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2.3 More Differentiation Patterns

Polynomials are very useful, but they are not the only functions we
need. This section uses the ideas of the two previous sections to develop
techniques for differentiating powers of functions, and to determine the
derivatives of some particular functions that occur often in applications:
the trigonometric and exponential functions.

As you focus on learning how to differentiate different types and
combinations of functions, it is important to remember what derivatives
are and what they measure. Calculators and computers are available
to calculate derivatives. Part of your job as a professional will be to
decide which functions need to be differentiated and how to use the
resulting derivatives. You can succeed at that only if you understand
what a derivative is and what it measures.

A Power Rule for Functions: D( f n(x))

If we apply the Product Rule to the product of a function with itself, a
pattern emerges.

D( f 2) = D( f · f ) = f · D( f ) + f · D( f ) = = 2 f · D( f )

D( f 3) = D( f 2 · f ) = f 2 · D( f ) + f · D( f 2) = f 2 · D( f ) + f · 2 f · D( f ) = 3 f 2 · D( f )

D( f 4) = D( f 3 · f ) = f 3 · D( f ) + f · D( f 3) = f 3 · D( f ) + f · 3 f 2 · D( f ) = 4 f 3 · D( f )

Practice 1. What is the pattern here? What do you think the results
will be for D( f 5) and D( f 13)?

We could keep differentiating higher and higher powers of f (x) by
writing them as products of lower powers of f (x) and using the Product
Rule, but the Power Rule for Functions guarantees that the pattern we
just saw for the small integer powers also works for all constant powers
of functions.

Power Rule for Functions:

If p is any constant
then D( f p(x)) = p · f p−1(x) · D( f (x)).

The Power Rule for Functions is a spe-
cial case of a more general theorem, the
Chain Rule, which we will examine in
Section 2.4, so we will wait until then to
prove the Power Rule for Functions.

Remember: sin2(x) = [sin(x)]2

Check that you get the same answer by
first expanding (x3 − 5)2 and then taking
the derivative.

Example 1. Use the Power Rule for Functions to find:

(a) D((x3 − 5)2) (b)
d

dx

(√
2x + 3x5

)
(c) D(sin2(x))

Solution. (a) To match the pattern of the Power Rule for D((x3 − 5)2),
let f (x) = x3 − 5 and p = 2. Then:

D((x3 − 5)2) = D( f p(x)) = p · f p−1(x) · D( f (x))

= 2(x3 − 5)1 D(x3 − 5) = 2(x3 − 5)(3x2) = 6x2(x3 − 5)
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(b) To match the pattern for
d

dx

(√
2x + 3x5

)
=

d
dx

(
(2x + 3x5)

1
2

)
, let

f (x) = 2x + 3x5 and take p = 1
2 . Then:

d
dx

(√
2x + 3x5

)
=

d
dx

( f p(x)) = p · f p−1(x) · d
dx

( f (x))

=
1
2
(2x + 3x5)−

1
2

d
dx

(2x + 3x5)

=
1
2
(2x + 3x5)−

1
2 (2 + 15x4) =

2 + 15x4

2
√

2x + 3x5

(c) To match the pattern for D(sin2(x)), let f (x) = sin(x) and p = 2:

D(sin2(x)) = D( f p(x)) = p · f p−1(x) · D( f (x))

= 2 sin1(x)D(sin(x)) = 2 sin(x) cos(x)

We could also rewrite this last expression as sin(2x). ◀

Practice 2. Use the Power Rule for Functions to find:

(a)
d

dx

(
(2x5 − π)2

)
(b) D

(√
x + 7x2

)
(c) D(cos4(x))

Example 2. Use calculus to show that the line tangent to the circle
x2 + y2 = 25 at the point (3, 4) has slope − 3

4 .

Solution. The top half of the circle is the graph of f (x) =
√

25 − x2 so:

f ′(x) = D
(
(25 − x2)

1
2 )
)
=

1
2
(25 − x2)−

1
2 · D(25 − x2) =

−x√
25 − x2

and f ′(3) =
−3√

25 − 32
= −3

4
. As a check, you can verify that the slope

of the radial line through the center of the circle (0, 0) and the point
(3, 4) has slope 4

3 and is perpendicular to the tangent line that has a
slope of − 3

4 . ◀

Derivatives of Trigonometric Functions

We have some general rules that apply to any elementary combination
of differentiable functions, but in order to use the rules we still need to
know the derivatives of some basic functions. Here we will begin to
add to the list of functions whose derivatives we know.

We already know the derivatives of the sine and cosine functions, and
each of the other four trigonometric functions is just a ratio involving
sines or cosines. Using the Quotient Rule, we can easily differentiate
the rest of the trigonometric functions.

Theorem:

D(tan(x)) = sec2(x) D(sec(x)) = sec(x) · tan(x)
D(cot(x)) = − csc2(x) D(csc(x)) = − csc(x) · cot(x)
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Proof. From trigonometry, we know tan(x) =
sin(x)
cos(x)

, cot(x) =
cos(x)
sin(x)

,

sec(x) =
1

cos(x)
and csc(x) =

1
sin(x)

. From calculus, we already know

D(sin(x)) = cos(x) and D(cos(x)) = − sin(x). So:

D(tan(x)) = D
(

sin(x)
cos(x)

)
=

cos(x) · D(sin(x))− sin(x) · D(cos(x))
(cos(x))2

=
cos(x) · cos(x)− sin(x)(− sin(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)
=

1
cos2(x)

= sec2(x)

Similarly:

D(sec(x)) = D
(

1
cos(x)

)
=

cos(x) · D(1)− 1 · D(cos(x))
(cos(x))2

=
cos(x) · 0 − (− sin(x))

cos2(x)

=
sin(x)

cos2(x)
=

1
cos(x)

· sin(x)
cos(x)

= sec(x) · tan(x)

Instead of the Quotient Rule, we could have used the Power Rule to
calculate D(sec(x)) = D((cos(x))−1).

Practice 3. Use the Quotient Rule on f (x) = cot(x) =
cos(x)
sin(x)

to prove

that f ′(x) = − csc2(x).

Practice 4. Prove that D(csc(x)) = − csc(x) · cot(x). The justification
of this result is very similar to the justification for D(sec(x)).

Practice 5. Find: (a) D(x5 tan(x)) (b)
d
dt

(
sec(t)

t

)
(c) D

(√
cot(x)− x

)

Derivatives of Exponential Functions

We can estimate the value of a derivative of an exponential function (a
function of the form f (x) = ax where a > 0) by estimating the slope of
the line tangent to the graph of such a function, or we can numerically
approximate those slopes.

Example 3. Estimate the value of the derivative of f (x) = 2x at the
point (0, 20) = (0, 1) by approximating the slope of the line tangent to
f (x) = 2x at that point.

Solution. We can get estimates from the graph of f (x) = 2x by care-
fully graphing y = 2x for small values of x (so that x is near 0), sketch-
ing secant lines, and then measuring the slopes of the secant lines (see
margin figure).
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We can also estimate the slope numerically by using the definition
of the derivative:

f ′(0) = lim
h→0

f (0 + h)− f (0)
h

= lim
h→0

20+h − 20

h
= lim

h→0

2h − 1
h

and evaluating
2h − 1

h
for some very small values of h. From the table

below we can see that f ′(0) ≈ 0.693. ◀

h 2h−1
h

3h−1
h

eh−1
h

+0.1 0.717734625
−0.1 0.669670084
+0.01 0.695555006
−0.01 0.690750451
+0.001 0.693387463
−0.001 0.692907009
↓ ↓ ↓ ↓
0 ≈ 0.693 ≈ 1.099 1

Practice 6. Fill in the table for
3h − 1

h
and show that the slope of the

line tangent to g(x) = 3x at (0, 1) is approximately 1.099.

At (0, 1), the slope of the tangent to y = 2x is less than 1 and the
slope of the tangent to y = 3x is slightly greater than 1. You might
expect that there is a number b between 2 and 3 so that the slope of
the tangent to y = bx is exactly 1. Indeed, there is such a number,
e ≈ 2.71828182845904, with

lim
h→0

eh − 1
h

= 1

The number e is irrational and plays a very important role in calculus
and applications.

In fact, e is a “transcendental” number,
which means that it is not the root of
any polynomial equation with rational
coefficients.

We have not proved that this number e with the desired limit prop-
erty actually exists, but if we assume it does, then it becomes relatively
straightforward to calculate D(ex).

Don’t worry — we’ll tie up some of these
loose ends in Chapter 7.

Theorem: D(ex) = ex

Proof. Using the definition of the derivative:

D(ex) = lim
h→0

ex+h − ex

h
= lim

h→0

ex · eh − ex

h

= lim
h→0

ex · eh − 1
h

= lim
h→0

ex · lim
h→0

eh − 1
h

= ex · 1 = ex

The function f (x) = ex is its own derivative: f ′(x) = f (x).
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Graphically: the height of f (x) = ex at any point and the slope of
the tangent to f (x) = ex at that point are the same: as the graph gets
higher, its slope gets steeper.

Notice that the limit property of e that
we assumed was true actually says that
for f (x) = ex , f ′(0) = 1. So knowing
the derivative of f (x) = ex at a single
point (x = 0) allows us to determine its
derivative at every other point. Example 4. Find: (a)

d
dt
(
t · et) (b) D

(
ex

sin(x)

)
(c) D(e5x)

Solution. (a) Using the Product Rule with f (t) = t and g(t) = et:

d
dt
(
t · et) = t · D(et) + et · D(t) = t · et + et · 1 = (t + 1)et

(b) Using the Quotient Rule with f (x) = ex and g(x) = sin(x):

D
(

ex

sin(x)

)
=

sin(x) · D(ex)− ex · D(sin(x))

[sin(x)]2

=
sin(x) · ex − ex(cos(x))

sin2(x)

(c) Using the Power Rule for Functions with f (x) = ex and p = 5:

D((ex)5) = 5(ex)4 · D(ex) = 5e4x · ex = 5e5x

where we have rewritten e5x as (ex)5. ◀

Practice 7. Find: (a) D(x3ex) (b) D((ex)3).

Higher Derivatives: Derivatives of Derivatives

The derivative of a function f is a new function f ′ and if this new
function is differentiable we can calculate the derivative of this new
function to get the derivative of the derivative of f , denoted by f ′′ and
called the second derivative of f .

For example, if f (x) = x5 then f ′(x) = 5x4 and:

f ′′(x) = ( f ′(x))′ = (5x4)′ = 20x3

Definitions: Given a differentiable function f ,

• the first derivative is f ′(x), the rate of change of f .

• the second derivative is f ′′(x) = ( f ′(x))′, the rate of change of f ′.

• the third derivative is f ′′′(x) = ( f ′′(x))′, the rate of change of f ′′.

For y = f (x), we write f ′(x) =
dy
dx

, so we can extend that notation to

write f ′′(x) =
d

dx

(
dy
dx

)
=

d2y
dx2 , f ′′′(x) =

d
dx

(
d2y
dx2

)
=

d3y
dx3 and so on.
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Practice 8. Find f ′, f ′′ and f ′′′ for f (x) = 3x7, f (x) = sin(x) and
f (x) = x · cos(x).

If f (x) represents the position of a particle at time x, then v(x) =
f ′(x) will represent the velocity (rate of change of the position) of the
particle and a(x) = v′(x) = f ′′(x) will represent the acceleration (the
rate of change of the velocity) of the particle.

Example 5. The height (in feet) of a particle at time t seconds is given
by t3 − 4t2 + 8t. Find the height, velocity and acceleration of the particle
when t = 0, 1 and 2 seconds.

Solution. f (t) = t3 − 4t2 + 8t so f (0) = 0 feet, f (1) = 5 feet and
f (2) = 8 feet. The velocity is given by v(t) = f ′(t) = 3t2 − 8t + 8
so v(0) = 8 ft/sec, v(1) = 3 ft/sec and v(2) = 4 ft/sec. At each of
these times the velocity is positive and the particle is moving upward
(increasing in height). The acceleration is a(t) = 6t − 8 so a(0) = −8
ft/sec2, a(1) = −2 ft/sec2 and a(2) = 4 ft/sec2. ◀

We will examine the geometric (graphical) meaning of the second
derivative in the next chapter.

A Really “Bent” Function

In Section 1.2 we saw that the “holey” function

h(x) =

{
2 if x is a rational number
1 if x is an irrational number

is discontinuous at every value of x, so h(x) is not differentiable any-
where. We can create graphs of continuous functions that are not
differentiable at several places just by putting corners at those places,
but how many corners can a continuous function have? How badly can
a continuous function fail to be differentiable?

In the mid-1800s, the German mathematician Karl Weierstrass sur-
prised and even shocked the mathematical world by creating a function
that was continuous everywhere but differentiable nowhere — a func-
tion whose graph was everywhere connected and everywhere bent! He
used techniques we have not investigated yet, but we can begin to see
how such a function could be built.

Start with a function f1 (see margin) that zigzags between the values
1
2 and − 1

2 and has a “corner” at each integer. This starting function f1

is continuous everywhere and is differentiable everywhere except at
the integers. Next create a list of functions f2, f3, f4, . . . , each of which
is “shorter” than the previous one but with many more “corners” than
the previous one. For example, we might make f2 zigzag between the
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values 1
4 and − 1

4 and have “corners” at ± 1
2 , ± 3

2 , ± 5
2 , etc.; f3 zigzag

between 1
9 and − 1

9 and have “corners” at ± 1
3 , ± 2

3 , ± 3
3 = ±1, etc.

If we add f1 and f2, we get a continuous function (because the sum of
two continuous functions is continuous) with corners at 0, ± 1

2 , ±1, ± 3
2 ,

. . . . If we then add f3 to the previous sum, we get a new continuous
function with even more corners. If we continue adding the functions
in our list “indefinitely,” the final result will be a continuous function
that is differentiable nowhere.

We haven’t developed enough mathematics here to precisely describe
what it means to add an infinite number of functions together or
to verify that the resulting function is nowhere differentiable — but
we will. You can at least start to imagine what a strange, totally
“bent” function it must be. Until Weierstrass created his “everywhere
continuous, nowhere differentiable” function, most mathematicians
thought a continuous function could only be “bad” in a few places.
Weierstrass’ function was (and is) considered “pathological,” a great
example of how bad something can be. The mathematician Charles
Hermite expressed a reaction shared by many when they first encounter
the Weierstrass function: “I turn away with fright and horror from this
lamentable evil of functions which do not have derivatives.”

Important Results

Power Rule for Functions: D( f p(x)) = p · f p−1(x) · D( f (x))

Derivatives of the Trigonometric Functions:

D(sin(x)) = cos(x) D(cos(x)) = − sin(x)
D(tan(x)) = sec2(x) D(cot(x)) = − csc2(x)
D(sec(x)) = sec(x) tan(x) D(csc(x)) = − csc(x) cot(x)

Derivative of the Exponential Function: D(ex) = ex

2.3 Problems

1. Let f (1) = 2 and f ′(1) = 3. Find the values of
each of the following derivatives at x = 1.

(a) D( f 2(x))

(b) D( f 5(x))

(c) D(
√

f (x))

2. Let f (2) = −2 and f ′(2) = 5. Find the values of
each of the following derivatives at x = 2.

(a) D( f 2(x))

(b) D( f−3(x))

(c) D(
√

f (x))
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3. For x = 1 and x = 3 estimate the values of f (x)
(whose graph appears below), f ′(x) and

(a)
d

dx

(
f 2(x)

)
(b) D

(
f 3(x)

)
(c) D

(
f 5(x)

)

4. For x = 0 and x = 2 estimate the values of f (x)
(whose graph appears above), f ′(x) and

(a) D
(

f 2(x)
)

(b)
d

dx

(
f 3(x)

)
(c)

d
dx

(
f 5(x)

)
In Problems 5–10, find f ′(x).

5. f (x) = (2x − 8)5

6. f (x) = (6x − x2)10

7. f (x) = x · (3x + 7)5

8. f (x) = (2x + 3)6 · (x − 2)4

9. f (x) =
√

x2 + 6x − 1

10. f (x) =
x − 5

(x + 3)4

11. A mass attached to the end of a spring is at a
height of h(t) = 3 − 2 sin(t) feet above the floor t
seconds after it is released.

(a) Graph h(t).

(b) At what height is the mass when it is released?

(c) How high does above the floor and how close
to the floor does the mass ever get?

(d) Determine the height, velocity and acceleration
at time t. (Be sure to include the correct units.)

(e) Why is this an unrealistic model of the motion
of a mass attached to a real spring?

12. A mass attached to a spring is at a height of

h(t) = 3 − 2 sin(t)
1 + 0.1t2 feet above the floor t sec-

onds after it is released.

(a) Graph h(t).

(b) At what height is the mass when it is released?

(c) Determine the velocity of the mass at time t.

(d) What happens to the height and the velocity
of the mass a “long time” after it is released?

13. The kinetic energy K of an object of mass m and
velocity v is 1

2 mv2.

(a) Find the kinetic energy of an object with mass
m and height h(t) = 5t feet at t = 1 and t = 2
seconds.

(b) Find the kinetic energy of an object with mass
m and height h(t) = t2 feet at t = 1 and t = 2
seconds.

14. An object of mass m is attached to a spring and
has height h(t) = 3+ sin(t) feet at time t seconds.

(a) Find the height and kinetic energy of the object
when t = 1, 2 and 3 seconds.

(b) Find the rate of change in the kinetic energy of
the object when t = 1, 2 and 3 seconds.

(c) Can K ever be negative? Can
dK
dt

ever be nega-
tive? Why?

In Problems 15–20, compute f ′(x).

15. f (x) = x · sin(x)

16. f (x) = sin5(x)

17. f (x) = ex − sec(x)

18. f (x) =
√

cos(x) + 1

19. f (x) = e−x + sin(x)

20. f (x) =
√

x2 − 4x + 3

In Problems 21–26, find an equation for the line
tangent to the graph of y = f (x) at the given point.

21. f (x) = (x − 5)7 at (4,−1)

22. f (x) = ex at (0, 1)
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23. f (x) =
√

25 − x2 at (3, 4)

24. f (x) = sin3(x) at (π, 0)

25. f (x) = (x − a)5 at (a, 0)

26. f (x) = x · cos5(x) at (0, 0)

27. (a) Find an equation for the line tangent to f (x) =
ex at the point (3, e3).

(b) Where will this tangent line intersect the x-
axis?

(c) Where will the tangent line to f (x) = ex at the
point (p, ep) intersect the x-axis?

In Problems 28–33, calculate f ′ and f ′′.

28. f (x) = 7x2 + 5x − 3

29. f (x) = cos(x)

30. f (x) = sin(x)

31. f (x) = x2 · sin(x)

32. f (x) = x · sin(x)

33. f (x) = ex · cos(x)

34. Calculate the first 8 derivatives of f (x) = sin(x).
What is the pattern? What is the 208th derivative
of sin(x)?

35. What will the second derivative of a quadratic
polynomial be? The third derivative? The fourth
derivative?

36. What will the third derivative of a cubic polyno-
mial be? The fourth derivative?

37. What can you say about the n-th and (n + 1)-st
derivatives of a polynomial of degree n?

In Problems 38–42, you are given f ′. Find a function
f with the given derivative.

38. f ′(x) = 4x + 2

39. f ′(x) = 5ex

40. f ′(x) = 3 · sin2(x) · cos(x)

41. f ′(x) = 5(1 + ex)4 · ex

42. f ′(x) = ex + sin(x)

43. The function f (x) defined as

f (x) =

{
x · sin( 1

x ) if x ̸= 0
0 if x = 0

shown below is continuous at 0 because we can
show (using the Squeezing Theorem) that

lim
h→0

f (x) = 0 = f (0)

Is f differentiable at 0? To answer this question,
use the definition of f ′(0) and consider

lim
h→0

f (0 + h)− f (0)
h

44. The function f (x) defined as

f (x) =

{
x2 · sin( 1

x ) if x ̸= 0
0 if x = 0

(shown at the top of the next page) is continuous
at 0 because we can show (using the Squeezing
Theorem) that

lim
h→0

f (x) = 0 = f (0)

Is f differentiable at 0? To answer this question,
use the definition of f ′(0) and consider

lim
h→0

f (0 + h)− f (0)
h
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The number e appears in a variety of unusual situa-
tions. Problems 45–48 illustrate a few of these.

45. Use your calculator to examine the values of

f (x) =
(

1 +
1
x

)x
when x is relatively large (for

example, x = 100, 1000 and 10, 000. Try some
other large values for x. If x is large, the value of
f (x) is close to what number?

46. If you put $1 into a bank account that pays 1%
interest per year and compounds the interest x
times a year, then after one year you will have(

1 + 0.01
x

)x
dollars in the account.

(a) How much money will you have after one year
if the bank calculates the interest once a year?

(b) How much money will you have after one year
if the bank calculates the interest twice a year?

(c) How much money will you have after one year
if the bank calculates the interest 365 times a
year?

(d) How does your answer to part (c) compare
with e0.01?

47. Define n! to be the product of all positive integers
from 1 through n. For example, 2! = 1 · 2 = 2,
3! = 1 · 2 · 3 = 6 and 4! = 1 · 2 · 3 · 4 = 24.

(a) Calculate the value of the sums:

s1 = 1 +
1
1!

s2 = 1 +
1
1!

+
1
2!

s3 = 1 +
1
1!

+
1
2!

+
1
3!

s4 = 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

s5 = 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

s6 = 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

+
1
6!

(b) What value do the sums in part (a) seem to be
approaching?

(c) Calculate s7 and s8.

48. If it is late at night and you are tired of study-
ing calculus, try the following experiment with
a friend. Take the 2 through 10 of hearts from a
regular deck of cards and shuffle these nine cards
well. Have your friend do the same with the 2

through 10 of spades. Now compare your cards
one at a time. If there is a match, for example you
both play a 5, then the game is over and you win.
If you make it through the entire nine cards with
no match, then your friend wins. If you play the
game many times, then the ratio:

total number of games played
number of times your friend wins

will be approximately equal to e.

2.3 Practice Answers

1. The pattern is D( f n(x)) = n · f n−1(x) · D( f (x)):
D( f 5(x)) = 5 f 4(x) · D( f (x)) and D( f 13(x)) = 13 f 12(x) · D( f (x))

2.
d

dx
(2x5 − π)2 = 2(2x5 − π)1 D(2x5 − π) = 2(2x5 − π)(10x4) = 40x9 − 20πx4

D
(
(x + 7x2)

1
2

)
=

1
2
(x + 7x2)−

1
2 D(x + 7x2) =

1 + 14x
2
√

x + 7x2

D
(
(cos(x))4

)
= 4(cos(x))3 D(cos(x)) = 4(cos(x))3(− sin(x)) = −4 cos3(x) sin(x)
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3. Mimicking the proof for the derivative of tan(x):

D
(

cos(x)
sin(x)

)
=

sin(x) · D(cos(x))− cos(x) · D(sin(x))
(sin(x))2

=
sin(x)(− sin(x))− cos(x)(cos(x))

sin2(x)

=
−(sin2(x) + cos2(x))

sin2(x)
=

−1
sin2(x)

= − csc2(x)

4. Mimicking the proof for the derivative of sec(x):

D(csc(x)) = D
(

1
sin(x)

)
=

sin(x) · D(1)− 1 · D(sin(x)
sin2(x)

=
sin(x) · 0 − cos(x)

sin2(x)
= − 1

sin(x)
· cos(x)

sin(x)
= − cot(x) csc(x)

5. D(x5 · tan(x)) = x5 D(tan(x))+ tan(x)D(x5) = x5 sec2(x)+ tan(x)(5x4)

d
dt

(
sec(t)

t

)
=

t D(sec(t))− sec(t)D(t)
t2 =

t sec(t) tan(t)− sec(t)
t2

D
(
(cot(x)− x)

1
2

)
=

1
2
(cot(x)− x)−

1
2 D(cot(x)− x)

=
1
2
(cot(x)− x)−

1
2 (− csc2(x)− 1) =

− csc2(x)− 1
2
√

cot(x)− x

6. Filling in values for both 3x and ex:

h 2h−1
h

3h−1
h

eh−1
h

+0.1 0.717734625 1.161231740 1.0517091808
−0.1 0.669670084 1.040415402 0.9516258196
+0.01 0.695555006 1.104669194 1.0050167084
−0.01 0.690750451 1.092599583 0.9950166251
+0.001 0.693387463 1.099215984 1.0005001667
−0.001 0.692907009 1.098009035 0.9995001666
↓ ↓ ↓ ↓
0 ≈ 0.693 ≈ 1.0986 1

7. D(x3ex) = x3 D(ex) + ex D(x3) = x3ex + ex · 3x2 = x2ex(x + 3)
D
(
(ex)3

)
= 3 (ex)2 D(ex) = 3e2x · ex = 3e3x

8. f (x) = 3x7 ⇒ f ′(x) = 21x6 ⇒ f ′′(x) = 126x5 ⇒ f ′′′(x) = 630x4

f (x) = sin(x) ⇒ f ′(x) = cos(x) ⇒ f ′′(x) = − sin(x)
⇒ f ′′′(x) = − cos(x)

f (x) = x · cos(x) ⇒ f ′(x) = −x sin(x) + cos(x)
⇒ f ′′(x) = −x cos(x)− 2 sin(x) ⇒ f ′′′(x) = x sin(x)− 3 cos(x)
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