(x) yields:

cos(x) = D (sin(x))

= D
(

x − 1
3!

x3 +
1
5!

x5 − 1
7!

x7 +
1
9!

x9 − 1
11!

x11 + · · ·
)

= 1 − 3
3!

x2 +
5
5!

x4 − 7
7!

x6 +
9
9!

x8 − 11
11!

x10 + · · ·

= 1 − 1
2!

x2 +
1
4!

x4 − 1
6!

x6 +
1
8!

x8 − 1
10!

x10 + · · ·

=
∞

∑
k=0

(−1)k

(2k)!
x2k

2. Putting x = 0.2 into the MacLaurin series obtained in Practice 1:

cos(0.2) ≈ 1 − 1
2!
(0.2)2 = 1 − 0.04

2
= 0.98

Because the full MacLaurin series:

cos(0.2) = 1 − 1
2!
(0.2)2 +

1
4!
(0.2)4 − 1

6!
(0.2)6 + · · ·

is a convergent alternating series, the “error” when approximating
cos(0.2) by 0.98 is no bigger than the absolute value of the next term
in the series, which is:

1
4!
(0.2)4 =

0.0016
24

≈ 0.000067

so that |cos(0.2)− 0.98| < 0.000067. In fact, cos(0.2) ≈ 0.9800665778.

Your calculator should report the approx-
imation: e1 ≈ 2.718281828

3. Starting with the MacLaurin series:

ex = 1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + · · ·

and using the first six terms with x = 1:

e = e1 ≈ 1 + 1 +
1
2!

+
1
3!

+
1
4!

+
1
5!

≈ 2.71666666666

To approximate
1√

e
, substitute x = −1

2
:

e−
1
2 ≈ 1 − 1

2
+

1
2!

(
−1

2

)2
+

1
3!

(
−1

2

)3
+

1
4!

(
−1

2

)4
+

1
5!

(
−1

2

)5

≈ 0.6065104167 Your calculator should report the approx-

imation: e−
1
2 ≈ 0.6065306597
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4. Substitute u = x3 into the MacLaurin series for cos(u) and multiply
the result by x:

x · cos
(

x3
)
= x ·

[
1 − 1

2!
(x3)2 +

1
4!
(x3)4 − 1

6!
(x3)6 +

1
8!
(x3)8 − · · ·

]
= x − 1

2!
x7 +

1
4!

x13 − 1
6!

x19 +
1
8!

x25 − · · ·

then integrate term by term:∫
x · cos

(
x3
)

dx = C +
1
2

x2 − 1
8 · 2!

x8 +
1

14 · 4!
x14 − 1

20 · 6!
x20 + · · ·

and use the first two nonzero terms of this antiderivative to estimate
the value of the definite integral:∫ 1

2

0
x · cos

(
x3
)

dx ≈
[

1
2

x2 − 1
8 · 2!

x8
] 1

2

0
=

1
8
− 1

8 · 2 · 28 =
511

4096

or about 0.124755859375. Because the series for the exact value of
the integral is an alternating series, the “error” is no bigger than:

1
14 · 4!

(
1
2

)14
≈ 0.000000182

cos(u) = 1 − 1
2! u2 + 1

4! u4 − 1
6! u6 + 1

8! u8 − · · ·

5. Multiply the two MacLaurin series:

ex = 1 + x +
1
2

x2 +
1
6

x3 + · · ·

sin(x) = x − 1
6

x3 +
120

x

5
+ · · ·

to get a MacLaurin series for ex · sin(x):[
1 + x +

1
2

x2 +
1
6

x3 + · · ·
]
·
[

x − 1
6

x3 +
120

x

5
+ · · ·

]

= 1 ·
[

x − 1
6

x3 +
1

120
x5 + · · ·

]
+ x ·

[
x − 1

6
x3 +

120
x

5
+ · · ·

]

+
1
2

x2 ·
[

x − 1
6

x3 +
120

x

5
+ · · ·

]

+
1
6

x3 ·
[

x − 1
6

x3 +
120

x

5
+ · · ·

]
· · ·

=

[
x − 1

6
x3 +

1
120

x5 + · · ·
]
+

[
x2 − 1

6
x4 + · · ·

]
+

[
1
2

x3 − 1
12

x5 + · · ·
]
+

[
1
6

x4 + · · ·
]
+ · · ·

= x + x2 +
1
3

x3 + 0x4 − 3
40

x5 + · · ·

so the sum of the first three nonzero terms is x + x2 +
1
3

x3.
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