2.5 Applications of the Chain Rule

The Chain Rule can help us determine the derivatives of logarithmic functions like $f(x) = \ln(x)$ and general exponential functions like $f(x) = a^x$. We will also use it to answer some applied questions and to find slopes of graphs given by parametric equations.

Derivatives of Logarithms

You know from precalculus that the natural logarithm $\ln(x)$ is defined as the inverse of the exponential function e^x : $e^{\ln(x)} = x$ for x > 0. We can use this identity along with the Chain Rule to determine the derivative of the natural logarithm.

$$\mathbf{D}(\ln(x)) = \frac{1}{x}$$
 and $\mathbf{D}(\ln(g(x))) = \frac{g'(x)}{g(x)}$

Proof. We know that $\mathbf{D}(e^u) = e^u$, so using the Chain Rule we have $\mathbf{D}(e^{f(x)}) = e^{f(x)} \cdot f'(x)$. Differentiating each side of the identity $e^{\ln(x)} = x$, we get:

$$\mathbf{D}\left(e^{\ln(x)}\right) = \mathbf{D}(x) \Rightarrow e^{\ln(x)} \cdot \mathbf{D}(\ln(x)) = 1$$
$$\Rightarrow x \cdot \mathbf{D}(\ln(x)) = 1 \Rightarrow \mathbf{D}(\ln(x)) = \frac{1}{x}$$

The function $\ln(g(x))$ is the composition of $f(x) = \ln(x)$ with g(x) so the Chain Rule says:

$$\mathbf{D}(\ln(g(x)) = \mathbf{D}(f(g(x))) = f'(g(x)) \cdot g'(x) = \frac{1}{g(x)} \cdot g'(x) = \frac{g'(x)}{g(x)}$$

Graph $f(x) = \ln(x)$ along with $f'(x) = \frac{1}{x}$ and compare the behavior of the function at various points with the values of its derivative at those points. Does $y = \frac{1}{x}$ possess the properties you would expect to see from the derivative of $f(x) = \ln(x)$?

Example 1. Find $D(\ln(\sin(x)))$ and $D(\ln(x^2+3))$.

Solution. Using the pattern $\mathbf{D}(\ln(g(x)) = \frac{g'(x)}{g(x)}$ with $g(x) = \sin(x)$:

$$\mathbf{D}(\ln(\sin(x))) = \frac{g'(x)}{g(x)} = \frac{\mathbf{D}(\sin(x))}{\sin(x)} = \frac{\cos(x)}{\sin(x)} = \cot(x)$$

With
$$g(x) = x^2 + 3$$
, $\mathbf{D}(\ln(x^2 + 3)) = \frac{g'(x)}{g(x)} = \frac{2x}{x^2 + 3}$.

You can remember the differentiation pattern for the the natural logarithm in words as: "one over the inside times the the derivative of the inside." We can use the Change of Base Formula from precalculus to rewrite any logarithm as a natural logarithm, and then we can differentiate the resulting natural logarithm.

> Change of Base Formula for Logarithms: $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$ for all positive *a*, *b* and *x*.

Example 2. Use the Change of Base formula and your calculator to find $\log_{\pi}(7)$ and $\log_{2}(8)$.

Solution. $\log_{\pi}(7) = \frac{\ln(7)}{\ln(\pi)} \approx \frac{1.946}{1.145} \approx 1.700$. (Check that $\pi^{1.7} \approx 7$.) Likewise, $\log_2(8) = \frac{\ln(8)}{\ln(2)} = 3$.

Practice 1. Find the values of $\log_9 20$, $\log_3 20$ and $\log_{\pi} e$.

Putting b = e in the Change of Base Formula, $\log_a(x) = \frac{\log_e(x)}{\log_e(a)} =$

 $\frac{\ln(x)}{\ln(a)}$, so any logarithm can be written as a natural logarithm divided by a constant. This makes any logarithmic function easy to differentiate.

$$\mathbf{D}(\log_a(x)) = \frac{1}{x \ln(a)}$$
 and $\mathbf{D}(\log_a(f(x))) = \frac{f'(x)}{f(x)} \cdot \frac{1}{\ln(a)}$

Proof. $\mathbf{D}(\log_a(x)) = \mathbf{D}\left(\frac{\ln x}{\ln a}\right) = \frac{1}{\ln(a)} \cdot \mathbf{D}(\ln x) = \frac{1}{\ln(a)} \cdot \frac{1}{x} = \frac{1}{x \ln(a)}$. The second differentiation formula follows from the Chain Rule.

Practice 2. Calculate $\mathbf{D}(\log_{10}(\sin(x)))$ and $\mathbf{D}(\log_{\pi}(e^{x}))$.

The number e might seem like an "unnatural" base for a natural logarithm, but of all the possible bases, the logarithm with base e has the nicest and easiest derivative. The natural logarithm is even related to the distribution of prime numbers. In 1896, the mathematicians Hadamard and Vallée-Poussin proved the following conjecture of Gauss (the Prime Number Theorem): For large values of N,

number of primes less than
$$N \approx \frac{N}{\ln(N)}$$

Derivative of a^x

Once we know the derivative of e^x and the Chain Rule, it is relatively easy to determine the derivative of a^x for any a > 0.

$$\mathbf{D}(a^x) = a^x \cdot \ln(a) \text{ for } a > 0.$$

Your calculator likely has two logarithm buttons: **In** for the natural logarithm (base *e*) and **log** for the common logarithm (base 10). Be careful, however, as more advanced mathematics texts (as well as the Web site Wolfram | Alpha) use log for the (base *e*) natural logarithm.

Proof. If
$$a > 0$$
, then $a^x > 0$ and $a^x = e^{\ln(a^x)} = e^{x \cdot \ln(a)}$, so we have:
 $\mathbf{D}(a^x) = \mathbf{D}\left(e^{\ln(a^x)}\right) = \mathbf{D}\left(e^{x \cdot \ln(a)}\right) = e^{x \cdot \ln(a)} \cdot \mathbf{D}(x \cdot \ln(a)) = a^x \cdot \ln(a).$

Example 3. Calculate $\mathbf{D}(7^x)$ and $\frac{d}{dt} \left(2^{\sin(t)}\right)$.

Solution. $\mathbf{D}(7^x) = 7^x \cdot \ln(7) \approx (1.95)7^x$. We can write $y = 2^{\sin(t)}$ as $y = 2^u$ with $u = \sin(t)$. Using the Chain Rule: $\frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dt} = 2^u \cdot \ln(2)\cos(t) = 2^{\sin(t)} \cdot \ln(2) \cdot \cos(t)$.

Practice 3. Calculate $\mathbf{D}(\sin(2^x))$ and $\frac{d}{dt}(3^{t^2})$.

Some Applied Problems

Let's examine some applications involving more complicated functions.

Example 4. A ball at the end of a rubber band (see margin) is oscillating up and down, and its height (in feet) above the floor at time *t* seconds is $h(t) = 5 + 2 \sin\left(\frac{t}{2}\right)$ (with *t* in radians).

- (a) How fast is the ball traveling after 2 seconds? After 4 seconds? After 60 seconds?
- (b) Is the ball moving up or down after 2 seconds? After 4 seconds? After 60 seconds?
- (c) Is the vertical velocity of the ball ever 0?

Solution. (a) $v(t) = h'(t) = \mathbf{D}\left(5 + 2\sin\left(\frac{t}{2}\right)\right) = 2\cos\left(\frac{t}{2}\right) \cdot \frac{1}{2}$ so $v(t) = \cos\left(\frac{t}{2}\right)$ feet/second: $v(2) = \cos\left(\frac{2}{2}\right) \approx 0.540$ ft/s, $v(4) = \cos\left(\frac{4}{2}\right) \approx -0.416$ ft/s, and $v(60) = \cos\left(\frac{60}{2}\right) \approx 0.154$ ft/s.

- (b) The ball is moving up at t = 2 and t = 60, down when t = 4.
- (c) $v(t) = \cos\left(\frac{t}{2}\right) = 0$ when $\frac{t}{2} = \frac{\pi}{2} \pm k \cdot \pi \Rightarrow t = \pi \pm 2\pi k$ for any integer *k*.

Example 5. If 2,400 people now have a disease, and the number of people with the disease appears to double every 3 years, then the number of people expected to have the disease in *t* years is $y = 2400 \cdot 2^{\frac{t}{3}}$.

- (a) How many people are expected to have the disease in 2 years?
- (b) When are 50,000 people expected to have the disease?
- (c) How fast is the number of people with the disease growing now? How fast is it expected to be growing 2 years from now?

Solution. (a) In 2 years, $y = 2400 \cdot 2^{\frac{2}{3}} \approx 3,810$ people.

- (b) We know y = 50000 and need to solve $50000 = 2400 \cdot 2^{\frac{t}{3}}$ for t. Taking logarithms of each side of the equation: $\ln(50000) = \ln\left(2400 \cdot 2^{\frac{2}{3}}\right) = \ln(2400) + \frac{t}{3} \cdot \ln(2)$ so $10.819 \approx 7.783 + 0.231t$ and $t \approx 13.14$ years. We expect 50,000 people to have the disease about 13 years from now.
- (c) This question asks for $\frac{dy}{dt}$ when t = 0 and t = 2.

$$\frac{dy}{dt} = \frac{d}{dt} \left(2400 \cdot 2^{\frac{t}{3}} \right) = 2400 \cdot 2^{\frac{t}{3}} \cdot \ln(2) \cdot \frac{1}{3} \approx 554.5 \cdot 2^{\frac{t}{3}}$$

Now, at t = 0, the rate of growth of the disease is approximately $554.5 \cdot 2^0 \approx 554.5$ people/year. In 2 years, the rate of growth will be approximately $554.5 \cdot 2^{\frac{2}{3}} \approx 880$ people/year.

Example 6. You are riding in a balloon, and at time *t* (in minutes) you are $h(t) = t + \sin(t)$ thousand feet above sea level. If the temperature at an elevation *h* is $T(h) = \frac{72}{1+h}$ degrees Fahrenheit, then how fast is the temperature changing when t = 5 minutes?

Solution. As *t* changes, your elevation will change. And, as your elevation changes, so will the temperature. It is not difficult to write the temperature as a function of time, and then we could calculate $\frac{dT}{dt} = T'(t)$ and evaluate T'(5). Or we could use the Chain Rule:

$$\frac{dT}{dt} = \frac{dT}{dh} \cdot \frac{dh}{dt} = -\frac{72}{(1+h)^2} \cdot (1+\cos(t))$$

At t = 5, $h(5) = 5 + \sin(5) \approx 4.04$ so $T'(5) \approx -\frac{72}{(1+4.04)^2} \cdot (1+0.284) \approx -3.64 \circ / \text{minute.}$

Practice 4. Write the temperature *T* in the previous example as a function of the variable *t* alone and then differentiate *T* to determine the value of $\frac{dT}{dt}$ when t = 5 minutes.

Example 7. A scientist has determined that, under optimum conditions, an initial population of 40 bacteria will grow "exponentially" to $f(t) = 40 \cdot e^{\frac{t}{5}}$ bacteria after *t* hours.

- (a) Graph y = f(t) for $0 \le t \le 15$. Calculate f(0), f(5) and f(10).
- (b) How fast is the population increasing at time *t*? (Find f'(t).)
- (c) Show that the rate of population increase, f'(t), is proportional to the population, f(t), at any time *t*. (Show $f'(t) = K \cdot f(t)$ for some constant *K*.)

- **Solution.** (a) The graph of y = f(t) appears in the margin. $f(0) = 40 \cdot e^{\frac{0}{5}} = 40$ bacteria, $f(5) = 40 \cdot e^{\frac{5}{5}} = 40e \approx 109$ bacteria and $f(10) = 40 \cdot e^{\frac{10}{5}} \approx 296$ bacteria.
- (b) $f'(t) = \frac{d}{dt}(f(t)) = \frac{d}{dt}\left(40 \cdot e^{\frac{t}{5}}\right) = 40 \cdot e^{\frac{t}{5}} \cdot \frac{d}{dt}\left(\frac{t}{5}\right) = 40 \cdot e^{\frac{t}{5}} \cdot \frac{1}{5} = 8 \cdot e^{\frac{t}{5}}$ bacteria/hour.
- (c) $f'(t) = 8 \cdot e^{\frac{t}{5}} = \frac{1}{5} \cdot 40e^{\frac{t}{5}} = \frac{1}{5}f(t)$ so $f'(t) = K \cdot f(t)$ with $K = \frac{1}{5}$. The rate of change of the population is proportional to its size.

Parametric Equations

Suppose a robot has been programmed to move in the *xy*-plane so at time *t* its *x*-coordinate will be sin(t) and its *y*-coordinate will be t^2 . Both *x* and *y* are functions of the independent parameter *t*: x(t) = sin(t) and $y(t) = t^2$. The path of the robot (see margin) can be found by plotting (x, y) = (x(t), y(t)) for lots of values of *t*.

t	$x(t) = \sin(t)$	$y(t) = t^2$	point
0	0	0	(0,0)
0.5	0.48	0.25	(0.48, 0.25)
1.0	0.84	1	(0.84, 1)
1.5	1.00	2.25	(1,2.25)
2.0	0.91	4	(0.91, 4)

Typically we know x(t) and y(t) and need to find $\frac{dy}{dx}$, the slope of the tangent line to the graph of (x(t), y(t)). The Chain Rule says:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

so , algebraically solving for $\frac{dy}{dx}$, we get:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

If we can calculate $\frac{dy}{dt}$ and $\frac{dx}{dt}$, the derivatives of *y* and *x* with respect to the parameter *t*, then we can determine $\frac{dy}{dx}$, the rate of change of *y* with respect to *x*.

If
$$x = x(t)$$
 and $y = y(t)$ are differentiable
with respect to t and $\frac{dx}{dt} \neq 0$
then $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$.

Example 8. Find the slope of the tangent line to the graph of $(x, y) = (\sin(t), t^2)$ when t = 2.

Solution. $\frac{dx}{dt} = \cos(t)$ and $\frac{dy}{dt} = 2t$. When t = 2, the object is at the point $(\sin(2), 2^2) \approx (0.91, 4)$ and the slope of the tangent line is:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t}{\cos(t)} = \frac{2\cdot 2}{\cos(2)} \approx \frac{4}{-0.42} \approx -9.61$$

Notice in the figure that the slope of the tangent line to the curve at (0.91, 4) is negative and very steep.

Practice 5. Graph $(x, y) = (3\cos(t), 2\sin(t))$ and find the slope of the tangent line when $t = \frac{\pi}{2}$.

When we calculated $\frac{dy}{dx}$, the slope of the tangent line to the graph of (x(t), y(t)), we used the derivatives $\frac{dx}{dt}$ and $\frac{dy}{dt}$. Each of these also has a geometric meaning: $\frac{dx}{dt}$ measures the rate of change of x(t) with respect to t: it tells us whether the x-coordinate is increasing or decreasing as the t-variable increases (and how fast it is changing), while $\frac{dy}{dt}$ measures the rate of change of y(t) with respect to t.

Example 9. For the parametric graph in the margin, determine whether $\frac{dx}{dt}$, $\frac{dy}{dt}$ and $\frac{dy}{dx}$ are positive or negative when t = 2.

Solution. As we move through the point *B* (where t = 2) in the direction of increasing values of *t*, we are moving to the left, so x(t) is decreasing and $\frac{dx}{dt} < 0$. The values of y(t) are increasing, so $\frac{dy}{dt} > 0$. Finally, the slope of the tangent line, $\frac{dy}{dx}$, is negative.

As a check on the sign of $\frac{dy}{dx}$ in the previous example:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\text{positive}}{\text{negative}} = \text{negative}$$

Practice 6. For the parametric graph in the previous example, tell whether $\frac{dx}{dt}$, $\frac{dy}{dt}$ and $\frac{dy}{dx}$ are positive or negative at t = 1 and t = 3.

Speed

If we know the position of an object at any time, then we can determine its speed. The formula for speed comes from the distance formula and looks a lot like it, but involves derivatives.

If x = x(t) and y = y(t) give the location of an object at time t and both are differentiable functions of tthe speed of the object is then

$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

Proof. The speed of an object is the limit, as $\Delta t \rightarrow 0$, of (see margin):

$$\frac{\text{change in position}}{\text{change in time}} = \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta t} = \sqrt{\frac{(\Delta x)^2 + (\Delta y)^2}{(\Delta t)^2}}$$
$$= \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2} \to \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$
as $\Delta t \to 0$.

Example 10. Find the speed of the object whose location at time *t* is $(x, y) = (\sin(t), t^2)$ when t = 0 and t = 1.

Solution.
$$\frac{dx}{dt} = \cos(t)$$
 and $\frac{dy}{dt} = 2t$ so:
speed $= \sqrt{(\cos(t))^2 + (2t)^2} = \sqrt{\cos^2(t) + 4t^2}$

When t = 0, speed = $\sqrt{\cos^2(0) + 4(0)^2} = \sqrt{1+0} = 1$. When t = 1, speed = $\sqrt{\cos^2(1) + 4(1)^2} \approx \sqrt{0.29 + 4} \approx 2.07.$ ◄

Practice 7. Show that an object located at $(x, y) = (3\sin(t), 3\cos(t))$ at time *t* has a constant speed. (This object is moving on a circular path.)

Practice 8. Is the object at $(x, y) = (3\cos(t), 2\sin(t))$ at time *t* traveling faster at the top of the ellipse $(t = \frac{\pi}{2})$ or at the right edge (t = 0)?

2.5 Problems

- (-)

In Problems 1–27, differentiate the given function. 9. $\ln(\sin(x))$

- ()

1.
$$\ln(5x)$$
2. $\ln(x^2)$ 11. $\log_2(\sin(x))$ 12. $\ln(e^x)$ 3. $\ln(x^k)$ 4. $\ln(x^x) = x \cdot \ln(x)$ 13. $\log_5(5^x)$ 14. $\ln(e^{f(x)})$ 5. $\ln(\cos(x))$ 6. $\cos(\ln(x))$ 15. $x \cdot \ln(3x)$ 16. $e^x \cdot \ln(x)$

17. $\frac{\ln(x)}{x}$ 18. $\sqrt{x + \ln(3x)}$ 8. $\log_2(kx)$ 7. $\log_2(5x)$

10. $\ln(kx)$

19. ln	(5x - 3) 20.	ln	(cos((t)))	
--------	---	--------	-------	----	-------	-----	----	--

21. $\cos(\ln(w))$ 22. $\ln(ax+b)$

23. $\ln(\sqrt{t+1})$ 24. 3^x

25. $5^{\sin(x)}$ 26. $x \cdot \ln(x) - x$

27. $\ln(\sec(x) + \tan(x))$

- 28. Find the slope of the line tangent to $f(x) = \ln(x)$ at the point (e, 1). Find the slope of the line tangent to $g(x) = e^x$ at the point (1, e). How are the slopes of f and g at these points related?
- 29. Find a point *P* on the graph of $f(x) = \ln(x)$ so the tangent line to *f* at *P* goes through the origin.
- 30. You are moving from left to right along the graph of $y = \ln(x)$ (see figure below).
 - (a) If the *x*-coordinate of your location at time *t* seconds is x(t) = 3t + 2, then how fast is your elevation increasing?
 - (b) If the *x*-coordinate of your location at time *t* seconds is *x*(*t*) = *e^t*, then how fast is your elevation increasing?

- 31. The percent of a population, p(t), who have heard a rumor by time *t* is often modeled by $p(t) = \frac{100}{1 + Ae^{-t}} = 100 (1 + Ae^{-t})^{-1}$ for some positive constant *A*. Calculate p'(t), the rate at which the rumor is spreading.
- 32. If we start with *A* atoms of a radioactive material that has a "half-life" (the time it takes for half of the material to decay) of 500 years, then the number of radioactive atoms left after *t* years is $r(t) = A \cdot e^{-Kt}$ where $K = \frac{\ln(2)}{500}$. Calculate r'(t) and show that r'(t) is proportional to r(t) (that is, $r'(t) = b \cdot r(t)$ for some constant *b*).

In 33-41, find a function with the given derivative.

33.
$$f'(x) = \frac{8}{x}$$

34. $h'(x) = \frac{3}{3x+5}$
35. $f'(x) = \frac{\cos(x)}{3+\sin(x)}$
36. $g'(x) = \frac{x}{1+x^2}$

37.
$$g'(x) = 3e^{5x}$$
 38. $h'(x) = e^2$

39.
$$f'(x) = 2x \cdot e^{x^2}$$
 40. $g'(x) = \cos(x)e^{\sin(x)}$

41.
$$h'(x) = \cot(x) = \frac{\cos(x)}{\sin(x)}$$

- 42. Define A(x) to be the **area** bounded between the *t*-axis, the graph of y = f(t) and a vertical line at t = x (see figure below). The area under each "hump" of *f* is 2 square inches.
 - (a) Graph A(x) for $0 \le x \le 9$.
 - (b) Graph A'(x) for $0 \le x \le 9$.

Problems 43–48 involve parametric equations.

- 43. At time *t* minutes, robot A is at (t, 2t + 1) and robot *B* is at $(t^2, 2t^2 + 1)$.
 - (a) Where is each robot when t = 0 and t = 1?
 - (b) Sketch the path each robot follows during the first minute.
 - (c) Find the slope of the tangent line, $\frac{dy}{dx}$, to the path of each robot at t = 1 minute.
 - (d) Find the speed of each robot at t = 1 minute.
 - (e) Discuss the motion of a robot that follows the path $(\sin(t), 2\sin(t) + 1)$ for 20 minutes.
- 44. Let x(t) = t + 1 and $y(t) = t^2$.

(a) Graph
$$(x(t), y(t))$$
 for $-1 \le t \le 4$

(b) Find $\frac{dx}{dt}$, $\frac{dy}{dt}$, the tangent slope $\frac{dy}{dx}$, and speed when t = 1 and t = 4.

45. For the parametric graph shown below, determine whether $\frac{dx}{dt}$, $\frac{dy}{dt}$ and $\frac{dy}{dx}$ are positive, negative or 0 when t = 1 and t = 3.

46. For the parametric graph shown below, determine whether $\frac{dx}{dt}$, $\frac{dy}{dt}$ and $\frac{dy}{dx}$ are positive, negative or 0 when t = 1 and t = 3.

- 47. The parametric graph (x(t), y(t)) defined by $x(t) = R \cdot (t \sin(t))$ and $y(t) = R \cdot (1 \cos(t))$ is called a **cycloid**, the path of a light attached to the edge of a rolling wheel with radius *R*.
 - (a) Graph (x(t), y(t)) for $0 \le t \le 4\pi$.
 - (b) Find $\frac{dx}{dt}$, $\frac{dy}{dt}$, the tangent slope $\frac{dy}{dx}$, and speed when $t = \frac{\pi}{2}$ and $t = \pi$.
- 48. Describe the motion of particles whose locations at time *t* are $(\cos(t), \sin(t))$ and $(\cos(t), -\sin(t))$.
- 49. (a) Describe the path of a robot whose location at time *t* is $(3 \cdot \cos(t), 5 \cdot \sin(t))$.
 - (b) Describe the path of a robot whose location at time *t* is $(A \cdot \cos(t), B \cdot \sin(t))$.
 - (c) Give parametric equations so the robot will move along the same path as in part (a) but in the opposite direction.

- 50. After *t* seconds, a projectile hurled with initial velocity *v* and angle θ will be at $x(t) = v \cdot \cos(\theta) \cdot t$ feet and $y(t) = v \cdot \sin(\theta) \cdot t 16t^2$ feet (see figure below). (This formula neglects air resistance.)
 - (a) For an initial velocity of 80 feet/second and an angle of π/4, find T > 0 so that y(T) = 0. What does this value for t represent physically? Evaluate x(T).
 - (b) For *v* and θ in part (a), calculate $\frac{dy}{dx}$. Find *T* so that $\frac{dy}{dx} = 0$ at t = T, and evaluate x(T). What does x(T) represent physically?
 - (c) What initial velocity is needed so a ball hit at an angle of $\frac{\pi}{4} \approx 0.7854$ will go over a 40-foothigh fence 350 feet away?
 - (d) What initial velocity is needed so a ball hit at an angle of 0.7 radians will go over a 40-foothigh fence 350 feet away?

initial speed = v

- 51. Use the method from the proof that $\mathbf{D}(\ln(x)) = \frac{1}{x}$ to compute the derivative $\mathbf{D}(\arctan(x))$:
 - (a) Rewrite $y = \arctan(x)$ as $\tan(y) = x$.
 - (b) Differentiate both sides using the Chain Rule and solve for *y*'.
 - (c) Use the identity $1 + \tan^2(\theta) = \sec^2(\theta)$ and the fact that $\tan(y) = x$ to show that $y' = \frac{1}{1 + x^2}$.
- 52. Use the method from the proof that $\mathbf{D}(\ln(x)) = \frac{1}{x}$ to compute the derivative $\mathbf{D}(\arcsin(x))$:
 - (a) Rewrite $y = \arcsin(x)$ as $\sin(y) = x$.
 - (b) Differentiate both sides using the Chain Rule and solve for *y*'.
 - (c) Use the identity $\cos^2(\theta) + \sin^2(\theta) = 1$ and the fact that $\sin(y) = x$ to show that $y' = \frac{1}{\sqrt{1 x^2}}$.

2.5 Practice Answers

1

1.
$$\log_{9}(20) = \frac{\log(20)}{\log(9)} \approx 1.3634165 \approx \frac{\ln(20)}{\ln(9)}$$

 $\log_{3}(20) = \frac{\log(2)}{\log(3)} \approx 2.726833 \approx \frac{\ln(20)}{\ln(3)}$
 $\log_{\pi}(e) = \frac{\log(e)}{\log(\pi)} \approx 0.8735685 \approx \frac{\ln(e)}{\ln(\pi)} = \frac{1}{\ln(\pi)}$
2. $\mathbf{D}(\log_{10}(\sin(x))) = \frac{1}{\sin(x) \cdot \ln(10)} \mathbf{D}(\sin(x)) = \frac{\cos(x)}{\sin(x) \cdot \ln(10)}$
 $\mathbf{D}(\log_{\pi}(e^{x})) = \frac{1}{e^{x} \cdot \ln(\pi)} \mathbf{D}(e^{x}) = \frac{e^{x}}{e^{x} \cdot \ln(\pi)} = \frac{1}{\ln(\pi)}$
3. $\mathbf{D}(\sin(2^{x})) = \cos(2^{x}) \mathbf{D}(2^{x}) = \cos(2^{x}) \cdot 2^{x} \cdot \ln(2)$
 $\frac{d}{dt} (3^{t^{2}}) = 3^{t^{2}} \ln(3) \mathbf{D}(t^{2}) = 3^{t^{2}} \ln(3) \cdot 2t$
4. $T = \frac{72}{1+h} = \frac{72}{1+t+\sin(t)} \Rightarrow$
 $\frac{dT}{dt} = \frac{(1+t+\sin(t)) \cdot 0 - 72 \cdot \mathbf{D}(1+t+\sin(t))}{(1+t+\sin(t))^{2}} = \frac{-72(1+\cos(t))}{(1+t+\sin(t))^{2}}$
When $t = 5$, $\frac{dT}{dt} = \frac{-72(1+\cos(5))}{(1+5+\sin(5))^{2}} \approx -3.63695$.
5. $x(t) = 3\cos(t) \Rightarrow \frac{dx}{dt} = -3\sin(t)$, $y(t) = 2\sin(t) \Rightarrow \frac{dy}{dt} = 2\cos(t)$:
 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\cos(t)}{-3\sin(t)} \Rightarrow \frac{dy}{dx}\Big|_{t=\frac{\pi}{2}} = \frac{2\cos(\frac{\pi}{2})}{-3\sin(\frac{\pi}{2})} = \frac{2 \cdot 0}{-3 \cdot 1} = 0$

(See margin for graph.)

- 6. x = 1: positive, positive, positive. x = 3: positive, negative, negative.
- 7. $x(t) = 3\sin(t) \Rightarrow \frac{dx}{dt} = 3\cos(t)$ and $y(t) = 3\cos(t) \Rightarrow \frac{dy}{dt} =$ $-3\sin(t)$. So:

speed =
$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(3\cos(t))^2 + (-3\sin(t))^2}$$

= $\sqrt{9 \cdot \cos^2(t) + 9 \cdot \sin^2(t)} = \sqrt{9} = 3$ (a constant)

8. $x(t) = 3\cos(t) \Rightarrow \frac{dx}{dt} = -3\sin(t)$ and $y(t) = 2\sin(t) \Rightarrow \frac{dy}{dt} =$ $2\cos(t)$ so:

speed =
$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(-3\sin(t))^2 + (2\cos(t))^2}$$

= $\sqrt{9 \cdot \sin^2(t) + 4 \cdot \cos^2(t)}$

When t = 0, the speed is $\sqrt{9 \cdot 0^2 + 4 \cdot 1^2} = 2$. When $t = \frac{\pi}{2}$, the speed is $\sqrt{9 \cdot 1^2 + 4 \cdot 0^2} = 3$ (faster).

