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2.5 Applications of the Chain Rule

The Chain Rule can help us determine the derivatives of logarithmic
functions like f (x) = ln(x) and general exponential functions like
f (x) = ax. We will also use it to answer some applied questions and to
find slopes of graphs given by parametric equations.

Derivatives of Logarithms

You know from precalculus that the natural logarithm ln(x) is defined
as the inverse of the exponential function ex: eln(x) = x for x > 0.
We can use this identity along with the Chain Rule to determine the
derivative of the natural logarithm.

D(ln(x)) =
1
x

and D (ln(g(x))) =
g′(x)
g(x)

Proof. We know that D(eu) = eu, so using the Chain Rule we have

D
(

e f (x)
)

= e f (x) · f ′(x). Differentiating each side of the identity

eln(x) = x, we get:

D
(

eln(x)
)
= D(x) ⇒ eln(x) · D(ln(x)) = 1

⇒ x · D(ln(x)) = 1 ⇒ D(ln(x)) =
1
x

The function ln(g(x)) is the composition of f (x) = ln(x) with g(x) so
the Chain Rule says:

D (ln(g(x)) = D ( f (g(x))) = f ′(g(x)) · g′(x) =
1

g(x)
· g′(x) =

g′(x)
g(x)

Graph f (x) = ln(x) along with f ′(x) =
1
x

and compare the behavior of
the function at various points with the values of its derivative at those

points. Does y =
1
x

possess the properties you would expect to see

from the derivative of f (x) = ln(x)?

You can remember the differentiation
pattern for the the natural logarithm in
words as: “one over the inside times the
the derivative of the inside.”

Example 1. Find D(ln(sin(x))) and D(ln(x2 + 3)).

Solution. Using the pattern D(ln(g(x)) =
g′(x)
g(x)

with g(x) = sin(x):

D(ln(sin(x))) =
g′(x)
g(x)

=
D(sin(x))

sin(x)
=

cos(x)
sin(x)

= cot(x)

With g(x) = x2 + 3, D(ln(x2 + 3)) =
g′(x)
g(x)

=
2x

x2 + 3
. ◀
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We can use the Change of Base Formula from precalculus to rewrite
any logarithm as a natural logarithm, and then we can differentiate the
resulting natural logarithm.

Change of Base Formula for Logarithms:

loga(x) =
logb(x)
logb(a)

for all positive a, b and x.

Your calculator likely has two logarithm
buttons: ln for the natural logarithm
(base e) and log for the common log-
arithm (base 10). Be careful, however,
as more advanced mathematics texts (as
well as the Web site Wolfram|Alpha) use
log for the (base e) natural logarithm.

Example 2. Use the Change of Base formula and your calculator to
find logπ(7) and log2(8).

Solution. logπ(7) =
ln(7)
ln(π)

≈ 1.946
1.145

≈ 1.700. (Check that π1.7 ≈ 7.)

Likewise, log2(8) =
ln(8)
ln(2)

= 3. ◀

Practice 1. Find the values of log9 20, log3 20 and logπ e.

Putting b = e in the Change of Base Formula, loga(x) =
loge(x)
loge(a)

=

ln(x)
ln(a)

, so any logarithm can be written as a natural logarithm divided

by a constant. This makes any logarithmic function easy to differentiate.

D (loga(x)) =
1

x ln(a)
and D (loga( f (x))) =

f ′(x)
f (x)

· 1
ln(a)

Proof. D (loga(x)) = D
(

ln x
ln a

)
=

1
ln(a)

·D(ln x) =
1

ln(a)
· 1

x
=

1
x ln(a)

.

The second differentiation formula follows from the Chain Rule.

Practice 2. Calculate D
(
log10(sin(x))

)
and D (logπ(e

x)).

The number e might seem like an “unnatural” base for a natural
logarithm, but of all the possible bases, the logarithm with base e has
the nicest and easiest derivative. The natural logarithm is even related
to the distribution of prime numbers. In 1896, the mathematicians
Hadamard and Vallée-Poussin proved the following conjecture of Gauss
(the Prime Number Theorem): For large values of N,

number of primes less than N ≈ N
ln(N)

Derivative of ax

Once we know the derivative of ex and the Chain Rule, it is relatively
easy to determine the derivative of ax for any a > 0.

D(ax) = ax · ln(a) for a > 0.
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Proof. If a > 0, then ax > 0 and ax = eln(ax) = ex·ln(a), so we have:
D(ax) = D

(
eln(ax)

)
= D

(
ex·ln(a)

)
= ex·ln(a) · D(x · ln(a)) = ax · ln(a).

Example 3. Calculate D(7x) and
d
dt

(
2sin(t)

)
.

Solution. D(7x) = 7x · ln(7) ≈ (1.95)7x. We can write y = 2sin(t) as

y = 2u with u = sin(t). Using the Chain Rule:
dy
dt

=
dy
du

· du
dt

=

2u · ln(2) cos(t) = 2sin(t) · ln(2) · cos(t). ◀

Practice 3. Calculate D (sin(2x)) and
d
dt

(
3t2
)

.

Some Applied Problems

Let’s examine some applications involving more complicated functions.

Example 4. A ball at the end of a rubber band (see margin) is oscillating
up and down, and its height (in feet) above the floor at time t seconds

is h(t) = 5 + 2 sin
(

t
2

)
(with t in radians).

(a) How fast is the ball traveling after 2 seconds? After 4 seconds? After
60 seconds?

(b) Is the ball moving up or down after 2 seconds? After 4 seconds?
After 60 seconds?

(c) Is the vertical velocity of the ball ever 0?

Solution. (a) v(t) = h′(t) = D
(

5 + 2 sin
(

t
2

))
= 2 cos

(
t
2

)
· 1

2
so

v(t) = cos
( t

2
)

feet/second: v(2) = cos( 2
2 ) ≈ 0.540 ft/s, v(4) =

cos( 4
2 ) ≈ −0.416 ft/s, and v(60) = cos( 60

2 ) ≈ 0.154 ft/s.

(b) The ball is moving up at t = 2 and t = 60, down when t = 4.

(c) v(t) = cos
(

t
2

)
= 0 when

t
2
=

π

2
± k · π ⇒ t = π ± 2πk for any

integer k. ◀

Example 5. If 2,400 people now have a disease, and the number of
people with the disease appears to double every 3 years, then the
number of people expected to have the disease in t years is y = 2400 · 2

t
3 .

(a) How many people are expected to have the disease in 2 years?

(b) When are 50,000 people expected to have the disease?

(c) How fast is the number of people with the disease growing now?
How fast is it expected to be growing 2 years from now?
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Solution. (a) In 2 years, y = 2400 · 2
2
3 ≈ 3,810 people.

(b) We know y = 50000 and need to solve 50000 = 2400 · 2
t
3 for

t. Taking logarithms of each side of the equation: ln(50000) =

ln
(

2400 · 2
2
3

)
= ln(2400) +

t
3
· ln(2) so 10.819 ≈ 7.783 + 0.231t and

t ≈ 13.14 years. We expect 50,000 people to have the disease about
13 years from now.

(c) This question asks for
dy
dt

when t = 0 and t = 2.

dy
dt

=
d
dt

(
2400 · 2

t
3

)
= 2400 · 2

t
3 · ln(2) · 1

3
≈ 554.5 · 2

t
3

Now, at t = 0, the rate of growth of the disease is approximately
554.5 · 20 ≈ 554.5 people/year. In 2 years, the rate of growth will be
approximately 554.5 · 2

2
3 ≈ 880 people/year. ◀

Example 6. You are riding in a balloon, and at time t (in minutes) you
are h(t) = t + sin(t) thousand feet above sea level. If the temperature

at an elevation h is T(h) =
72

1 + h
degrees Fahrenheit, then how fast is

the temperature changing when t = 5 minutes?

Solution. As t changes, your elevation will change. And, as your
elevation changes, so will the temperature. It is not difficult to write
the temperature as a function of time, and then we could calculate
dT
dt

= T′(t) and evaluate T′(5). Or we could use the Chain Rule:

dT
dt

=
dT
dh

· dh
dt

= − 72
(1 + h)2 · (1 + cos(t))

At t = 5, h(5) = 5 + sin(5) ≈ 4.04 so T′(5) ≈ − 72
(1+4.04)2 · (1 + 0.284) ≈

−3.64 ◦/minute. ◀

Practice 4. Write the temperature T in the previous example as a
function of the variable t alone and then differentiate T to determine
the value of

dT
dt

when t = 5 minutes.

Example 7. A scientist has determined that, under optimum conditions,
an initial population of 40 bacteria will grow “exponentially” to f (t) =
40 · e

t
5 bacteria after t hours.

(a) Graph y = f (t) for 0 ≤ t ≤ 15. Calculate f (0), f (5) and f (10).

(b) How fast is the population increasing at time t? (Find f ′(t).)

(c) Show that the rate of population increase, f ′(t), is proportional to
the population, f (t), at any time t. (Show f ′(t) = K · f (t) for some
constant K.)
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Solution. (a) The graph of y = f (t) appears in the margin. f (0) =

40 · e
0
5 = 40 bacteria, f (5) = 40 · e

5
5 = 40e ≈ 109 bacteria and

f (10) = 40 · e
10
5 ≈ 296 bacteria.

(b) f ′(t) = d
dt ( f (t)) = d

dt

(
40 · e

t
5

)
= 40 · e

t
5 · d

dt
( t

5
)
= 40 · e

t
5 · 1

5 = 8 · e
t
5

bacteria/hour.

(c) f ′(t) = 8 · e
t
5 = 1

5 · 40e
t
5 = 1

5 f (t) so f ′(t) = K · f (t) with K = 1
5 . The

rate of change of the population is proportional to its size. ◀

Parametric Equations

Suppose a robot has been programmed to move in the xy-plane so at
time t its x-coordinate will be sin(t) and its y-coordinate will be t2. Both
x and y are functions of the independent parameter t: x(t) = sin(t) and
y(t) = t2. The path of the robot (see margin) can be found by plotting
(x, y) = (x(t), y(t)) for lots of values of t.

t x(t) = sin(t) y(t) = t2 point

0 0 0 (0, 0)
0.5 0.48 0.25 (0.48, 0.25)
1.0 0.84 1 (0.84, 1)
1.5 1.00 2.25 (1, 2.25)
2.0 0.91 4 (0.91, 4)

Typically we know x(t) and y(t) and need to find
dy
dx

, the slope of

the tangent line to the graph of (x(t), y(t)). The Chain Rule says:

dy
dt

=
dy
dx

· dx
dt

so , algebraically solving for
dy
dx

, we get:

dy
dx

=
dy
dt
dx
dt

If we can calculate
dy
dt

and
dx
dt

, the derivatives of y and x with respect

to the parameter t, then we can determine
dy
dx

, the rate of change of y
with respect to x.

If x = x(t) and y = y(t) are differentiable

with respect to t and
dx
dt

̸= 0

then
dy
dx

=
dy
dt
dx
dt

.
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Example 8. Find the slope of the tangent line to the graph of (x, y) =(
sin(t), t2) when t = 2.

Solution.
dx
dt

= cos(t) and
dy
dt

= 2t. When t = 2, the object is at the

point (sin(2), 22) ≈ (0.91, 4) and the slope of the tangent line is:

dy
dx

=
dy
dt
dx
dt

=
2t

cos(t)
=

2 · 2
cos(2)

≈ 4
−0.42

≈ −9.61

Notice in the figure that the slope of the tangent line to the curve at
(0.91, 4) is negative and very steep. ◀

Practice 5. Graph (x, y) = (3 cos(t), 2 sin(t)) and find the slope of the
tangent line when t = π

2 .

When we calculated
dy
dx

, the slope of the tangent line to the graph of

(x(t), y(t)), we used the derivatives
dx
dt

and
dy
dt

. Each of these also has a

geometric meaning:
dx
dt

measures the rate of change of x(t) with respect
to t: it tells us whether the x-coordinate is increasing or decreasing as

the t-variable increases (and how fast it is changing), while
dy
dt

measures

the rate of change of y(t) with respect to t.

Example 9. For the parametric graph in the margin, determine whether
dx
dt

,
dy
dt

and
dy
dx

are positive or negative when t = 2.

Solution. As we move through the point B (where t = 2) in the di-
rection of increasing values of t, we are moving to the left, so x(t) is

decreasing and
dx
dt

< 0. The values of y(t) are increasing, so
dy
dt

> 0.

Finally, the slope of the tangent line,
dy
dx

, is negative. ◀

As a check on the sign of
dy
dx

in the previous example:

dy
dx

=
dy
dt
dx
dt

=
positive
negative

= negative

Practice 6. For the parametric graph in the previous example, tell

whether
dx
dt

,
dy
dt

and
dy
dx

are positive or negative at t = 1 and t = 3.

Speed

If we know the position of an object at any time, then we can determine
its speed. The formula for speed comes from the distance formula and
looks a lot like it, but involves derivatives.
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If x = x(t) and y = y(t) give the location of an object
at time t and both are differentiable functions of t

then the speed of the object is√(
dx
dt

)2
+

(
dy
dt

)2

Proof. The speed of an object is the limit, as ∆t → 0, of (see margin):

change in position
change in time

=

√
(∆x)2 + (∆y)2

∆t
=

√
(∆x)2 + (∆y)2

(∆t)2

=

√(
∆x
∆t

)2
+

(
∆y
∆t

)2
→

√(
dx
dt

)2
+

(
dy
dt

)2

as ∆t → 0.

Example 10. Find the speed of the object whose location at time t is
(x, y) =

(
sin(t), t2) when t = 0 and t = 1.

Solution.
dx
dt

= cos(t) and
dy
dt

= 2t so:

speed =

√
(cos(t))2 + (2t)2 =

√
cos2(t) + 4t2

When t = 0, speed =
√

cos2(0) + 4(0)2 =
√

1 + 0 = 1. When t = 1,
speed =

√
cos2(1) + 4(1)2 ≈

√
0.29 + 4 ≈ 2.07. ◀

Practice 7. Show that an object located at (x, y) = (3 sin(t), 3 cos(t)) at
time t has a constant speed. (This object is moving on a circular path.)

Practice 8. Is the object at (x, y) = (3 cos(t), 2 sin(t)) at time t traveling
faster at the top of the ellipse (t = π

2 ) or at the right edge (t = 0)?

2.5 Problems

In Problems 1–27, differentiate the given function.

1. ln(5x) 2. ln(x2)

3. ln(xk) 4. ln(xx) = x · ln(x)

5. ln(cos(x)) 6. cos(ln(x))

7. log2(5x) 8. log2(kx)

9. ln(sin(x)) 10. ln(kx)

11. log2(sin(x)) 12. ln(ex)

13. log5(5
x) 14. ln

(
e f (x)

)
15. x · ln(3x) 16. ex · ln(x)

17.
ln(x)

x
18.

√
x + ln(3x)
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19. ln
(√

5x − 3
)

20. ln(cos(t))

21. cos(ln(w)) 22. ln(ax + b)

23. ln
(√

t + 1
)

24. 3x

25. 5sin(x)
26. x · ln(x)− x

27. ln (sec(x) + tan(x))

28. Find the slope of the line tangent to f (x) = ln(x)
at the point (e, 1). Find the slope of the line tan-
gent to g(x) = ex at the point (1, e). How are the
slopes of f and g at these points related?

29. Find a point P on the graph of f (x) = ln(x) so
the tangent line to f at P goes through the origin.

30. You are moving from left to right along the graph
of y = ln(x) (see figure below).

(a) If the x-coordinate of your location at time t
seconds is x(t) = 3t + 2, then how fast is your
elevation increasing?

(b) If the x-coordinate of your location at time t
seconds is x(t) = et, then how fast is your
elevation increasing?

31. The percent of a population, p(t), who have
heard a rumor by time t is often modeled by

p(t) =
100

1 + Ae−t = 100
(
1 + Ae−t)−1 for some

positive constant A. Calculate p′(t), the rate at
which the rumor is spreading.

32. If we start with A atoms of a radioactive material
that has a “half-life” (the time it takes for half
of the material to decay) of 500 years, then the
number of radioactive atoms left after t years is

r(t) = A · e−Kt where K =
ln(2)
500

. Calculate r′(t)

and show that r′(t) is proportional to r(t) (that is,
r′(t) = b · r(t) for some constant b).

In 33–41, find a function with the given derivative.

33. f ′(x) =
8
x

34. h′(x) =
3

3x + 5

35. f ′(x) =
cos(x)

3 + sin(x)
36. g′(x) =

x
1 + x2

37. g′(x) = 3e5x
38. h′(x) = e2

39. f ′(x) = 2x · ex2
40. g′(x) = cos(x)esin(x)

41. h′(x) = cot(x) =
cos(x)
sin(x)

42. Define A(x) to be the area bounded between the
t-axis, the graph of y = f (t) and a vertical line
at t = x (see figure below). The area under each
“hump” of f is 2 square inches.

(a) Graph A(x) for 0 ≤ x ≤ 9.

(b) Graph A′(x) for 0 ≤ x ≤ 9.

Problems 43–48 involve parametric equations.

43. At time t minutes, robot A is at (t, 2t + 1) and
robot B is at (t2, 2t2 + 1).

(a) Where is each robot when t = 0 and t = 1?

(b) Sketch the path each robot follows during the
first minute.

(c) Find the slope of the tangent line,
dy
dx

, to the
path of each robot at t = 1 minute.

(d) Find the speed of each robot at t = 1 minute.

(e) Discuss the motion of a robot that follows the
path (sin(t), 2 sin(t) + 1) for 20 minutes.

44. Let x(t) = t + 1 and y(t) = t2.

(a) Graph (x(t), y(t)) for −1 ≤ t ≤ 4.

(b) Find
dx
dt

,
dy
dt

, the tangent slope
dy
dx

, and speed
when t = 1 and t = 4.
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45. For the parametric graph shown below, determine

whether
dx
dt

,
dy
dt

and
dy
dx

are positive, negative or
0 when t = 1 and t = 3.

46. For the parametric graph shown below, determine

whether
dx
dt

,
dy
dt

and
dy
dx

are positive, negative or
0 when t = 1 and t = 3.

47. The parametric graph (x(t), y(t)) defined by
x(t) = R · (t − sin(t)) and y(t) = R · (1 − cos(t))
is called a cycloid, the path of a light attached to
the edge of a rolling wheel with radius R.

(a) Graph (x(t), y(t)) for 0 ≤ t ≤ 4π.

(b) Find
dx
dt

,
dy
dt

, the tangent slope
dy
dx

, and speed

when t = π
2 and t = π.

48. Describe the motion of particles whose locations
at time t are (cos(t), sin(t)) and (cos(t),− sin(t)).

49. (a) Describe the path of a robot whose location at
time t is (3 · cos(t), 5 · sin(t)).

(b) Describe the path of a robot whose location at
time t is (A · cos(t), B · sin(t)).

(c) Give parametric equations so the robot will
move along the same path as in part (a) but in
the opposite direction.

50. After t seconds, a projectile hurled with initial ve-
locity v and angle θ will be at x(t) = v · cos(θ) · t
feet and y(t) = v · sin(θ) · t − 16t2 feet (see figure
below). (This formula neglects air resistance.)

(a) For an initial velocity of 80 feet/second and an
angle of π

4 , find T > 0 so that y(T) = 0. What
does this value for t represent physically? Eval-
uate x(T).

(b) For v and θ in part (a), calculate
dy
dx

. Find T so

that
dy
dx

= 0 at t = T, and evaluate x(T). What

does x(T) represent physically?

(c) What initial velocity is needed so a ball hit at
an angle of π

4 ≈ 0.7854 will go over a 40-foot-
high fence 350 feet away?

(d) What initial velocity is needed so a ball hit at
an angle of 0.7 radians will go over a 40-foot-
high fence 350 feet away?

51. Use the method from the proof that D(ln(x)) = 1
x

to compute the derivative D(arctan(x)):

(a) Rewrite y = arctan(x) as tan(y) = x.

(b) Differentiate both sides using the Chain Rule
and solve for y′.

(c) Use the identity 1 + tan2(θ) = sec2(θ) and the

fact that tan(y) = x to show that y′ =
1

1 + x2 .

52. Use the method from the proof that D(ln(x)) = 1
x

to compute the derivative D(arcsin(x)):

(a) Rewrite y = arcsin(x) as sin(y) = x.

(b) Differentiate both sides using the Chain Rule
and solve for y′.

(c) Use the identity cos2(θ) + sin2(θ) = 1 and the

fact that sin(y) = x to show that y′ =
1√

1 − x2
.
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2.5 Practice Answers

1. log9(20) =
log(20)
log(9)

≈ 1.3634165 ≈ ln(20)
ln(9)

log3(20) =
log(20)
log(3)

≈ 2.726833 ≈ ln(20)
ln(3)

logπ(e) =
log(e)
log(π)

≈ 0.8735685 ≈ ln(e)
ln(π)

=
1

ln(π)

2. D
(
log10(sin(x))

)
=

1
sin(x) · ln(10)

D(sin(x)) =
cos(x)

sin(x) · ln(10)

D (logπ(e
x)) =

1
ex · ln(π)

D(ex) =
ex

ex · ln(π)
=

1
ln(π)

3. D (sin(2x)) = cos(2x)D (2x) = cos(2x) · 2x · ln(2)
d
dt

(
3t2
)
= 3t2

ln(3)D(t2) = 3t2
ln(3) · 2t

4. T =
72

1 + h
=

72
1 + t + sin(t)

⇒

dT
dt

=
(1 + t + sin(t)) · 0 − 72 · D(1 + t + sin(t))

(1 + t + sin(t))2 =
−72(1 + cos(t))
(1 + t + sin(t))2

When t = 5,
dT
dt

=
−72(1 + cos(5))
(1 + 5 + sin(5))2 ≈ −3.63695.

5. x(t) = 3 cos(t) ⇒ dx
dt

= −3 sin(t), y(t) = 2 sin(t) ⇒ dy
dt = 2 cos(t):

dy
dx

=
dy
dt
dx
dt

=
2 cos(t)
−3 sin(t)

⇒ dy
dx

∣∣∣∣
t= π

2

=
2 cos(π

2 )

−3 sin(π
2 )

=
2 · 0
−3 · 1

= 0

(See margin for graph.)

6. x = 1: positive, positive, positive. x = 3: positive, negative, negative.

7. x(t) = 3 sin(t) ⇒ dx
dt = 3 cos(t) and y(t) = 3 cos(t) ⇒ dy

dt =

−3 sin(t). So:

speed =

√(
dx
dt

)2
+

(
dy
dt

)2
=
√
(3 cos(t))2 + (−3 sin(t))2

=
√

9 · cos2(t) + 9 · sin2(t) =
√

9 = 3 (a constant)

8. x(t) = 3 cos(t) ⇒ dx
dt = −3 sin(t) and y(t) = 2 sin(t) ⇒ dy

dt =

2 cos(t) so:

speed =

√(
dx
dt

)2
+

(
dy
dt

)2
=
√
(−3 sin(t))2 + (2 cos(t))2

=
√

9 · sin2(t) + 4 · cos2(t)

When t = 0, the speed is
√

9 · 02 + 4 · 12 = 2.
When t = π

2 , the speed is
√

9 · 12 + 4 · 02 = 3 (faster).
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