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11.4 Calculus with Parametric Equations

The previous section discussed parametric equations, their graphs
and some of their uses. This section examines some of the ideas and
techniques of calculus as they apply to parametric equations: slope of
a tangent line, speed, arclength and area. Treatments of slope, speed,
and arclength for parametric equations previously appeared in Sections
2.5 and 5.3, so the presentation here is brief. The material on area
(new to this section) is a variation on the Riemann-sum development
of the integral. This section ends with an investigation of some of the
properties of the cycloid.

Also see Section 2.5.Slope

If x(t) and y(t) are differentiable functions of t, then the derivatives
dx
dt

and
dy
dt

measure the rates of change of x and y, respectively, with

respect to t. The derivative
dy
dx

measures the slope of the line tangent

to the parametric graph (x(t), y(t)). To calculate
dy
dx

we need to use the
Chain Rule:

dy
dt

=
dy
dx

· dx
dt

⇒ dy
dx

=
dy
dt
dx
dt

as long as
dx
dt

̸= 0.

t x y
dy
dx

−2 −7 2 − 1
4

−1 0 0 − 1
3

0 1 0 UND
1 2 2 1
2 9 6 5

12

Example 1. The location of an object in a plane, relative to the orgin, is
given by the parametric equations x(t) = t3 + 1 feet and y(t) = t2 + t
feet at time t seconds.

(a) Evaluate x(t) and y(t) at t = −2, −1, 0, 1 and 2, then graph the path
of the object for −2 ≤ t ≤ 2.

(b) Evaluate
dy
dx

for t = −2, −1, 0, 1 and 2. Do your calculated values

for
dy
dx

agree with the shape of your graph from part (a)?

Solution. (a) When t = −2, x(−2) = (−2)3 + 1 = −7 and y(−2) =

(−2)2 + (−2) = 2. The other values for x(t) and y(t) appear in the
margin table; a graph of (x(t), y(t)) appears below.

(b)
dy
dt

= 2t + 1 and
dx
dt

= 3t2, so:

dy
dx

=
2t + 1

3t2 ⇒ dy
dx

∣∣∣∣
t=−2

=
−3
12

= −1
4

The other values for
dy
dx

appear in the margin table (the value for
t = 0 is undefined). ◀
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Practice 1. Find an equation for the line tangent to the graph of the
parametric equations from Example 1 at the point where t = 3.

An object can “visit” the same location more than once, and a
parametric graph pass through the same point more than once.

Example 2. The first two margin figures show the x- and y-coordinates
of an object at time t.

(a) Sketch the parametric graph of (x(t), y(t)), the position of the object
at time t.

(b) Give the coordinates of the object when t = 1 and t = 3.

(c) Find the slopes of the tangent lines to the parametric graph when
t = 1 and t = 3.

Solution. (a) By reading the x- and y-values on the graphs in margin
figures, we can plot points on the parametric graph. The parametric
graph appears in the bottom margin figure.

(b) When t = 1, x = 2 and y = 2 so the parametric graph goes through
the point (2, 2). When t = 3, the parametric graph goes through the
same point (2, 2), as observed in the parametric graph.

(c) When t = 1,
dy
dt

≈ −1 and
dx
dt

≈ +1, so:

dy
dx

=
dy
dt
dx
dt

≈ −1
1

= −1

When t = 3,
dy
dt

≈ +1 and
dx
dt

≈ +1, so
dy
dx

≈ 1. These values agree
with the appearance of the parametric graph. The object passes
through the point (2, 2) twice (when t = 1 and t = 3), but is travel-
ing in a different direction each time. ◀

Practice 2. (a) Estimate the slopes of the lines tangent to the parametric
graph from the previous Example when t = 2 and t = 5.

(b) At what time(s) does
dy
dt

= 0?

(c) When does the parametric graph have a maximum? A minimum?

(d) How are the maximum and minimum points on a parametric graph
related to the derivatives of x(t) and y(t)?
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Speed

If you know how fast an object is moving in the x-direction
(

dx
dt

)
and

how fast it is moving in the y-direction
(

dy
dt

)
, it is straightforward to

determine the speed of the object (how fast it is moving in the xy-plane).
If, during a short interval of time ∆t, the object’s position changes

by ∆x in the x-direction and by ∆y in the y-direction (see margin), then

the object has moved a distance of
√
(∆x)2 + (∆y)2 in time ∆t, so the

average speed during this brief time interval is:

distance moved
time change

=

√
(∆x)2 + (∆y)2

∆t
=

√
(

∆x
∆t

)2 + (
∆y
∆t

)2

If x(t) and y(t) are differentiable functions of t, we can take the limit of
the average speed (as ∆t approaches 0) to get the instantaneous speed
at time t:

lim
∆t→0

√(
∆x
∆t

)2
+

(
∆y
∆t

)2
=

√(
dx
dt

)2
+

(
dy
dt

)2

Example 3. At time t seconds the location (measured in feet) of an
object in the xy-plane, relative to the origin is (cos(t), sin(t)). Sketch
the path of the object and show that it is traveling at a constant speed.

Solution. The object is moving in a circular path (see margin). The
speed of the object is:√(

dx
dt

)2
+

(
dy
dt

)2
=

√
(− sin(t))2 + (cos(t))2 = 1

so its speed (1 foot per second) is indeed constant. ◀

Practice 3. Is the object in Example 2 traveling faster when t = 1 or
when t = 3? When t = 1 or when t = 2?

Arclength

In section 5.3 we approximated the total length L of a curve C by
partitioning C into small pieces (see margin), approximating the length
of each piece using the distance formula, and then adding the lengths
of the pieces together to get:

L ≈ ∑
√
(∆x)2 + (∆y)2 = ∑

√(
∆x
∆x

)2
+

(
∆y
∆x

)2
∆x

We then viewed this sum as a Riemann sum that converges to this
definite integral:

L =
∫ x=b

x=a

√
1 +

(
dy
dx

)2
dx
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where x = a and x = b correspond to the endpoints of C. We then used
a similar approach for parametric equations:

L ≈ ∑
√
(∆x)2 + (∆y)2 = ∑

√(
∆x
∆t

)2
+

(
∆y
∆t

)2
∆t

where t = α and t = β correspond to the endpoints of C.

Arclength Formula (Parametric Version)

If C is a curve given by x = x(t) and y = y(t) for α ≤ t ≤ β

and x′(t) and y′(t) exist and are continuous on [α, β]

then the length L of C is given by:

L =
∫ β

α

√(
dx
dt

)2
+

(
dy
dt

)2
dt

The resulting integral:∫ 2π

0

√
2 − 2 cos(t) dt

appears challenging, but in this instance
clever use of a trigonometric identity al-
lows us to find an exact value. In most
instances, however, the integrals result-
ing from arclength computation will re-
quire numerical approximation (as we
observed in Section 5.3).

Example 4. Find the length of the cycloid parametrized by x(t) =

R (t − sin(t)) and y(t) = R (1 − cos(t)) for 0 ≤ t ≤ 2π (see below).

Solution. Computing
dx
dt

= R (1 − cos(t)) and
dy
dt

= R sin(t) and
using the parametric arclength formula yields:

L =
∫ 2π

0

√(
dx
dt

)2
+

(
dy
dt

)2
dt

=
∫ 2π

0

√
R (1 − cos(t))2 + (R sin(t))2 dt

= R
∫ 2π

0

√
1 − 2 cos(t) + cos2(t) + sin2(t) dt = R

∫ 2π

0

√
2 − 2 cos(t) dt

Replacing θ with
t
2

in the formula sin2(θ) = 1
2 − 1

2 cos(2θ) yields:

2 − 2 cos(t) = 4 sin2
(

t
2

)
so the integral becomes:

L = R
∫ 2π

0
2 sin

(
t
2

)
dt =

[
−4R cos

(
t
2

)]2π

0
= 8R

The length of a cycloid arch is 8 times the radius of the rolling circle
that generated the cycloid. ◀



polar and parametric curves 791

Practice 4. Represent the length of the ellipse parametrized by x(t) =
3 cos(t) and y = 2 sin(t) for 0 ≤ t ≤ 2π (see margin) as a definite
integral, then use technology to approximate the value of the integral.

Area

When we first developed the definite integral, we approximated the
area between the graph of a positive function y = f (x) by partitioning
the domain a ≤ x ≤ b into n pieces of lengths ∆xk , finding the areas
of the thin rectangles, and approximating the total area by adding the
rectangle areas: A ≈ ∑ yk ∆xk (a Riemann sum). As ∆x → 0, the

Riemann sum approached the definite integral
∫ x=b

x=a
y dx.

To compute the area of a similar region when the curve is defined
by parametric equations, the process is similar, but the independent
variable is now t and the domain is an interval α ≤ t ≤ β. If x(t) is
an increasing function of t, any partition of the t-interval [α, β] into n
pieces of lengths ∆tk induces a partition of the x-axis (see margin). We
can use this induced partition of the x-axis to approximate the total
area by:

A ≈ ∑ yk ∆xk = ∑ yk ·
∆xk
∆tk

∆tk −→
∫ t=β

t=α
y · dx

dt
dt

as ∆t → 0.

Area with Parametric Equations

If C is a curve given by x = x(t) and y = y(t) for α ≤ t ≤ β

and x′(t) and y′(t) exist and are continuous on [α, β]

and y(t) and x′(t) do not change sign on [α, β]

then the area between C and the x-axis is given by:

A =

∣∣∣∣∫ β

α
y(t) · dx

dt
dt
∣∣∣∣

The requirement that y not change sign prevents the parametric
graph from being above the x-axis for some values of t and below the

x-axis for other t-values. The requirement that
dx
dt

not change sign
prevents the graph from “turning around” (see below).

If either requirement is not satisfied, some of the area will be added
(above center) and some will be subtracted (above right).
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Example 5. Find the area of the region R in the first quadrant enclosed
by the ellipse described by the parametric equations x(t) = a cos(t) and
y = b sin(t) (for a > 0 and b > 0) (see margin).

Solution. In the first quadrant (where 0 ≤ t ≤ π

2
), y = b sin(t) > 0

and
dx
dt

= −a sin(t) < 0, so the area of R is given by:

A =

∣∣∣∣∫ t= π
2

t=0
y(t) · dx

dt
dt
∣∣∣∣ = ∣∣∣∣∫ t= π

2

t=0
b sin(t) · [−a sin(t)] dt

∣∣∣∣
Evaluating this integral yields:

A = ab
∣∣∣∣∫ t= π

2

t=0
sin2(t) dt

∣∣∣∣ = ab
∣∣∣∣∫ t= π

2

t=0

[
1
2
− 1

2
cos(2t)

]
dt
∣∣∣∣

= ab

∣∣∣∣∣
[

1
2

t − 1
4

sin(2t)
]t= π

2

t=0

∣∣∣∣∣ = πab
4

The area enclosed by the entire ellipse is πab; if a = b, the ellipse is a
circle with radius r = a = b with area πr2 (as expected). ◀

Practice 5. Let x(t) = 4t − t2 and y(t) = t (graphed in the margin).

(a) Represent the area of the shaded region as an integral.

(b) Evaluate the integral from part (a).

(c) Does
∫ 3

0
t(4 − 2t) dt represent an area?

Properties of the Cycloid

In Section 11.3 we developed parametric equations for the cycloid:
x(t) = R (t − sin(t)) and y(t) = R (1 − cos(t)) For any t ≥ 0, y(t) ≥ 0

and
dx
dt

= R (1 − cos(t)) ≥ 0 so the area between one arch of the
cycloid and the x-axis is:

A =

∣∣∣∣∫ t=2π

t=0
y(t) · dx

dt
dt
∣∣∣∣ = ∫ 2π

0
[R (1 − cos(t))] · [R (1 − cos(t))] dt

= R2
∫ 2π

0

[
1 − 2 cos(t) + cos2(t)dt

]
dt

= R2
[

1
2

t − 2 sin(t) +
1
2

t +
1
4

sin(2t)
]2π

0
= R2 [2π + π] = 3πR2

The area under one arch of a cycloid is 3 times the area of the circle that
generates the cycloid. How does this compare with your guess from
the end of Section 11.3?

You and a friend decide to hold a contest to see who can build a
slide that gets a person from point A to point B (see margin) in the
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shortest time. What shape should you make your slide: a straight
line, part of a circle, or something else? Assuming that the slide is
frictionless and that the only acceleration is due to gravity, Johann
Bernoulli (1667–1748) showed that the shortest-time (“brachistochrone”
for “brachi,” meaning “short,” and “chrone,” meaning time) path is
part of a cycloid that starts at A and also goes through the point B.
The margin figure shows the cycloidal paths for A and B as well as the
cycloidal paths for two other “finish” points, C and D.

Even before Bernoulli solved the brachistochrone problem, the as-
tronomer, physicist and mathematician Christiaan Huygens (1629–1695)
attempted to design an accurate pendulum clock. On a standard pen-
dulum clock (see margin), the path of the bob is part of a circle, and
the period of the swing depends on the displacement angle of the bob;
as friction slows the bob, the displacement angle gets smaller and the
clock slows down. Huygens designed a clock (below left) whose bob
swung in a curve so that the period of the swing did not depend on
the displacement angle:

The curve Huygens found to solve the same-time (“tautochrone” for
“tauto,” meaning “same,” and “chrone,” meaning “time”) problem was
part of the cycloid. Beads strung on a wire in the shape of a cycloid
(above right) reach the bottom in the same amount of time, no matter
where along the wire (except the bottom point) you release them.

The brachistochane and tautochrone problems are examples from a
field of mathematics called the Calculus of Variations. Typical opti-
mization problems in calculus involve finding a point or number that
maximizes or minimizes some quantity. Typical optimization problems
in the Calculus of Variations involve finding a curve or function that
maximizes or minimizes some quantity. For example, what curve or
shape with a given length encloses the greatest area? (Answer: a circle.)
Modern applications of Calculus of Variations include finding routes
for airliners and ships to minimize travel time or fuel consumption
depending on prevailing winds or currents.
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11.4 Problems

For Problems 1–8, (a) sketch the parametric graph
(x(t), y(t)), (b) find the slope of the line tangent to
the graph at the given values of t, and (c) find the

points (x, y) at which
dy
dx

is either 0 or undefined.

1. x(t) = t − t2, y(t) = 2t + 1; t = 0, 1, 2

2. x(t) = t3 + t, y(t) = t2; t = 0, 1, 2

3. x(t) = 1 + cos(t), y(t) = 2 + sin(t); t = 0, π
4 , π

2

4. x(t) = 1 + 3 cos(t), y(t) = 2 + 2 sin(t); t = 0, π
4 , π

2

5. x(t) = sin(t), y(t) = cos(t); t = 0, π
4 , π

2 , 17.3

6. x(t) = 3 + sin(t), y(t) = 2 + sin(t); t = 0, π
4 , π

2

7. x(t) = ln(t), y(t) = 1 − t2; t = 1, 2, e

8. x(t) = arctan(t), y(t) = et; t = 0, 1, 2

In Problems 9–12, use the given graphs of x(t) and
y(t) to estimate (a) the slope of the line tangent to
the parametric graph at t = 0, 1, 2 and 3, and (b) the

points (x, y) at which
dy
dx

is either 0 or undefined.

9.

10.

11.

12.

For Problems 13–20, use the given locations x(t) and
y(t) of an object at time t seconds (measured in feet)
to find the speed of the object at the given times.

13. x(t) = t − t2, y(t) = 2t + 1; t = 0, 1, 2

14. x(t) = t3 + t, y(t) = t2; t = 0, 1, 2

15. x(t) = 1 + cos(t), y(t) = 2 + sin(t); t = 0, π
4 , π

2

16. x(t) = 1 + 3 cos(t), y(t) = 2 + 2 sin(t); t = 0, π
4 , π

2 , π

17. x(t) and y(t) from Problem 9 at t = 0, 1, 2, 3 and 4

18. x(t) and y(t) from Problem 10 at t = 0, 1, 2 and 3

19. x(t) and y(t) from Problem 11 at t = 0, 1, 2 and 3

20. x(t) and y(t) from Problem 12 at t = 0, 1, 2 and 3

21. An object travels along a cycloidal path so that
its location is given by x(t) = R (t − sin(t)) and
y(t) = R (1 − cos(t)) after t seconds (with dis-
tances measured in feet).

(a) Find the speed of the object at time t.

(b) At what time is the object traveling fastest?

(c) Where is the object on its cycloidal path when
it is traveling fastest?

22. At time t seconds an object is located at x(t) =
5 cos(t) and y(t) = 2 sin(t) (measured in feet).

(a) Find the speed of the object at time t.

(b) At what time is the object traveling fastest?

(c) Where is the object on its elliptical path when
it is traveling fastest?

For 23–28 (a) represent the arclength of the paramet-
ric graph as a definite integral, and (b) evaluate the
integral (using technology, if necessary).

23. x(t) = t − t2, y(t) = 2t + 1 from t = 0 to 2

24. x(t) = t3 + t, y(t) = t2; t = 0 to 2
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25. x(t) = 1 + cos(t), y(t) = 2 + sin(t); t = 0 to π

26. x(t) = 1 + 3 cos(t), y(t) = 2 + 2 sin(t); t = 0 to π

27. x(t) and y(t) given below; t = 1 to 3

28. x(t) and y(t) from Problem 12; t = 0 to 2

For 29–32 (a) represent the area of the region be-
tween the parametric graph and the x-axis as a defi-
nite integral, and (b) evaluate the integral.

29. x(t) = t2, y(t) = 4t2 − t4 for 0 ≤ t ≤ 2

30. x(t) = 1 + sin(t), y(t) = 2 + sin(t) for 0 ≤ t ≤ π

31. x(t) = t2, y(t) = 1 + cos(t) for 0 ≤ t ≤ 2

32. x(t) = cos(t), y(t) = 2 − sin(t) for 0 ≤ t ≤ π
2

33. “Cycloid” with a square wheel: Find the area
under one “arch” of the path of a point on the
corner of a “rolling” square with side length R.

34. Find the area of the region between the x-axis
and the curate cycloid x(t) = R · t − r · sin(t),
y(t) = R − r · cos(t) for 0 ≤ t ≤ 2π.

11.4 Practice Answers

1. When t = 3, x = 28, y = 12 and (using results from Example 1):

dy
dx

=
2t + 1

3t2 ⇒ dy
dx

∣∣∣∣
t=3

=
7

27

so an equation for the tangent line is y = 12 +
7

27
(x − 28).

2. (a) When t = 2,
dy
dx

≈ 0; when t = 5,
dy
dx

≈ −1.

(b) When t ≈ 2 and t ≈ 4 (according to the y(t) graph).

(c) A minimum occurs when t ≈ 2 and a maximum when t ≈ 4.

(d) If the parametric graph has a maximum or minimum at t = t∗,

then
dy
dt

equals 0 or is undefined when t = t∗.

3. When t = 1:

speed =

√(
dx
dt

)2
+

(
dy
dt

)2
≈
√

12 + (−1)2 =
√

2 ≈ 1.4
ft

sec

When t = 2: speed ≈
√
(−1)2 + 02 = 1

ft
sec

When t = 3: speed ≈
√

12 + 12 =
√

2 ≈ 1.4
ft

sec

4. Length =
∫ 2π

0

√
(−3 sin(t))2 + (2 cos(t))2 dt ≈ 15.87

5. (a) Area =
∫ 2

0
t · (4 − 2t) dt (b)

∫ 2

0

[
4t − 2t2

]
dt =

[
2t2 − 2

3
t2
]2

0
=

16
3

(c) No, it represents the area under the curve for 0 ≤ t ≤ 2 minus the
area under the curve for 2 ≤ t ≤ 3.
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