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11.3 Parametric Equations

Some motions and paths are inconvenient, difficult or impossible for
us to describe using a graph of the form y = f (x).

• A rider on a “whirligig” (see top margin figure) at a carnival travels
in circles at the end of a rotating bar.

• A robot delivering supplies in a factory (second margin figure) must
avoid obstacles.

• A fly buzzing around the room (third margin figure) or a molecule
in a solution follow erratic paths.

• A stone caught in the tread of a rolling wheel has a smooth path
with some sharp corners (see figure below).

Parametric equations provide a way to describe all of these motions
and paths. And parametric equations generalize easily to describe
paths and motions in three (or more) dimensions.

We used parametric equations briefly in Sections 2.5 and 5.2. We
consider them more carefully now, looking at functions given para-
metrically by data, graphs and formulas, and examining how to build
formulas to describe certain motions parametrically (including the
cycloid, one of the most famous curves in mathematics).

The next section uses calculus with para-
metric equations to find slopes of tangent
lines, arclengths and areas.

In two dimensions, parametric equations describe the location of a
point (x, y) on a graph or path as a function of a single independent
variable t, a “parameter” often representing time. The coordinates x
and y are functions of the variable t: x = f (t) and y = g(t) (see margin).
(In three dimensions, we add a z-coordinate that is also a function of t:
z = h(t).) Among other applications, we can use parametric equations
to analyze the forces acting on an object separately in each coordinate
direction and then combine the results to determine the overall behavior
of the object.

Graphing Parametric Curves

The data we need to create a graph can be given as a table of values, as
graphs of (t, f (t)) and (t, y(t)), or as formulas for f (t) and g(t).
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Example 1. The margin table records the location of a roller coaster car
relative to its starting location. Use the data to sketch a graph of the
car’s path during the first seven seconds of motion.

Solution. The figure below plots the (x, y) locations of the car at one-
second intervals from t = 0 to t = 7 seconds. We can connect these
points using a smooth curve that shows one possible path of the car. ◀

t x y

0 0 70

1 30 20

2 70 50

3 60 75

4 30 70

5 32 35

6 60 15

7 90 55

8 105 85

9 125 100

10 130 80

11 150 65

12 180 75

13 200 30

Practice 1. Use the remaining data in the margin table to sketch a
possible path of the roller coaster car from t = 7 to t = 13 seconds.

Clearly the path of the roller coaster in the preceding Example is not
the graph of a function y = f (x). But every graph of the form y = f (x)
has an easy parametric representation: set x(t) = t and y(t) = f (t).

Sometimes a parametric graph can show patterns that are not clearly
visible in individual graphs.

Example 2. The figures below are graphs of the populations of rabbits
and foxes on an island. Use these graphs to sketch a parametric graph
of rabbits (x-axis) versus foxes (y-axis) for 0 ≤ t ≤ 10 years.

Solution. The separate rabbit and fox population graphs give us in-
formation about each population separately, but the parametric graph
helps us see the effects of the interaction between the rabbits and the
foxes more clearly. For each time t, you can read the rabbit and fox
populations from the separate graphs (for example, when t = 1, there
are roughly 3,000 rabbits and 400 foxes so x ≈ 3000 and y ≈ 400) and
then combine this information to plot a single point.
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If you repeat this process for a large number of values of t, you get a
graph (see margin) of the “motion” of the rabbit and fox populations
over a period of time. We can then ask questions about why the
populations might exhibit this behavior. ◀

The type of graph created in the preceding Example is very com-
mon for “predator-prey” interactions. Some two-species populations
approach a “steady state” or “fixed point” (see second margin figure),
while others repeat a cyclical pattern over time (as in Example 2).

Practice 2. What would happen if the rabbit-fox graph touched the
horizontal axis?

Example 3. Graph the parametric equations x(t) = 2t − 2 and y(t) =
3t + 1 in the xy-plane.

Solution. The margin table shows the values of x and y for several
values of t and the graph shows these points plotted in the xy-plane.
The graph appears to be a line. Often it is difficult or impossible to
write y as a simple function of x, but in this situation we can do so:

x = 2t − 2 ⇒ t =
1
2

x + 1 ⇒ y = 3
(

1
2

x + 1
)
+ 1 =

3
2

x + 4

This agrees with what we see in the graph: a line with slope 3
2 and

y-intercept at (0, 4). ◀

t x y

−1 −4 −2
0 −2 1
1 0 4
2 2 7

Practice 3. Graph x(t) = 3 − t and y(t) = t2 + 1 in the xy-plane. Then
write y as a function of x alone and identify the shape of the graph.

Example 4. Graph x(t) = 3 cos(t) and y(t) = 2 sin(t) in the xy-plane
for 0 ≤ t ≤ 2π, then show that these parametric equations satisfy the

relation
x2

9
+

y2

4
= 1 for all values of t.

Solution. The graph, an ellipse, appears in the margin. Substituting
3 cos(t) for x and 2 sin(t) for y into the left-hand side of the given
relation yields cos2(t) + sin2(t) = 1, as required. ◀

Practice 4. Graph the equations x(t) = sin(t) and y(t) = 5 cos(t) in
the xy-plane for 0 ≤ t ≤ 2π, then show that these equations satisfy the

relation x2 +
y2

25
= 1 for all values of t.

Example 5. Describe the motion of an object whose location at time t is
given by x(t) = −R · sin(t) and y(t) = −R · cos(t).

Solution. At t = 0, the object starts at x(0) = −R sin(0) = 0 and
y(0) = −R cos(0) = −R. By plotting x(t) and y(t) for several other
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values of t (see margin figure), we can see that the object is rotating
clockwise around the origin. Because:

x2 + y2 = [−R sin(t)]2 + [−R cos(t)]2 = R2
[
sin2(t) + cos2(t)

]
= R2

the object must traverse a circle of radius R centered at the origin. ◀

Practice 5. Each set of parametric equations below give the position of
an object travelling around a circle of radius 1 centered at the origin.

(a) x(t) = cos(2t), y(t) = sin(2t)

(b) x(t) = − cos(3t), y(t) = sin(3t)

(c) x(t) = sin(4t), y(t) = − cos(4t)

For each object, determine:

• the location of the object at time t = 0.

• whether the object is traveling clockwise or counterclockwise.

• the time it takes for the object to make one revolution.

Putting Motions Together

If we know how an object moves horizontally and how it moves ver-
tically, we can combine these motions to see how the object moves
through the xy-plane.

If you throw an object straight upward with an initial velocity of A
feet per second, then its height after t seconds is y(t) = A · t − 1

2 g · t2

feet where g = 32 feet/sec2 is the (downward) acceleration of gravity
(see below left). If you throw an object horizontally with an initial
velocity of B feet per second, then its horizontal distance from the
starting place after t seconds is x(t) = B · t feet (see below center).

Example 6. Write parametric equations for the location at time t (above
right) of an object thrown at an angle of 30◦ with the ground (horizontal)
with an initial velocity 100 feet per second.
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Solution. If the object travels 100 feet along a line at an angle of 30◦ to
the horizontal ground (see margin), then it travels 100 · sin (30◦) = 50
feet upward and 100 · cos (30◦) ≈ 86.6 feet sideways, so A = 50 and
B = 86.6 (using the notation from the discussion above). The location
of the object at time t is therefore given by x(t) = 86.6t and y(t) =

50t − 1
2 gt2 = 50t − 16t2. ◀

Practice 6. You throw a ball upward at an angle of 45◦ with an initial
velocity of 40 ft/sec.

(a) Write the parametric equations for the position of the ball as a
function of time.

(b) Use the parametric equations to find when and then where the
ball will hit the sloped ground (as shown in the margin figure).

Sometimes we record the location or motion of an object using an
instrument that is itself in motion (for example, tracking a pod of
migrating whales from a moving ship) and we want to determine the
path of the object independent of the location of the instrument. In that
case, the “absolute” location of the object with respect to the origin is
the sum of the relative location of the object (the pod of whales) with
respect to the instrument (the ship) and the location of the instrument
(the ship) with respect to the origin. The same approach allows us to
describe the motion of linked objects, such as connected gears.

Example 7. A car on a carnival ride (see margin) makes one counter-
clockwise revolution (with radius r = 8 feet) about the pivot point A
every two seconds. The pivot A is at the end of a longer arm (with
radius R = 20 feet) that makes one counterclockwise revolution about
its pivot point (the origin) every five seconds. If the ride begins with
the two arms outstretched along the positive x-axis, sketch the path
you think the car will follow. Then find a pair of parametric equations
that describe the location of the car at time t.

Solution. The location of the car relative to its pivot point A is given
by xc(t) = 8 cos

( 2π
2 t
)
= 8 cos(πt) and yc(t) = 8 sin

( 2π
2 t
)
= 8 sin(πt).

The position of the pivot point A relative to the origin is given by
xp(t) = 20 cos

( 2π
5 t
)

and yp(t) = 20 sin
( 2π

5 t
)
, so the location of the car,

relative to the origin, is given by:

x(t) = xp(t) + xc(t) = 8 cos(πt) + 20 cos
(

2π

5
t
)

y(t) = yp(t) + yc(t) = 8 sin(πt) + 20 sin
(

2π

5
t
)

Use technology to graph the path of the car for over the first five
seconds and compare that path to your initial guess. ◀
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The Cycloid

Our final example devlops parametric equations for a curve called a
cycloid, one of the most famous and interesting curves in mathematics.

Example 8. A light is attached to the edge of a wheel of radius R,
which rolls along a level road (see margin). Find parametric equations
to describe the location of the light.

Solution. We can describe the location of the axle of the wheel, then
the location of the light relative to the axle, and finally put the results
together to get the location of the light.

The axle of the wheel is always R inches off the ground, so the
y-coordinate of the axle is given by ya(t) = R. When the wheel has
rotated t radians about its axle, the wheel has rolled a distance of R · t
along the road, so the x-coordinate of the axle is given by xa(t) = R · t.

The position of the light relative to the axle is given by xl(t) =

−R sin(t) and yl(t) = −R cos(t) so the position of the light relative to
the origin is given by:

x(t) = xa(t) + xl(t) = Rt − R sin(t) = R [t − sin(t)]

y(t) = ya(t) + yl(t) = R − R cos(t) = R [1 − cos(t)]

Use technology (choose a value for R) to graph these equations. ◀

Many great mathematicians and physicists (Mersenne, Galileo, New-
ton, Bernoulli, Huygens and others) examined the cycloid, determined
its properties and used it in physical applications. Marin Mersenne
(1588–1648) thought the path might be part of an ellipse (it isn’t). In
1634, Gilles Personne de Roberval (1602–1675) determined the para-
metric form of the cycloid and found the area under the cycloid, as
did Descartes and Fermat, before Newton (1642–1727) was even born:
they used various specialized geometric approaches to solve the area
problem. Around the same time, Galileo determined the area experi-
mentally by cutting a cycloidal region from a sheet of lead and balancing
it against a number of disks (with the same radius as the circle that
generated the cycloid) cut from the same material. How many disks do
you think balance the cycloidal region’s area?

The cycloid’s most amazing properties, however, involve motion
along a cycloid-shaped path. Those discoveries had to wait for Newton
and calculus.

Practice 7. A light is attached r inches from the axle to a wheel of
radius R inches (r < R) that rolls along a level road (see margin). Use
the approach of Example 8 to find parametric equations to describe the
location of the light. The resulting curve is called a curate cycloid.
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11.3 Problems

For Problems 1–4, use the data in the table to cre-
ate three graphs: (a) (t, x(t)) (b) (t, y(t)) and (c) the
parametric graph (x(t), y(t)). (Connect the points
with line segments to create the graph.)

1.

t x y

0 2 1
1 2 0
2 −1 0
3 1 −1

2.

t x y

0 0 1
1 1 1
2 1 −1
3 2 0

3.

t x y

0 1 2
1 −1 −1
2 1 2
3 0 2

4.

t x y

0 0 1
1 −1 0
2 0 −2
3 3 1

For 5–8, use the given graphs of (t, x(t)) and (t, y(t))
to sketch the parametric graph (x(t), y(t)).

5.

6.

7.

8.

9. Graph the parametric equations x(t) = 3t − 2,
y(t) = 1 − 2t. What shape is this graph?

10. Graph the parametric equations x(t) = 2 − 3t,
y(t) = 3 + 2t. What shape is this graph?

11. Calculate the slope of the line through the points
P = (x(0), y(0)) and Q = (x(1), y(1)) for the
equations x(t) = at + b and y(t) = ct + d.

12. Graph x(t) = 3 + 2 cos(t), y(t) = −1 + 3 sin(t)
for 0 ≤ t ≤ 2π. Describe the shape of the graph.

13. Graph x(t) = −2 + 3 cos(t), y(t) = 1 − 4 sin(t)
for 0 ≤ t ≤ 2π. Describe the shape of the graph.

14. Graph each set of parametric equations, then de-
scribe the similarities and the differences among
these graphs.

(a) x(t) = t2, y(t) = t

(b) x(t) = sin2(t), y(t) = sin(t)

(c) x(t) = t, y(t) =
√

t.

15. Graph each set of parametric equations, then de-
scribe the similarities and the differences among
these graphs.

(a) x(t) = t, y(t) = t

(b) x(t) = sin(t), y(t) = sin(t)

(c) x(t) = t2, y(t) = t2.

16. Graph the parametric equations:

x(t) =
(

4 − 1
t

)
cos(t), y(t) =

(
4 − 1

t

)
sin(t)

for t ≥ 1, then describe the behavior of the graph.
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17. Graph x(t) =
cos(t)

t
, y(t) =

sin(t)
t

for t ≥ π

4
,

then describe the behavior of the graph.

18. Graph x(t) = t + sin(t), y(t) = t2 + cos(t) for
0 ≤ t ≤ 2π, then describe the shape of the graph.

Problems 19–22 refer to the rabbit–fox population
graph below, which shows several different popu-
lation cycles depending on the various numbers of
rabbits and foxes. Wildlife biologists sometimes try
to control animal populations by “harvesting” some
of the animals, but this needs to be done with care.
The thick dot on the graph is the fixed point for this
two-species population.

19. If there are currently 11,000 rabbits and 200 foxes
(point A), and wildlife officials “harvest” 1,000

rabbits (removing them from the population),
does the harvest shift the populations onto a cycle
closer to or farther from the fixed point?

20. If there are currently 10,000 rabbits and 300 foxes
(point B), and officials “harvest” 100 foxes, does
the harvest shift the populations onto a cycle
closer to or farther from the fixed point?

21. If there are currently 8,000 rabbits and 250 foxes
(point C), and 1,000 rabbits die during a hard
winter, does the wildlife biologist need to take
action to main the population balance? Justify
your response.

22. If there are currently 9,000 rabbits and 500 foxes
(point D), and 2,000 rabbits die during a hard
winter, does the wildlife biologist need to take
action to main the population balance? Justify
your response.

23. If x(t) = at + b and y(t) = ct + d with a ̸= 0
and c ̸= 0, write y as a function of x alone and
show that the parametric graph (x(t), y(t)) is a
line. What is the slope of that line?

24. Each set of parametric equations given below sat-
isfy x2 + y2 = 1 and, for 0 ≤ t ≤ 2π, describe the
position of an object moving around a circle with
radius 1 with center at the origin. Explain how
the motions of the objects differ.

(a) x(t) = cos(t), y(t) = sin(t)
(b) x(t) = cos(−t), y(t) = sin(−t)
(c) x(t) = cos(2t), y(t) = sin(2t)
(d) x(t) = sin(t), y(t) = cos(t)
(e) x(t) = cos

(
t + π

2
)
, y(t) = sin

(
t + π

2
)

25. From a tall building, you observe a person walk-
ing along a straight path while twirling a light
(parallel to the ground) at the end of a string.

(a) If the person is walking slowly, sketch the
path of the light.

(b) How would the path of the light change if the
person were running?

(c) Sketch the path of the light for a person walk-
ing along a parabolic path.

(d) Sketch the path of the light for a person run-
ning along a parabolic path.

26. William Tell aims his arrow directly at an apple
and releases the arrow at exactly the same instant
that the apple stem breaks. In a world without
gravity (or air resistance), the apple remains in
place after the stem breaks and the arrow flies
straight to hit the apple (see below).

(a) Sketch the path of the apple and the arrow in a
world with gravity (but still no air resistance).

(b) Does the arrow still hit the apple? Explain.
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27. Find the radius R of a circle that generates a cy-
cloid that starts at the point (0, 0) and:

(a) passes through the point (10π, 0) on its first
complete revolution (0 ≤ t ≤ 2π).

(b) passes through the point (5, 2) on its first com-
plete revolution. (Technology is helpful here.)

(c) passes through the point (2, 3) on its first com-
plete revolution. (Technology is helpful here.)

(d) passes through the point (4π, 8) on its first
complete revolution.

28. Your friends are riding on the Ferris wheel illus-
trated below, and a t seconds after the ride begins,
their location is given parametrically as:(

−20 sin
(

2π

15
t
)

, 30 − 20 cos
(

2π

15
t
))

(a) Is the Ferris wheel turning clockwise or coun-
terclockwise?

(b) How many seconds does it take the Ferris
wheel to make one complete revolution?

29. You are standing 50 feet to the left of the Ferris
wheel from Problem 28. You toss an apple from a
height of six feet above the ground at an angle of
45◦. Write parametric equations for the location
of the apple (relative to the origin indicated in
the figure above) at time t if:

(a) you give the apple an initial velocity of 30 feet
per second.

(b) you give the apple an initial velocity of v feet
per second.

30. Help—the Ferris wheel won’t stop! To keep your
friends on the Ferris wheel in Problems 28–29

from getting hungry, you toss an apple to them
(at time t = 0). Find a formula for the distance be-
tween the apple and your friends at time t. Some-
how (technology may be useful), find a value for
the initial velocity v of the apple that will ensure
that it comes close enough for your friends to
catch it (within two feet should do the trick).

31. A wheel of radius R sits on a ledge, with a rod
of length 1.5R attached to the center of the wheel
and hanging down over the ledge. Find para-
metric equations for the path (called a prolate
cycloid) of a light at the end of the rod.

32. A wheel of radius R rolls along the inside of a
circle of radius 3R. Find parametric equations for
the path (called a hypocycloid) of a light on the
edge of the wheel.

33. A wheel of radius R rolls along the outside of a
circle of radius 3R. Find parametric equations for
the path (called an epicycloid) traced out by a
light on the edge of the wheel.

11.3 Practice Answers

1. A possible path for the car appears in the margin.

2. At the time the (rabbit, fox) parametric graph touches the horizontal
axis there will be 0 foxes, so the fox population becomes extinct.
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3. If x = 3 − t and y = t2 + 1 then t = 3 − x and y = (3 − x)2 + 1 =

x2 − 6x + 10. The graph (see margin) is parabola, opening upward,
with vertex at (3, 1).

4. For all t:

x2

1
+

y2

25
=

sin2(t)
1

+
25 cos2(t)

25
= sin2(t) + cos2(t) = 1

A parametric graph of x(t) = sin(t) and y(t) = 5 cos(t) appears in
the second margin figure.

5. A starts at (1, 0), travels counterclockwise, and takes
2π

2
= π sec-

onds to make one revolution. B starts at (−1, 0), travels clockwise,
and takes 2π

3 seconds to make one revolution. C starts at (0,−1),

travels counterclockwise, and takes
2π

4
=

π

2
seconds to make one

revolution.

6. (a) x(t) = 40 cos (45◦) t = 20
√

2 t and y(t) = 40 sin (45◦) t − 16t2 =

20
√

2 t − 16t2

(b) Along the ground y = −1
2

x, so the ball hits the ground when:

y(t) = −1
2

x(t) ⇒ 20
√

2 t − 16t2 = −10
√

2 t ⇒ t =
15
√

2
8

(assuming t ̸= 0). The location of the ball is therefore given by:

x

(
15
√

2
8

)
= 20

√
2

(
15
√

2
8

)
= 75

y

(
15
√

2
8

)
= 20

√
2

(
15
√

2
8

)
− 16

(
15
√

2
8

)2

= −37.5

so the ball hits the ground at location (75,−37.5) after (approxi-
mately) 2.652 seconds.

7. The axle is located at xa(t) = Rt and ya(t) = R while the location
of the light relative to the axle is given by xl(t) = −r sin(t) and
yl(t) = −r cos(t), hence the position of the light relative to the origin
is given by:

x(t) = xa(t) + xl(t) = Rt − r sin(t)

y(t) = ya(t) + yl(t) = R − r cos(t)
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