
11
Polar and Parametric Curves

The rectangular coordinate system, while immensely useful, is not the
only way to assign an address to a point in the plane — and sometimes
it is not the most useful way to describe the location of a point or the
shape of curve. This chapter examines two additional ways to plot
points and describe curves in a plane: polar coordinates and parametric
coordinates. We then extend calculus techniques you have already
learned to compute arclengths, areas and rates of change for curves,
regions and functions described using these new coordinate systems.

11.1 Polar Coordinates

In many experimental situations, your location is fixed and you — or
your instruments, such as radar — take readings in different directions
(see margin). You can record this information in a table (below left) and
graph it using rectangular coordinates with the angle on the horizontal
axis and the measurement on the vertical axis (below right):

Sometimes, however, you will find it more useful to plot the information
in a manner similar to the way in which it was collected: as magnitudes
along radial lines (see margin) using the polar coordinate system.

In this section we introduce polar coordinates and examine some
of their uses. We graph points and functions in polar coordinates,
consider how to change back and forth between the rectangular and
polar coordinate systems, investigate slopes of lines tangent to polar
graphs, and tackle some of the many applications in which polar
coordinates arise: they provide a “natural” and easy way to represent
certain types of information.
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Example 1. SOS! You’ve just received a distress signal from a ship
located at position A on your radar screen (see margin). Describe its
location to your captain so your vessel can speed to the rescue.

Solution. You could convert the relative location of the other ship to
rectangular coordinates and then tell your captain to sail due east for
7.5 miles and north for 13 miles, but that certainly is not the quickest
way to reach the other ship. It would be better to tell the captain to
sail for 15 miles in the direction of 60◦. If the distressed ship was at
position B on the radar screen, your vessel should sail for 10 miles in
the direction 150◦. ◀

Actual radar screens have 0◦ at the top of the screen, but the conven-
tion in mathematics is to put 0◦ in the direction of the positive x-axis
and to measure positive angles counterclockwise from there. (And a
real sailor uses the terms “bearing” and “range” instead of “direction”
and “magnitude.”)

Practice 1. Describe the locations of the ships at positions C and D
in the top margin figure by determining a distance and a direction to
those ships from your current position at the center of the radar screen.

Points in Polar Coordinates

To construct a polar coordinate system we need a starting point (called
the origin or pole) for the magnitude measurements and a starting di-
rection (called the polar axis) for the angle measurements (see margin).
A polar coordinate pair for a point P in the plane is an ordered pair
(r, θ) where r is the directed distance along a radial line from O to P
and θ is the angle formed by the polar axis and the segment OP (see
margin). The angle θ is positive when the angle of the radial line OP
is measured counterclockwise from the polar axis; θ is negative when
measured clockwise from the polar axis.

You can use either degree or radian measure for the angle in the polar
coordinate system, but when we differentiate and integrate trigono-
metric functions of θ we will need angles to be given in radians. You
should assume that all angles are in radian measure unless the you see
the “◦” symbol indicating “degrees.”

Example 2. Plot the points with the given polar coordinates: A(2, 30◦),
B
(
3, π

2
)
, C
(
−2, π

6
)

and D(−3, 270◦).

Solution. To find the location of A, we look along the ray that makes
an angle of 30◦ with the polar axis, then take two steps in that direction
(assuming one step corresponds to one unit on the graph). The locations
of A and B appear in the margin.
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To find the location of C, look along the ray that makes an angle of π
6

with the polar axis, then we take two steps backwards (because r = −2
is negative). The locations of C and D appear in the margin. ◀

Notice that B and D have different ad-
dresses, B

(
3, π

2

)
and D(−3, 270◦), but

the same location.

Practice 2. Plot the points with polar coordinates A
(
2, π

2
)
, B(2,−120◦),

C
(
−2, π

3
)
, D(−2,−135◦) and E(2, 135◦). Which two points coincide?

Each polar coordinate pair (r, θ) gives the location of one point, but
each location has many different addresses in the polar coordinate
system: the polar coordinates of a point are not unique. This non-
uniqueness of addresses comes about in two ways. First, the angles
θ, θ ± 360◦, θ ± 2 · 360◦, . . . all describe the same radial line (see below
left), so the polar coordinates (r, θ), (r, θ ± 360◦), (r, θ ± 2 · 360◦), . . . all
locate the same point.

Secondly, the angle θ ± 180◦ describes the radial line pointing in
exactly the opposite direction from the radial line described by the angle
θ (see above right), so the polar coordinates (r, θ) and (−r, θ ± 180◦)
locate the same point. A polar coordinate pair gives the location of
exactly one point, but the location of one point can be described by
(infinitely) many different polar coordinate pairs.

In the rectangular coordinate system we
use (x, y) and y = f (x), listing the inde-
pendent variable first and the dependent
variable second. In the polar coordinate
system we use (r, θ) and r = f (θ), listing
the dependent variable first and the inde-
pendent variable second, a reversal from
rectangular coordinate usage.

angle distance

0
◦

28 feet
20

◦
30

40
◦

36

60
◦

27

80
◦

24

100
◦

24

130
◦

30

150
◦

22

230
◦

13

210
◦

21

180
◦

18

270
◦

10

340
◦

30

330
◦

18

Practice 3. The margin table contains measurements to the edge of
a plateau taken by a remote sensor that crashed on the plateau. The
figure below shows the data plotted in rectangular coordinates. Plot
the data in polar coordinates and determine the shape of the plateau.
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Graphing Functions in the Polar Coordinate System

In the rectangular coordinate system, you have worked with functions
given by tables of data, by graphs and by formulas. You can represent
functions in the same ways using polar coordinates.

• If a table of data gives you values of a function, you can graph the
function in polar coordinates by plotting individual points in a polar
coordinate system and connecting the plotted points to see the shape
of the graph. By hand, this is a tedious process; by calculator or
computer, it is quick and easy.

• If you have a rectangular coordinate graph of magnitude as a func-
tion of angle, you can read coordinates of points on the rectangular
graph and replot them in polar coodinates. In essence, as you go
from the rectangular coordinate graph to the polar coordinate graph
you “wrap” the rectangular graph around the “pole” at the origin of
the polar coordinate system (see margin).

• If you have a formula for a function, you (or your calculator) can
graph the function to help obtain information about its behavior.
Typically, you (or a calculator) creates a graph by evaluating the
function at many points and then plotting the points in the polar
coordinate system. Some of the following examples illustrate that
functions given by simple formulas may have rather exotic graphs in
the polar coordinate system.

If you already have a polar coordinate graph of a function, you can use
the graph to answer questions about the behavior of the function. It is
usually easy to locate the maximum value(s) of r on a polar coordinate
graph and, by moving counterclockwise around the graph, you can
observe where r is increasing, constant or decreasing.

Example 3. Graph r = 2 and r = π − θ in the polar coordinate system
for 0 ≤ θ ≤ 2π.

Solution. First consider r = 2: In every direction θ, we simply move 2
units along the radial line and plot a point. The resulting polar graph
(see margin) is a circle centered at the origin with a radius of 2. In
the rectangular coordinate system, the graph of a constant y = k is a
horizontal line; in the polar coordinate system, the graph of a constant
r = k is a circle with radius |k|.

Next consider r = π − θ: The rectangular=coordinate graph appears
in the margin. Reading the values of r and θ from the rectangular
coordinate graph and plotting them in polar coordinates results in the
shape in the lower margin figure. The different line thicknesses used
in the figures help you see which values from the rectangular graph
become which parts of the loop in the polar graph. ◀
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Practice 4. Graph r = −2 and r = cos(θ) in polar coordinates.

Example 4. Graph r = θ and r = 1 + sin(θ) in polar coordinates.

Solution. The rectangular coordinate graph of r = θ is a straight
line (see top margin figure). Reading the values of r and θ from the
rectangular coordinate graph and plotting them in polar coordinates
results in a spiral, called an Archimedean spiral.

In the rectangular coordinate graph of r = 1 + sin(θ) (see margin)
the graph of the sine curve is shifted up 1 unit; in polar coordinates,
the result of adding 1 to the sine function is much less obvious. ◀

angle distance

0 3.0 m
π
6 1.6
π
4 1.7
π
3 1.9
π
2 2.0

Practice 5. Plot the points in the margin table in polar coordinates and
connect them with a smooth curve. Describe the shape in words.

The graphs below show the effects of adding various constants to
the rectangular and polar graphs of r = sin(θ):

In rectangular coordinates, the result is a graph shifted up or down by
k units; in polar coordinates, the result may be a graph with an entirely
different shape.

The next set of graphs show the effects of adding a constant to the
independent variable in rectangular and polar coordinates:
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The result in rectangular coordinates is a horizontal shift of the original
graph; the result in polar coordinates is a rotation of the original.
Finding formulas for rotated figures in rectangular coordinates can be
quite difficult, but rotations are easy in polar coordinates.

The formulas and names of several functions with exotic shapes in
polar coordinates arise in the Problems. Many of them are difficult to
graph “by hand,” but by using a graphing calculator or computer you
can appreciate the shapes and easily examine the effects of changing
some of the constants in their formulas.

Converting Between Coordinate Systems

Sometimes you need both rectangular and polar coordinates in the same
application, so it becomes necessary to change back and forth between
the systems. If you place the two origins together and align the polar
axis with the positive x-axis, the conversions involve straightforward
applications of trigonometry and right triangles (see margin).

Polar to Rectangular: x = r · cos(θ), y = r · sin(θ)

Rectangular to Polar: r2 = x2 + y2, tan(θ) =
y
x

(if x ̸= 0)

Example 5. Convert (a) the polar coordinate point P(7, 0.4) to rectan-
gular coordinates and (b) the rectangular coordinate point R(12, 5) to
polar coordinates.

Solution. (a) r = 7 and θ = 0.4 so x = 7 · cos(0.4) ≈ 7(0.921) = 6.447
and y = 7 · sin(0.4) ≈ 7(0.389) = 2.723. (b) x = 12 and y = 5 so

r2 = x2 + y2 = 144 + 25 = 169, and tan(θ) =
y
x

=
5
12

; we can take

r = 13 and θ = arctan
( 5

12
)
≈ 0.395. The polar coordinate addresses

(13, 0.395 ± n · 2π) and (−13, 0.395 ± (2n + 1) · π) give the location of
the same point for any integer n. ◀

You can also use these conversion formulas to convert equations
from one system to the other.

Example 6. Convert the linear equation y = 3x + 5 (see margin) from
rectangular coordinates to polar coordinates.

Solution. Replacing x with r · cos(θ) and y with r · sin(θ):

y = 3x + 5 ⇒ r · sin(θ) = 3r · cos(θ) + 5

⇒ r · [sin(θ)− 3 cos(θ)] = 5 ⇒ r =
5

sin(θ)− 3 cos(θ)

This final representation is valid only when sin(θ)− 3 cos(θ) ̸= 0. ◀
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Practice 6. Convert the polar coordinate equation r2 = 4r · sin(θ) to a
rectangular coordinate equation.

Example 7. A robotic arm has a hand at the end of a 12-inch forearm
connected to an 18-inch upper arm (see margin). Determine the position
of the hand, relative to the shoulder, if θ = 45◦ = π

4 and φ = 30◦ = π
6 .

Solution. The hand is 12 · cos
(

π
4 + π

6
)
≈ 3.1 inches to the right of the

elbow and 12 · sin
(

π
4 + π

6
)
≈ 11.6 inches above the elbow. Similarly,

the elbow is 18 · cos
(

π
4
)
≈ 12.7 inches to the right of the shoulder

and 18 · sin
(

π
4
)
≈ 12.7 inches above the shoulder. Finally, the hand is

approximately 3.1 + 12.7 = 15.8 inches to the right of the shoulder and
approximately 11.6 + 12.7 = 24.3 inches above the shoulder. In polar
coordinates, the hand is approximately 29 inches from the shoulder, at
an angle of about 57◦ (about 0.994 radians) above the horizontal. ◀

Practice 7. Determine the position of the hand, relative to the shoulder,
when θ = 30◦ and φ = 45◦.

Which Coordinate System Should You Use?

There are no rigid rules. Use whichever coordinate system is easier
or more “natural” for the problem or data you have. Sometimes it is
unclear which system to use until you have graphed the data both ways.
Some problems are easier if you switch back and forth between the
systems. Generally, the polar coordinate system is easier if:

• the data consists of measurements in various directions (radar)

• your problem involves locations in relatively featureless locations
(deserts, oceans, sky)

• rotations are involved

Typically, the rectangular coordinate system is easier if:

• the data consists of measurements given as functions of time or
location (temperature, height)

• your problem involves locations in situations with an established
grid (a city, a chess board)

• translations are involved
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11.1 Problems

1. Give the locations in polar coordinates (using ra-
dians) of the points labeled A, B and C below.

2. Give the locations in polar coordinates of the
points labeled D, E and F above.

3. Give the locations in polar coordinates of the
points labeled A, B and C below.

4. Give the locations in polar coordinates of the
points labeled D, E and F above.

In Problems 5–8, plot the points A–D in polar coordi-
nates, connect the dots in order (A to B to C to D to
A) using line segments, and name the approximate
shape of the resulting figure.

5. A(3, 0◦), B(2, 120◦), C(2, 200◦), D(2.8, 315◦)

6. A(3, 30◦), B(2, 130◦), C(3, 150◦), D(2, 280◦)

7. A(2, 0.175), B(3, 2.269), C(2, 2.618), D(3, 4.887)

8. A(3, 0.524), B(2, 2.269), C(3, 2.618), D(2, 4.887)

In Problems 9–14, use the given rectangular coor-
dinate graph of the function r = f (θ) to sketch the
polar coordinate graph of r = f (θ).

9. 10.

11. 12.

13. 14.

15. The rectangular coordinate graph of r = f (θ)
appears below left.

(a) Sketch the rectangular coordinate graphs of
r = 1 + f (θ), r = 2 + f (θ) and r = −1 + f (θ).

(b) Sketch the polar coordinate graphs of r =

1 + f (θ), r = 2 + f (θ) and r = −1 + f (θ).

16. The rectangular coordinate graph of r = g(θ)
appears above right.

(a) Sketch the rectangular coordinate graphs of
r = 1 + g(θ), r = 2 + g(θ) and r = −1 + g(θ).

(b) Sketch the polar coordinate graphs of r =

1 + g(θ), r = 2 + g(θ) and r = −1 + g(θ).
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17. The rectangular coordinate graph of r = f (θ)
appears below left.

(a) Sketch the rectangular coordinate graphs of
r = 1 + f (θ), r = 2 + f (θ) and r = −1 + f (θ).

(b) Sketch the polar coordinate graphs of r =

1 + f (θ), r = 2 + f (θ) and r = −1 + f (θ).

18. The rectangular coordinate graph of r = g(θ)
appears above right.

(a) Sketch the rectangular coordinate graphs of
r = 1 + g(θ), r = 2 + g(θ) and r = −1 + g(θ).

(b) Sketch the polar coordinate graphs of r =

1 + g(θ), r = 2 + g(θ) and r = −1 + g(θ).

19. If the rectangular coordinate graph of r = f (θ)
has a horizontal asymptote of r = 3 as θ grows
arbitrarily large, what does that tell you about
the polar coordinate graph of r = f (θ) for large
values of θ?

20. If lim
θ→ π

6

f (θ) = ∞ so that the rectangular coordi-

nate graph of r = f (θ) has a vertical asymptote
at θ = π

6 , what does that tell you about the polar
coordinate graph of r = f (θ) for θ near π

6 ?

In Problems 21–40, graph the functions in polar co-
ordinates for 0 ≤ θ ≤ 2π.

21. r = −3 22. r = 5

23. θ = π
6 24. θ = 5π

3

25. r = 4 · sin(θ) 26. r = −2 · cos(θ)

27. r = 2 + sin(θ) 28. r = −2 + sin(θ)

29. r = 2 + 3 · sin(θ) 30. r = sin(2θ)

31. r = tan(θ) 32. r = 1 + tan(θ)

33. r = 3 sec(θ) 34. r = 3 csc(θ)

35. r =
1

sin(θ) + cos(θ)
36. r =

θ

2

37. r = 2θ 38. r = θ2

39. r =
1
θ

40. r = sin(2θ) cos(3θ)

41. r = sin(mθ) · cos(nθ) produces lovely graphs for
various small integer values of m and n. Use a
calculator or computer to find values of m and n
that result in shapes you find interesting.

42. Graph r =
1

1 + 0.5 · cos(θ + α)
for 0 ≤ θ ≤ 2π

and for α = 0, π
6 , π

4 and π
2 . Describe how the

graphs are related.

43. Graph r =
1

1 + 0.5 · cos(θ − α)
for 0 ≤ θ ≤ 2π

and for α = 0, π
6 , π

4 and π
2 . Describe how the

graphs are related.

44. Graph r = cos(nθ) for 0 ≤ θ ≤ 2π and for n = 1,
2, 3 and 4. Count the number of “petals” on each
graph. Predict the number of “petals” for the
graphs of r = sin(nθ) for n = 5, 6 and 7, then test
your prediction by creating those graphs.

45. Repeat the steps in Problem 44 using r = cos(nθ).

In Problems 46–49, convert the rectangular coordi-
nate locations to polar coordinates.

46. (0, 3), (5, 0), (1, 2)

47. (−2, 3), (2,−3), (0,−4)

48. (0,−2), (4, 4), (3,−3)

49. (3, 4), (−1,−3), (−7, 12)

In Problems 50–53, convert the polar coordinate lo-
cations to rectangular coordinates.

50. (3, 0), (5, 90◦) and (1, π)

51. (−2, 3), (2,−3) and (0,−4)

52. (0, 3), (5, 0) and (1, 2)

53. (2, 3), (−2,−3) and (0, 4)

For 54–60, refer to the robotic arm shown below.
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54. Determine the position of the hand, relative to
the shoulder, when θ = 60◦ and φ = −45◦.

55. Determine the position of the hand, relative to
the shoulder, when θ = −30◦ and φ = 30◦.

56. Determine the position of the hand, relative to
the shoulder, when θ = 0.6 and φ = 1.2.

57. Determine the position of the hand, relative to
the shoulder, when θ = −0.9 and φ = 0.4.

58. If the robot’s shoulder pivots so −π
2 ≤ θ ≤ π

2 ,
but the elbow is broken and φ is always 0, sketch
the points the hand can reach.

59. If the robot’s shoulder pivots so −π
2 ≤ θ ≤ π

2 ,
and the elbow pivots so −π

2 ≤ φ ≤ π
2 , sketch the

points the hand can reach.

60. If the robot’s shoulder pivots so −π
2 ≤ θ ≤ π

2 ,
and the elbow pivots completely so −π ≤ φ ≤ π,
sketch the points the hand can reach.

61. Graph r =
1

1 + a · cos(θ)
for 0 ≤ θ ≤ 2π and

a = 0.5, 0.8, 1, 1.5 and 2. What shapes do the
various values of a produce?

62. Repeat Problem 61 with r =
1

1 + a · sin(θ)
.

63. Show that the polar form of the linear equation
Ax + By + C = 0 is:

r · (A · cos(θ) + B · sin(θ)) + C = 0

64. Show that the equation of the line through the
polar coordinate points (r1, θ1) and (r2, θ2) is:

r [r1 sin(θ − θ1) + r2 sin(θ2 − θ)] = r1r2 sin(θ2 − θ1)

65. Show that the graph of r = a · sin(θ) + b · cos(θ)
is a circle through the origin with center

(
b
2 , a

2

)
and radius 1

2

√
a2 + b2.

Some Exotic Curves (and Names)

Many of the following curves were discovered and named even before
polar coordinates came about. In most cases the curve describes the
path of a point moving on or around some object. You may enjoy using
your calculator or a computer to graph some of these curves, or you
can invent your own exotic shapes.

An inexpensive resource for these shapes
and names is A Catalog Of Special Plane
Curves by J. Dennis Lawrence, Dover Pub-
lications, 1972; the page numbers given
below refer to that book.

Some classics:

• Cissoid (“like ivy”) of Diocles (about 200 B.C.): r = a sin(θ) · tan(θ)

• Right Strophoid (“twisting”) of Barrow (1670): r = a [sec(θ)− 2 cos(θ)]

• Trisectrix of MacLaurin (1742): r = a sec(θ)− 4a cos(θ)

• Lemniscate (“ribbon”) of Bernoulli (1694): r2 = a2 cos(2θ)

• Conchoid (“shell”) of Nicomedes (225 B.C.): r = a + b sec(θ)

• Hippopede (“horse fetter”) of Proclus (about 75 B.C.):

r2 = 4b
[

a − b sin2(θ)
]

forb = 3, a = 1, 2, 3, 4

• Devil’s Curve of Cramer (1750):

r2
[
sin2(θ)− cos2(θ)

]
= a2 sin2(θ)− b2 cos2(θ) for a = 2, b = 3

• Nephroid (“kidney”) of Freeth: r = a
[
1 + 2 sin(θ2)

]
for a = 3
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Some of our own:

• Piscatoid of Pat (1992): r = sec(θ) − 3 cos(θ) for −1.1 ≤ θ ≤ 1.1,
with window −2 ≤ x ≤ 1 and −1 ≤ y ≤ 1

• Kermitoid of Kelcey (1992):

r = 2.5 sin(2θ) [θ − 4.71] · INT
(

θ

π

)
+
[
5 sin3(θ)− 3 sin9(θ)

]
·
[

1 − INT
(

θ

π

)]
for 0 ≤ θ ≤ 2π with window −3 ≤ x ≤ 3 and −1 ≤ y ≤ 4

• Bovine Oculoid: r = 1 + INT
(

θ
2π

)
for 0 ≤ θ ≤ 6π with window

−5 ≤ x ≤ 5 and −4 ≤ y ≤ 4

Based on their names, what shapes do
you expect for the following curves?

11.1 Practice Answers

1. Point C is at a distance of 10 miles in the direction 30◦; D is 5 miles
away at 270◦.

2. See first margin figure.

3. See second margin figure. The plateau is roughly rectangular.

4. The graphs for r = −2 appear below:

The graphs for r = cos(θ) appear below. Note that in polar coordi-
nates r = cos(θ) traces out a circle twice: once as θ goes from 0 to π,
and a second time as θ goes from π to 2π.
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5. See margin figure. The points (almost) lie on a straight line.

6. r2 = x2 + y2 and r · sin(θ) = y, so:

r2 = 4r · sin(θ) ⇒ x2 + y2 = 4y

Putting this last equation into the standard form for a circle (by
completing the square) yields x2 + (y − 2)2 = 4, an equation for a
circle with center at (0, 2) and radius 2.

7. See margin figure. For point A, the “elbow,” relative to O, the
“shoulder”: x = 18 cos(30◦) ≈ 15.6 inches and y = 18 sin(30◦) = 9
inches. For point B, the “hand,” relative to A: x = 12 cos(75◦) ≈ 3.1
inches and y = 12 sin(75◦) ≈ 11.6 inches. Then the rectangular
coordinate location of B relative to O is x ≈ 15.6 + 3.1 = 18.7 inches
and y ≈ 9 + 11.6 = 20.6 inches. The polar coordinate location of B
relative to O is r =

√
x2 + y2 ≈ 27.8 inches and θ ≈ 47.7◦ (or 0.83

radians).
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