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2.4 The Chain Rule

The Chain Rule is the most important and most often used of the
differentiation patterns. It enables us to differentiate composites of
functions such as y = sin(x2). It is a powerful tool for determining
the derivatives of some new functions such as logarithms and inverse
trigonometric functions. And it leads to important applications in a
variety of fields. You will need the Chain Rule hundreds of times in
this course. Practice with it now will save you time — and points —
later. Fortunately, with practice, the Chain Rule is also easy to use. We
already know how to differentiate the composition of some functions.

Example 1. For f (x) = 5x − 4 and g(x) = 2x + 1, find f ◦ g(x) and
D( f ◦ g(x)).

Solution. Writing f ◦ g(x) = f (g(x)) = 5(2x + 1)− 4 = 10x + 1, we
can compute that D( f ◦ g(x)) = D(10x + 1) = 10. ◀

Practice 1. For f (x) = 5x − 4 and g(x) = x2, find f ◦ g(x), D( f ◦ g(x)),
g ◦ f (x) and D(g ◦ f (x)).

Some compositions, however, are still very difficult to differentiate.
We know the derivatives of g(x) = x2 and h(x) = sin(x), and we know
how to differentiate certain combinations of these functions, such as
x2 + sin(x), x2 · sin(x) and even sin2(x) = (sin(x))2. But the derivative
of the simple composition f (x) = h ◦ g(x) = sin(x2) is hard — until we
know the Chain Rule.

To see just how difficult, try using the
definition of derivative on it.

Example 2. (a) Suppose amplifier Y doubles the strength of the output
signal from amplifier U, and U triples the strength of the original
signal x. How does the final signal out of Y compare with the
original signal x?

(b) Suppose y changes twice as fast as u, and u changes three times as
fast as x. How does the rate of change of y compare with the rate of
change of x?

Solution. In each case we are comparing the result of a composition,
and the answer to each question is 6, the product of the two amplifica-
tions or rates of change. In part (a), we have that:

signal out of Y
signal x

=
signal out of Y
signal out of U

· signal out of U
signal x

= 2 · 3 = 6

In part (b):
∆y
∆x

=
∆y
∆u

· ∆u
∆x

= 2 · 3 = 6

These examples are simple cases of the Chain Rule for differentiating a
composition of functions. ◀
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The Chain Rule

We can express the chain rule using more than one type of notation.
Each will be useful in various situations.

Chain Rule (Leibniz notation form):

If y is a differentiable function of u and
u is a differentiable function of x

then y is a differentiable function of x and
dy
dx

=
dy
du

· du
dx

.

Idea for a proof. If ∆u ̸= 0 then:

dy
dx

= lim
∆x→0

∆y
∆x

= lim
∆x→0

∆y
∆u

· ∆u
∆x

=

(
lim

∆x→0

∆y
∆u

)(
lim

∆x→0

∆u
∆x

)
=

(
lim

∆u→0

∆y
∆u

)(
lim

∆x→0

∆u
∆x

)
=

dy
du

· du
dx

The key step here is to argue that ∆x → 0 implies ∆u → 0, which
follows from the continuity of u as as function of x.

Although this nice short argument gets to the heart of why the Chain
Rule works, it is not quite valid. If du

dx ̸= 0, then it is possible to show
that ∆u ̸= 0 for all “very small” values of ∆x, and the “idea for a
proof” becomes a real proof. There are, however, functions for which
∆u = 0 for infinitely many small values of ∆x (no matter how close to
0 we restrict ∆x) and this creates problems with the simple argument
outlined above.

A justification that holds true for all cases
is more complicated and provides no new
conceptual insight. Problem 84 at the
end of this section guides you through a
rigorous proof of the Chain Rule.

The symbol
dy
du

is a single symbol, as is
du
dx

, so we cannot eliminate

du from the product
dy
du

du
dx

in the Chain Rule by “cancelling” du as we

can with ∆u in the fractions
∆y
∆u

· ∆u
∆x

. It is, however, perfectly fine to
use the idea of cancelling du to help you remember the proper statement
of the Chain Rule.

Example 3. Write y = cos(x2 + 3) as y = cos(u) with u = x2 + 3 and
find dy

dx .

Solution. y = cos(u) ⇒ dy
du

= − sin(u) and u = x2 + 3 ⇒ du
dx = 2x.

Using the Chain Rule:

dy
dx

=
dy
du

· du
dx

= − sin(u) · 2x = −2x · sin(x2 + 3)

Notice that in the last step we have eliminated the intermediate variable
u to express the derivative only in terms of x. ◀

Practice 2. Find dy
dx for y = sin(4x + ex).
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We can also state the Chain Rule in terms of composition of functions.
The notation is different, but the meaning is precisely the same.

Chain Rule (composition form):

If g is differentiable at x and
f is differentiable at g(x)

then the composite f ◦ g is differentiable at x and
( f ◦ g)′(x) = D( f (g(x))) = f ′(g(x)) · g′(x).

You may find it easier to think of the re-
sult of the composition form of the Chain
Rule in words: “the derivative of the out-
side function (evaluated at the original
inside function) times the derivative of
the inside function” where f is the out-
side function and g is the inside function.

Example 4. Differentiate sin(x2).

Solution. We can write the function sin(x2) as the composition f ◦ g
of two simple functions: f (x) = sin(x) and g(x) = x2: f ◦ g(x) =

f (g(x)) = f (x2) = sin(x2). Both f and g are differentiable functions
with derivatives f ′(x) = cos(x) and g′(x) = 2x, so the Chain Rule says:

D(sin(x2)) = ( f ◦ g)′(x) = f ′(g(x)) · g′(x) = cos(g(x)) · 2x

= cos(x2) · 2x = 2x cos(x2)

Check that you get the same answer using the Leibniz notation. ◀

If you tried using the definition of deriva-
tive to calculate the derivative of this
function at the beginning of this section,
you can really appreciate the power of
the Chain Rule for differentiating com-
positions of functions, even simple ones
like these.

Example 5. The table below gives values for f , f ′, g and g′ at various
points. Use these values to determine ( f ◦ g)(x) and ( f ◦ g)′(x) at
x = −1 and x = 0.

x f (x) g(x) f ′(x) g′(x) ( f ◦ g)(x) ( f ◦ g)′(x)

−1 2 3 1 0
0 −1 1 3 2
1 1 0 −1 3
2 3 −1 0 1
3 0 2 2 −1

Solution. ( f ◦ g)(−1) = f (g(−1)) = f (3) = 0, ( f ◦ g)(0) = f (g(0)) =
f (1) = 1, ( f ◦ g)′(−1) = f ′(g(−1)) · g′(−1) = f ′(3) · 0 = 2 · 0 = 0 and
( f ◦ g)′(0) = f ′(g(0)) · g′(0) = f ′(1) · 2 = (−1)(2) = −2. ◀

Practice 3. Fill in the table in Example 5 for ( f ◦ g)(x) and ( f ◦ g)′(x)
at x = 1, 2 and 3.

Neither form of the Chain Rule is inherently superior to the other —
use the one you prefer or the one that appears most useful in a particular
situation. The Chain Rule will be used hundreds of times in the rest of
this book, and it is important that you master its usage. The time you
spend now mastering and understanding how to use the Chain Rule
will be paid back tenfold over the next several chapters.
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Example 6. Determine D
(

ecos(x)
)

using each form of the Chain Rule.

Solution. Using the Leibniz notation: y = eu and u = cos(x) so we
have dy

du = eu and du
dx = − sin(x). Applying the Chain Rule:

dy
dx

=
dy
du

· du
dx

= eu · (− sin(x)) = − sin(x) · ecos(x)

We can also write the function ecos(x) as the composition of f (x) = ex

with g(x) = cos(x), so the Chain Rule says:

D(ecos(x)) = f ′(g(x)) · g′(x) = eg(x) · (− sin(x)) = − sin(x) · ecos(x)

because D(ex) = ex and D (cos(x)) = − sin(x). ◀

Practice 4. Calculate D (sin(7x − 1)),
d

dx
(sin(ax + b)) and

d
dt

(
e3t
)

.

Practice 5. Use the graph of g given in the margin along with the Chain
Rule to estimate D (sin(g(x))) and D (g(sin(x))) at x = π.

The Chain Rule is a general differentiation pattern that can be used
along with other general patterns like the Product and Quotient Rules.

Example 7. Determine D
(
e3x · sin(5x + 7)

)
and

d
dx

(cos(x · ex)).

Solution. The function e3x sin(5x + 7) is a product of two functions so
we need the Product Rule first:

D(e3x · sin(5x + 7)) = e3x · D(sin(5x + 7)) + sin(5x + 7) · D(e3x)

= e3x · cos(5x + 7) · 5 + sin(5x + 7) · e3x · 3

= 5e3x cos(5x + 7) + 3e3x sin(5x + 7)

The function cos(x · ex) is a composition of cosine with a product so we
need the Chain Rule first:

d
dx

(cos(x · ex)) = − sin(x · ex) · d
dx

(x · ex)

= − sin(xex) ·
(

x · d
dx

(ex) + ex · d
dx

(x)
)

= − sin(xex) · (xex + ex)

We could also write this last answer as −(x + 1)ex sin(ex). ◀

Sometimes we want to differentiate a composition of more than two
functions. We can do so if we proceed in a careful, step-by-step way.

Example 8. Find D(sin(
√

x3 + 1)).
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Solution. The function sin(
√

x3 + 1) can be viewed as a composition
f ◦ g of f (x) = sin(x) and g(x) =

√
x3 + 1. Then:

(sin(
√

x3 + 1))′ = f ′(g(x)) · g′(x) = cos(g(x)) · g′(x)

= cos(
√

x3 + 1) · D(
√

x3 + 1)

For the derivative of
√

x3 + 1, we can use the Chain Rule again or its
special case, the Power Rule:

D(
√

x3 + 1) = D((x3 + 1)
1
2 ) =

1
2
(x3 + 1)−

1
2 · D(x3 + 1)

=
1
2
(x3 + 1)−

1
2 · 3x2

Finally, D
(

sin(
√

x3 + 1)
)
= cos(

√
x3 + 1) · 1

2
(x3 + 1)−

1
2 · 3x2, which

can be rewritten as
3x2 cos(

√
x3 + 1)

2
√

x3 + 1
. ◀

This example was more complicated than the earlier ones, but it is
just a matter of applying the Chain Rule twice, to a composition of
a composition. If you proceed step by step and don’t get lost in the
details of the problem, these multiple applications of the Chain Rule
are relatively straightforward.

We can also use the Leibniz form of the Chain Rule for a composition
of more than two functions. If y = sin(

√
x3 + 1), then y = sin(u) with

u =
√

w and w = x3 + 1. The Leibniz form of the Chain Rule says:

dy
dx

=
dy
du

· du
dw

· dw
dx

= cos(u) · 1
2
√

w
· 3x2

= cos(
√

x3 + 1) · 1

2
√

x3 + 1
· 3x2

which agrees with our previous answer.

Practice 6. (a) Find D(sin(cos(5x))). (b) For y = ecos(3x), find dy
dx .

The Chain Rule and Tables of Derivatives

With the Chain Rule, the derivatives of all sorts of strange and won-
derful functions become available. If we know f ′ and g′, then we also
know the derivatives of their composition: ( f (g(x))′ = f ′(g(x)) · g′(x).

We have begun to build a list of derivatives of “basic” functions,
such as xn, sin(x) and ex. We will continue to add to that list later
in the course, but if we peek ahead at the rest of that list — spoiler

alert! — to (for example) see that D(arctan(x)) =
1

1 + x2 , then we can

use the Chain Rule to compute derivatives of compositions of those
functions.
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Example 9. Given that D(arcsin(x)) =
1√

1 − x2
, compute the deriva-

tives D(arcsin(5x)) and
d

dx
(arcsin(ex)).

Solution. Write arcsin(5x) as the composition of f (x) = arcsin(x)

with g(x) = 5x. We know g′(x) = 5 and f ′(x) =
1√

1 − x2
, so we have

f ′(g(x)) =
1√

1 − (g(x))2
=

1√
1 − 25x2

. Then:

D(arcsin(5x)) = f ′(g(x)) · g′(x) =
1√

1 − (5x)2
· 5 =

5√
1 − 25x2

We can write y = arcsin(ex) as y = arcsin(u) with u = ex, and we know

that
dy
du

=
1√

1 − u2
and

du
dx

= ex so:

dy
dx

=
dy
du

· du
dx

=
1√

1 − u2
· ex =

ex
√

1 − e2x

We can generalize this result to say that D(arcsin( f (x))) =
f ′(x)√

1 − ( f (x))2

or, in Leibniz notation,
d

du
(arcsin(u)) =

1√
1 − u2

· du
dx

. ◀

Practice 7. Given that D(arctan(x)) =
1

1 + x2 , compute the derivatives

D(arctan(x3)) and
d

dx
(arctan(ex)).

Appendix D in the back of this book shows the derivative patterns
for a variety of functions. You may not know much about some of the
functions, but with the given differentiation patterns and the Chain
Rule you should be able to calculate derivatives of compositions that
involve these new functions. It is just a matter of following the pattern.

Practice 8. Use the patterns D(sinh(x)) = cosh(x) and D(ln(x)) = 1
x

to determine:

(a) D(sinh(5x − 7)) (b)
d

dx

(
ln(3 + e2x)

)
(c) D(arcsin(1 + 3x))

Example 10. If D(F(x)) = ex · sin(x), find D(F(5x)) and
d
dt

(
F(t3)

)
.

Solution. D(F(5x)) = D(F(g(x)) with g(x) = 5x and we know that
F′(x) = ex · sin(x) so:

D(F(5x)) = F′(g(x)) · g′(x) = eg(x) · sin(g(x)) · 5 = e5x · sin(5x) · 5

With y = F(u) and u = t3 we know
dy
du

= eu · sin(u) and
du
dt

= 3t2 so:

dy
dt

=
dy
du

· du
dt

= eu · sin(u) · 3t2 = et3 · sin(t3) · 3t2

Notice that we have eliminated the intermediate variable u (which
didn’t appear in the original problem) from the final answer. ◀
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Proof of the Power Rule For Functions

We started using the Power Rule For Functions in Section 2.3. Now we
can easily prove it.

Power Rule For Functions:

If p is any constant
then D( f p(x)) = p · f p−1(x) · D( f (x)).

Proof. Write y = f p(x) as y = up with u = f (x). Then
dy
du

= p · up−1

and
du
dx

= f ′(x) so:

dy
dx

=
dy
du

· du
dx

= p · up−1 · f ′(x) = p · f p−1(x) · f ′(x)

by the Chain Rule.

2.4 Problems

In Problems 1–6 , find two functions f and g so that the given function is the composition of f and g.

1. y = (x3 − 7x)5
2. y = sin4(3x − 8) 3. y =

√
(2 + sin(x))5

4. y =
1√

x2 + 9
5. y =

∣∣x2 − 4
∣∣

6. y = tan(
√

x)

7. For each function in Problems 1–6, write y as a function of u for some u that is a function of x.

For Problems 8–9, use the values given in this table to determine the indicated quantities:

x f (x) g(x) f ′(x) g′(x) ( f ◦ g)(x) ( f ◦ g)′(x)

x f (x) g(x) f ′(x) g′(x) ( f ◦ g)(x) ( f ◦ g)′(x)
−2 2 −1 1 1
−1 1 2 0 2

0 −2 1 2 −1
1 0 −2 −1 2
2 1 0 1 −1

8. ( f ◦ g)(x) and ( f ◦ g)′(x) at x = 1 and x = 2.

9. ( f ◦ g)(x) and ( f ◦ g)′(x) at x = −2, −1 and 0.

10. Using the figure in the margin, estimate the values of g(x), g′(x),
( f ◦ g)(x), f ′(g(x)) and ( f ◦ g)′(x) at x = 1.

11. Using the figure in the margin, estimate the values of g(x), g′(x),
( f ◦ g)(x), f ′(g(x)) and ( f ◦ g)′(x) at x = 2.
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In Problems 12–22, compute the derivative.

12. D
(
(x2 + 2x + 3)87)

13. D

((
1 − 3

x

)4
)

14.
d

dx

(
x +

1
x

)5

15. D

(
5√

2 + sin(x)

)

16.
d
dt

(t · sin(3t + 2)) 17.
d

dx

(
x2 · sin(x2 + 3)

)
18.

d
dx

(sin(2x) · cos(5x + 1))

19. D
(

7
cos(x3 − x)

)
20.

d
dt

(
5

3 + et

)
21. D (ex + e−x) 22. D (ex − e−x)

23. An object attached to a spring is at a height of
h(t) = 3 − cos(2t) feet above the floor t seconds
after it is released.

(a) At what height was it released?

(b) Determine its height, velocity and acceleration
at any time t.

(c) If the object has mass m, determine its kinetic
energy K = 1

2 mv2 and dK
dt at any time t.

24. An employee with d days of production expe-
rience will be able to produce approximately
P(d) = 3 + 15(1 − e−0.2d) items per day.

(a) Graph P(d).

(b) Approximately how many items will a begin-
ning employee be able to produce each day?

(c) How many items will a very experienced em-
ployee be able to produce each day?

(d) What is the marginal production rate of an
employee with 5 days of experience? (Include
units for your answer. What does this mean?)

25. The air pressure P(h), in pounds per square inch,
at an altitude of h feet above sea level is approxi-
mately P(h) = 14.7e−0.0000385h.

(a) What is the air pressure at sea level?

(b) What is the air pressure at 30,000 feet?

(c) At what altitude is the air pressure 10 pounds
per square inch?

(d) If you are in a balloon that is 2,000 feet above
the Pacific Ocean and is rising at 500 feet per
minute, how fast is the air pressure on the
balloon changing?

(e) If the temperature of the gas in the balloon
remained constant during this ascent, what
would happen to the volume of the balloon?

Find the indicated derivatives in Problems 26–33.

26. D
(
(2x + 3)2

(5x − 7)3

)
27.

d
dz

√
1 + cos2(z)

28. D (sin(3x + 5))
29.

d
dx

tan(3x + 5)

30.
d
dt

cos(7t2) 31. D
(
sin(

√
x + 1)

)
32. D

(
sec(

√
x + 1)

)
33.

d
dx

(
esin(x)

)
In Problems 34–37 , calculate f ′(x) · x′(t) when t = 3
and use these values to determine the value of
d
dt

( f (x(t))) when t = 3.

34. f (x) = cos(x), x = t2 − t + 5

35. f (x) =
√

x, x = 2 +
21
t

36. f (x) = ex, x = sin(t)

37. f (x) = tan3(x), x = 8

In 38–43, find a function that has the given function
as its derivative. (You are given a function f ′(x) and
are asked to find a corresponding function f (x).)

38. f ′(x) = (3x + 1)4
39. f ′(x) = (7x − 13)10

40. f ′(x) =
√

3x − 4 41. f ′(x) = sin(2x − 3)

42. f ′(x) = 6e3x
43. f ′(x) = cos(x)esin(x)

If two functions are equal, then their derivatives are
also equal. In 44–47 , differentiate each side of the
trigonometric identity to get a new identity.

44. sin2(x) = 1
2 − 1

2 cos(2x)

45. cos(2x) = cos2(x)− sin2(x)

46. sin(2x) = 2 sin(x) · cos(x)

47. sin(3x) = 3 sin(x)− 4 sin3(x)
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Derivatives of Families of Functions
So far we have emphasized derivatives of particular
functions, but sometimes we want to investigate the
derivatives of a whole family of functions all at once.
In 48–71, A, B, C and D represent constants and the
given formulas describe families of functions.

For Problems 48–65, calculate y′ = dy
dx .

48. y = Ax3 − B 49. y = Ax3 + Bx2 + C

50. y = sin(Ax + B) 51. y = sin(Ax2 + B)

52. y = Ax3 + cos(Bx) 53. y =
√

A + Bx2

54. y =
√

A − Bx2
55. y = A − cos(Bx)

56. y = cos(Ax + B) 57. y = cos(Ax2 + B)

58. y = A · eBx
59. y = x · eBx

60. y = eAx + e−Ax
61. y = eAx − e−Ax

62. y =
sin(Ax)

x
63. y =

Ax
sin(Bx)

64. y =
1

Ax + B
65. y =

Ax + B
Cx + D

In 66–71, (a) find y′ (b) find the value(s) of x so that
y′ = 0 and (c) find y′′. Typically your answer in part
(b) will contain A’s, B’s and (sometimes) C’s.

66. y = Ax2 + Bx + C

67. y = Ax(B − x) = ABx − Ax2

68. y = Ax(B − x2) = ABx − Ax3

69. y = Ax2(B − x) = ABx2 − Ax3

70. y = Ax2 + Bx

71. y = Ax3 + Bx2 + C

In Problems 72–83, use the differentiation patterns

D(arctan(x)) =
1

1 + x2 , D(arcsin(x)) =
1√

1 − x2

and D(ln(x)) =
1
x

. We have not derived the deriva-
tives for these functions (yet), but if you are handed
the derivative pattern then you should be able to

use that pattern to compute derivatives of associated
composite functions.

72. D (arctan(7x)) 73. D
(
arctan(x2)

)
74.

d
dt

(arctan(ln(t))) 75.
d

dx
(arctan(ex))

76.
d

dw
(arcsin(4w)) 77.

d
dx

(
arcsin(x3)

)
78. D (arcsin(ln(x))) 79. D

(
arcsin(et)

)
80. D (ln(3x + 1)) 81. D (ln(sin(x)))

82.
d

dx
(ln(arctan(x))) 83.

d
ds

(ln(es))

84. To prove the Chain Rule, assume g(x) is differ-
entiable at x = a and f (x) is differentiable at
x = g(a). We need to show that

lim
x→a

f (g(x))− f (g(a))
x − a

exists and is equal to f ′(g(a)) · g′(a). To do this,
define a new function F as:

F(y) =

{
f (y)− f (g(a))

y−g(a) if y ̸= g(a)

f ′(g(a)) if y = g(a)

and justify each of the following statements.

(a) F(y) is continuous at y = g(a) because:

lim
y→g(a)

F(y) = lim
y→g(a)

f (y)− f (g(a))
y − g(a)

= F(g(a))

(b) By considering separately the cases g(x) =

g(a) and g(x) ̸= g(a):

f (g(x))− f (g(a))
x − a

= F(g(x)) · g(x)− g(a)
x − a

for all x ̸= a.

(c) lim
x→a

f (g(x))− f (g(a))
x − a

= lim
x→a

F(g(x)) · g(x)− g(a)
x − a

(d) lim
x→a

F(g(x)) · g(x)− g(a)
x − a

= F(g(a)) · g′(a)

(e) lim
x→a

f (g(x))− f (g(a))
x − a

= f ′(g(a)) · g′(a)

(f) ( f ◦ g)′ (a) = f ′(g(a)) · g′(a)
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2.4 Practice Answers

1. f (x) = 5x − 4 and g(x) = x2 ⇒ f ′(x) = 5 and g′(x) = 2x, so
f ◦ g(x) = f (g(x)) = f (x2)) = 5x2 − 4 and D(5x2 − 4) = 10x or:

D( f ◦ g(x)) = f ′(g(x)) · g′(x) = 5 · 2x = 10x

g ◦ f (x) = g( f (x)) = g(5x − 4) = (5x − 4)2 = 25x2 − 40x + 16 and
D(25x2 − 40x + 16) = 50x − 40 or:

D(g ◦ f (x)) = g′( f (x)) · f ′(x) = 2(5x − 4) · 5 = 50x − 40

2.
d

dx
(sin(4x + ex)) = cos(4x + ex) · D(4x + ex) = cos(4x + ex) · (4 + ex)

3. To fill in the last column, compute:

f ′(g(1)) · g′(1) = f ′(0) · 3 = (3)(3) = 9

f ′(g(2)) · g′(2) = f ′(−1) · 1 = (1)(1) = 1

f ′(g(3) · g′(3) = f ′(2) · (−1) = (0)(−1) = 0

x f (x) g(x) f ′(x) g′(x) ( f ◦ g)(x) ( f ◦ g)′(x)

1 1 0 −1 3 −1 9
2 3 −1 0 1 2 3
3 0 2 2 −1 3 0

4. D (sin(7x − 1)) = cos(7x − 1) · D(7x − 1) = 7 · cos(7x − 1)
d

dx
(sin(ax + b)) = cos(ax + b) · D(ax + b) = a · cos(ax + b)

d
dt

(
e3t
)
= e3t · d

dt
(3t) = 3 · e3t

5. D (sin(g(x))) = cos(g(x)) · g′(x). At x = π, cos(g(π)) · g′(π) ≈
cos(0.86) · (−1) ≈ −0.65. D (g(sin(x))) = g′(sin(x)) · cos(x). At
x = π, g′(sin(π)) · cos(π) = g′(0) · (−1) ≈ −2

6. D (sin(cos(5x))) = cos(cos(5x)) · D(cos(5x))
= cos(cos(5x)) · (− sin(5x)) · D(5x) = −5 · sin(5x) · cos(cos(5x))

d
dx

(
ecos(3x)

)
= ecos(3x) · D(cos(3x)) = ecos(3x)(− sin(3x))D(3x)

= −3 · sin(3x) · ecos(3x)

7. D
(

arctan(x3)
)
=

1
1 + (x3)2 · D(x3) =

3x2

1 + x6

d
dx

(arctan(ex)) =
1

1 + (ex)2 · D(ex) =
ex

1 + e2x

8. D(sinh(5x − 7)) = cosh(5x − 7) · D(5x − 7) = 5 · cosh(5x − 7)
d

dx

(
ln(3 + e2x

)
=

1
3 + e2x · D(3 + e2x) =

2e2x

3 + e2x

D(arcsin(1 + 3x)) =
1√

1 − (1 + 3x)2
· D(1 + 3x) =

3√
1 − (1 + 3x)2


	The Derivative
	The Chain Rule


