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2.6 Related Rates

Throughout the next several sections we’ll look at a variety of applica-
tions of derivatives. Probably no single application will be of interest
or use to everyone, but at least some of them should be useful to you.
Applications also reinforce what you have been practicing: they require
that you recall what a derivative means and require you to use the
differentiation techniques covered in the last several sections. Most
people gain a deeper understanding and appreciation of a tool as they
use it, and differentiation is both a powerful concept and a useful tool.

The Derivative as a Rate of Change

In Section 2.1, we discussed several interpretations of the derivative
of a function. Here we will examine the “rate of change of a function”
interpretation. If several variables or quantities are related to each other
and some of the variables are changing at a known rate, then we can
use derivatives to determine how rapidly the other variables must be
changing.

Example 1. The radius of a circle is increasing at a rate of 10 feet each
second (see margin figure) and we want to know how fast the area of
the circle is increasing when the radius is 5 feet. What can we do?

Solution. We could get an approximate answer by calculating the area
of the circle when the radius is 5 feet:

A = πr2 = π(5 feet)2 ≈ 78.6 feet2

and the area 1 second later when the radius is 10 feet larger than before:

A = πr2 = π(15 feet)2 ≈ 706.9 feet2

and then computing:

∆area
∆time

=
706.9 feet2 − 78.6 feet2

1 second
= 628.3

ft2

sec

This approximate answer represents the average change in area during
the 1-second period when the radius increased from 5 feet to 15 feet. It
is also the slope of the secant line through the points P and Q in the
margin figure, and it is clearly not a very good approximation of the
instantaneous rate of change of the area, the slope of the tangent line at
the point P.

We could get a better approximation by calculating
∆A
∆t

over a shorter
time interval, say ∆t = 0.1 seconds. In this scenario, the original area
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is still 78.6 ft2 but the new area (after t = 0.1 seconds has passed) is
A = π(6 feet)2 ≈ 113.1 ft2 (why is the new radius 6 feet?) so:

∆A
∆t

=
113.1 feet2 − 78.6 feet2

0.1 second
= 345

ft2

sec

This is the slope of the secant line through the points P and Q in the
margin figure, which represents a much better approximation of the
slope of the tangent line at P — but it is still only an approximation.
Using derivatives, we can get an exact answer without doing very much
work at all.

We know that the two variables in this problem, the radius r and
the area A, are related to each other by the formula A = πr2. We also
know that both r and A are changing over time, so each of them is a
function of an additional variable t (time, in seconds): r(t) and A(t).

We want to know the rate of change of the area “when the radius is
5 feet” so if t = 0 corresponds to the particular moment in time when
the radius is 5 feet, we can write r(0) = 5.

The statement that “the radius is increasing at a rate of 10 feet each
second” can be translated into a mathematical statement about the
rate of change, the derivative of r (radius) with respect to t (time):
if t = 0 corresponds to the moment when the radius is 5 feet, then

r′(0) =
dr
dt

= 10 ft/sec.
The question about the rate of change of the area is a question about

A′(t) =
dA
dt

.
Collecting all of this information. . .

• variables: r(t) = radius at time t, A(t) = area at time t

• we know: r(0) = 5 feet and r′(0) = 10 ft/sec

• we want to know: A′(0), the rate of change of area with respect to
time at the moment when r = 5 feet

• connecting equation: A = πr2 or A(t) = π [r(t)]2

To find A′(0) we must first find A′(t) and then evaluate this derivative
at t = 0. Differentiating both sides of the connecting equation, we get:

A(t) = π [r(t)]2 ⇒ A′(t) = 2π [r(t)]1 · r′(t)⇒ A′(t) = 2π · r(t) · r′(t)

Now we can plug in t = 0 and use the information we know:Notice that we have used the Power Rule
for Functions (or, more generally, the
Chain Rule) because the area is a func-
tion of the radius, which is a function of
time.

A′(0) = 2π · r(0) · r′(0) = 2π · 5 · 10 = 100π

When the radius is 5 feet, the area is increasing at 100π ft2/sec ≈ 314.2
square feet per second. J
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Before considering other examples, let’s review the solution to the
previous example. The statement “the radius is increasing at a rate of
10 feet each second” implies that this rate of change is the same at t = 0
(the moment in time we were interested in) as at any other time during
this process, say t = 1.5 or t = 98: r′(0) = r′(1.5) = r′(98) = 10. But
we only used the fact that r′(0) = 10 in our solution.

We should take care in future problems to
consider whether the information we are
given about rates of change holds true all
the time or just at a particular moment
in time. That didn’t matter in our first
example, but it might in other situations.

Next, notice that we let t = 0 correspond to the particular moment
in time the question asked about (the moment when r = 5). But this
choice was arbitrary: we could have let this moment correspond to
t = 2.8 or t = 7π and the eventual answer would have been the same.

Finally, notice that we explicitly wrote each variable (and their deriva-
tives) as a function of the time variable, t: A(t), r(t), A′(t) and r′(t).
Consequently, we used the composition form of the Chain Rule:

(A ◦ r)′(t) = A′(r(t)) · r′(t)

Let’s redo the previous example using the Leibniz form of the Chain
Rule, keeping the above observations in mind.

Solution. We know that the two variables in this problem, the radius r
and the area A, are related to each other by the formula A = πr2. We
also know that both r and A are changing over time, so each of them is
a function of an additional variable t (time, in seconds).

We want to know the rate of change of the area “when the radius is

5 feet,” which translates to evaluating
dA
dt

at the moment when r = 5.
We write this in Leibniz notation as:

dA
dt

∣∣∣∣
r=5

The statement that “the radius is increasing at a rate of 10 feet each

second” translates into
dr
dt

= 10. From the connecting equation A = πr2

we know that
dA
dr

= 2πr. Furthermore,the Chain Rule tells us that:

dA
dt

=
dA
dr
· dr

dt

We know that
dA
dr

= 2πr and
dr
dt

= 10 are always true, so we can rewrite
the Chain Rule statement above as:

dA
dt

= 2πr · 10 = 20πr

Finally, we evaluate both sides at the moment in time we are interested
in (the moment when r = 5):

dA
dt

∣∣∣∣
r=5

= 20πr
∣∣∣
r=5

= 20π · 5 = 100π ≈ 314.2

which is the same answer we found in the original solution. J
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The key steps in finding the rate of change of the area of the circle were:

• write the known information in a mathematical form, expressing

rates of change as derivatives:
dr
dt

= 10 ft/sec

• write the question in a mathematical form:
dA
dt

= ?

• find an equation connecting or relating the variables: A = πr2

• differentiate both sides of the connecting equation using the Chain

Rule (and other differentiation patterns as necessary):
dA
dt

=
dA
dr

dr
dt

• substitute all of the known values that are always true into the
equation resulting from the previous step and (if necessary) solve

for the desired quantity in the resulting equation:
dA
dt

= 2πr · 10

• substitute all of the known values that are true at the particular
moment in time the question asks about into the equation resulting

from the previous step:
dA
dt

∣∣∣
r=5

= 2πr · 10
∣∣∣
r=5

= 100π

Example 2. Divers’ lives depend on understanding situations involving
related rates. In water, the pressure at a depth of x feet is approx-

imately P(x) = 15
(

1 +
x

33

)
pounds per square inch (compared to

approximately P(0) = 15 pounds per square inch at sea level). Volume

is inversely proportional to the pressure, V =
k
P

, so doubling the pres-
sure will result in half the original volume. Remember that volume is a
function of the pressure: V = V(P).

(a) Suppose a diver’s lungs, at a depth of 66 feet, contained 1 cubic foot
of air and the diver ascended to the surface without releasing any
air. What would happen?

(b) If a diver started at a depth of 66 feet and ascended at a rate of 2 feet
per second, how fast would the pressure be changing?

(Dives deeper than 50 feet also involve a risk of the “bends,” or decom-
pression sickness, if the ascent is too rapid. Tables are available that
show the safe rates of ascent from different depths.)

Solution. (a) The diver would risk rupturing his or her lungs. The
1 cubic foot of air at a depth of 66 feet would be at a pressure of
P(66) = 15

(
1 + 66

33
)
= 45 pounds per square inch (psi). Because the

pressure at sea level, P(0) = 15 psi, is only 1
3 as great, each cubic foot

of air would expand to 3 cubic feet, and the diver’s lungs would be
in danger. Divers are taught to release air as they ascend to avoid
this danger. (b) The diver is ascending at a rate of 2 feet/second
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so the rate of change of the diver’s depth with respect to time is
dx
dt

= −2 ft/s. (Why is this rate of change negative?) The pressure is

P = 15
(
1 + x

33
)
= 15 + 15

33 x, a function of x, so using the Chain Rule:

dP
dt

=
dP
dx
· dx

dt
=

15
33

psi
ft
·
(
−2

ft
sec

)
= −30

33
psi
sec
≈ −0.91

psi
sec

The rates of change in this problem are constant (they hold true at any
moment in time during the ascent) so we are done. J

Example 3. The height of a cylinder is increasing at 7 meters per second
and the radius is increasing at 3 meters per second. How fast is the
volume changing when the cylinder is 5 meters high and has a radius
of 6 meters? (See margin.)

Solution. First we need to translate our known information into a
mathematical format. The height and radius are given: at the particular
moment in time the question asks about, h = height = 5 m and r =

radius = 6 m. We are also told how fast h and r are changing at this
moment in time: dh

dt = 7 m/sec and dr
dt = 3 m/sec. Finally, we are asked

to find dV
dt , and we should expect the units of dV

dt to be the same as ∆V
∆t ,

which are m3/sec.

• variables: h(t) = height at time t seconds, r(t) = radius at time t,
V(t) = volume at time t.

• we know: at a particular moment in time, h = 5 m, dh
dt = 7 m/sec,

r = 6 m and dr
dt = 3 m/sec

• we want to know: dV
dt at this particular moment in time

We also need an equation that relates the variables h, r and V (all of
which are functions of time t) to each other:

• connecting equation: V = πr2h

Differentiating each side of this equation with respect to t (remembering
that h, r and V are functions of t), we have:

dV
dt

=
d
dt

(
πr2h

)
= πr2 · dh

dt
+ h · d

dt

(
πr2
)

= πr2 · dh
dt

+ h · 2πr · dr
dt

using the Product Rule (on the product πr2 · h) and the Power Rule for
Functions (on πr2, remembering that r is actually a function of t).

The rest of the solution just involves substituting values and doing
some arithmetic. At the particular moment in time we’re interested in:

dV
dt

= π · 62 m2 · 7 m
sec

+ 5 m · 2π · 6 m · 3 m
sec

= 432π
m3

sec
≈ 1357.2

m3

sec
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The volume of the cylinder is increasing at a rate of 1,357.2 cubic meters
per second. (It is always encouraging when the units of our answer are
the ones we expect.) J

Practice 1. How fast is the surface area of the cylinder changing in
the previous example? (Assume that h, r, dh

dt and dr
dt have the same

values as in the example and use the figure in the margin to help you
determine an equation relating the surface area of the cylinder to the
variables h and r. The cylinder includes a top and bottom.)

Practice 2. How fast is the volume of the cylinder in the previous
example changing if the radius is decreasing at a rate of 3 meters per
second? (The height, radius and rate of change of the height are the
same as in the previous example: 5 m, 6 m and 7 m/sec respectively.)

Usually, the most difficult part of Related Rates problems is to find
an equation that relates or connects all of the variables. In the previous
problems, the relating equations required a knowledge of geometry and
formulas for areas and volumes (or knowing where to look them up).
Other Related Rates problems may require information about similar
triangles, the Pythagorean Theorem or trigonometric identities: the
information required varies from problem to problem.

It is a good idea — a very good idea — to draw a picture of the
physical situation whenever possible. It is also a good idea, particularly
if the problem is very important (your next raise depends on getting
the right answer), to calculate at least one approximate answer as a check
of your exact answer.

Example 4. Water is flowing into a conical tank at a rate of 5 m3/sec.
If the radius of the top of the cone is 2 m, the height is 7 m, and the
depth of the water is 4 m, then how fast is the water level rising?

Solution. Let’s define our variables to be h = height (or depth) of the
water in the cone and V = the volume of the water in the cone. Both h
and V are changing, and both of them are functions of time t. We are
told in the problem that h = 4 m and dV

dt = 5 m3/sec, and we are asked
to find dh

dt . We expect that the units of dh
dt will be the same as ∆h

∆t , which
are meters/second.

• variables: h(t) = height at time t seconds, r(t) = radius of the top
surface of the water at time t, V(t) = volume of water at time t

• we know: dV
dt = 5 m3/sec (always true) and h = 4 m (at a particular

moment)

• we want to know: dh
dt at this particular moment
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Unfortunately, the equation for the volume of a cone, V = 1
3 πr2h, also

involves an additional variable r, the radius of the cone at the top of
the water. This is a situation in which a picture can be a great help by
suggesting that we have a pair of similar triangles:

r
h
=

top radius
total height

=
2 m
7 m

=
2
7
⇒ r =

2
7

h

Knowing this, we can rewrite the volume of the water contained in the
cone, V = 1

3 πr2h, as a function of the single variable h:

• connecting equation: V =
1
3

πr2h =
1
3

π

(
2
7

h
)2

h =
4

147
πh3

The rest of the solution is reasonably straightforward.

dV
dt

=
dV
dh
· dh

dt
=

d
dh

(
4

147
πh3

)
· dh

dt

We know
dV
dt

= 5 always holds, and the derivative is easy to compute:

5 =
4
49

πh2 · dh
dt

At the particular moment in time we want to know about (when h = 4):

5 =
4
49

πh2
∣∣∣
h=4
· dh

dt

∣∣∣
h=4

⇒ 5 =
64π

49
· dh

dt

∣∣∣
h=4

and we can now solve for the quantity of interest:

dh
dt

∣∣∣
h=4

=
5

64π
49

=
245
64π

≈ 1.22
m
sec

This example was a bit more challenging because we needed to use
similar triangles to get an equation relating V to h and because we

eventually needed to do some arithmetic to solve for
dh
dt

. J

Practice 3. A rainbow trout has taken the fly at the end of a 60-foot
fishing line, and the line is being reeled in at a rate of 30 feet per minute.
If the tip of the rod is 10 feet above the water and the trout is at the
surface of the water, how fast is the trout being pulled toward the
angler? (Hint: Draw a picture and use the Pythagorean Theorem.)

Example 5. When rain is falling vertically, the amount (volume) of rain
collected in a cylinder is proportional to the area of the opening of the
cylinder. If you place a narrow cylindrical glass and a wide cylindrical
glass out in the rain:

(a) which glass will collect water faster?

(b) in which glass will the water level rise faster?
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Solution. Let’s assume that the smaller glass has a radius of r and the
larger glass has a radius of R, so that R > r. The areas of their openings
are πr2 and πR2, respectively. Call the volume of water collected in
each glass v (for the smaller glass) and V (for the larger glass).

(a) The smaller glass will collect water at the rate
dv
dt

= K · πr2 and

the larger at the rate
dV
dt

= K · πR2 so
dV
dt

>
dv
dt

and the larger glass
will collect water faster than the smaller glass.

(b) The volume of water in each glass is a function of the radius
of the glass and the height of the water in the glass: v = πr2h and
V = πR2H where h and H are the heights of the water levels in the
smaller and larger glasses, respectively. The heights h and H vary with
t (in other words, they are each functions of t) while the radii (r and R)
remain constant, so:

dv
dt

=
d
dt

(
πr2h

)
= πr2 dh

dt
⇒ dh

dt
=

dv
dt

πr2 =
Kπr2

πr2 = K

Similarly:

dV
dt

=
d
dt

(
πR2H

)
= πR2 dH

dt
⇒ dH

dt
=

dV
dt

πR2 =
KπR2

πR2 = K

So
dh
dt

= K =
dH
dt

, which tells us the water level in each glass is rising at
the same rate. In a one-minute period, the larger glass will collect more
rain, but the larger glass also requires more rain to raise its water level
by a fixed amount. How do you think the volumes and water levels
would change if we placed a small glass and a large plastic (rectangular)
box side by side in the rain? J

2.6 Problems

1. An expandable sphere is being filled with liquid at a constant rate
from a tap (imagine a water balloon connected to a faucet). When
the radius of the sphere is 3 inches, the radius is increasing at 2

inches per minute. How fast is the liquid coming out of the tap?
(V = 4

3 πr3)

2. The 12-inch base of a right triangle is growing at 3 inches per hour,
and the 16-inch height of the triangle is shrinking at 3 inches per
hour (see figure in the margin).

(a) Is the area increasing or decreasing?

(b) Is the perimeter increasing or decreasing?

(c) Is the hypotenuse increasing or decreasing?



2.6 related rates 183

3. One hour later the right triangle in the previous
problem is 15 inches long and 13 inches high
(see figure below) and the base and height are
changing at the same rate as in Problem 2.

(a) Is the area increasing or decreasing now?
(b) Is the hypotenuse increasing or decreasing?
(c) Is the perimeter increasing or decreasing?

4. A young woman and her boyfriend plan to elope,
but she must rescue him from his mother, who
has locked him in his room. The young woman
has placed a 20-foot long ladder against his house
and is knocking on his window when his mother
begins pulling the bottom of the ladder away
from the house at a rate of 3 feet per second (see
figure below). How fast is the top of the ladder
(and the young couple) falling when the bottom
of the ladder is:

(a) 12 feet from the bottom of the wall?
(b) 16 feet from the bottom of the wall?
(c) 19 feet from the bottom of the wall?

5. The length of a 12-foot by 8-foot rectangle is in-
creasing at a rate of 3 feet per second and the
width is decreasing at 2 feet per second (see fig-
ure below).

(a) How fast is the perimeter changing?

(b) How fast is the area changing?

6. A circle of radius 3 inches is inside a square with
12-inch sides (see figure below). How fast is the
area between the circle and square changing if the
radius is increasing at 4 inches per minute and
the sides are increasing at 2 inches per minute?

7. An oil tanker in Puget Sound has sprung a leak,
and a circular oil slick is forming. The oil slick is
4 inches thick everywhere, is 100 feet in diameter,
and the diameter is increasing at 12 feet per hour.
Your job, as the Coast Guard commander or the
tanker’s captain, is to determine how fast the oil
is leaking from the tanker.
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8. A mathematical species of slug has a semicircular
cross section and is always 5 times as long as it is
high (see figure below). When the slug is 5 inches
long, it is growing at 0.2 inches per week.

(a) How fast is its volume increasing?
(b) How fast is the area of its “foot” (the part of the

slug in contact with the ground) increasing?

9. Lava flowing from a hole at the top of a hill is
forming a conical mountain whose height is al-
ways the same as the width of its base (see figure
below). If the mountain is increasing in height at
2 feet per hour when it is 500 feet high, how fast
is the lava flowing (that is, how fast is the volume
of the mountain increasing)? (V = 1

3 πr2h)

10. A 6-foot-tall person is walking away from a 14-
foot lamp post at 3 feet per second. When the
person is 10 feet away from the lamp post:

(a) how fast is the length of the shadow changing?
(b) how fast is the tip of the shadow moving away

from the lamp post?

11. Redo the previous problem if the person is 20 feet
from the lamp post.

12. Water is being poured at a rate of 15 cubic feet
per minute into a conical reservoir that is 20 feet
deep and has a top radius of 10 feet (see below).

(a) How long will it take to fill the empty reser-
voir?

(b) How fast is the water level rising when the
water is 4 feet deep?

(c) How fast is the water level rising when the
water is 16 feet deep?

13. The string of a kite is perfectly taut and always
makes an angle of 35◦ above horizontal.

(a) If the kite flyer has let out 500 feet of string,
how high is the kite?

(b) If the string is let out at a rate of 10 feet per
second, how fast is the kite’s height increasing?
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14. A small tracking telescope is viewing a hot-air
balloon rise from a point 1,000 meters away from
a point directly under the balloon.

(a) When the viewing angle is 20◦, it is increasing
at a rate of 3◦ per minute. How high is the
balloon, and how fast is it rising?

(b) When the viewing angle is 80◦, it is increasing
at a rate of 2◦ per minute. How high is the
balloon, and how fast is it rising?

15. The 8-foot diameter of a spherical gas bubble
is increasing at 2 feet per hour, and the 12-foot-
long edges of a cube containing the bubble are
increasing at 3 feet per hour. Is the volume con-
tained between the spherical bubble and the cube
increasing or decreasing? At what rate?

16. In general, the strength S of an animal is propor-
tional to the cross-sectional area of its muscles,
and this area is proportional to the square of its
height H, so the strength S = aH2. Similarly,
the weight W of the animal is proportional to
the cube of its height, so W = bH3. Finally, the
relative strength R of an animal is the ratio of its
strength to its weight. As the animal grows, show
that its strength and weight increase, but that the
relative strength decreases.

17. The snow in a hemispherical pile melts at a rate
proportional to its exposed surface area (the sur-
face area of the hemisphere). Show that the height
of the snow pile is decreasing at a constant rate.

18. If the rate at which water vapor condenses onto a
spherical raindrop is proportional to the surface
area of the raindrop, show that the radius of the
raindrop will increase at a constant rate.

19. Define A(x) to be the area bounded by the t- and
y-axes, and the lines y = 5 and t = x.

(a) Find a formula for A as a function of x.

(b) Determine A′(x) when x = 1, 2, 4 and 9.

(c) If x is a function of time, x(t) = t2, find a
formula for A as a function of t.

(d) Determine A′(t) when t = 1, 2 and 3.

(e) Suppose instead x(t) = 2 + sin(t). Find a for-
mula for A(t) and determine A′(t).

20. The point P is going around the circle x2 + y2 = 1
twice a minute. How fast is the distance between
the point P and the point (4, 3) changing:

(a) when P = (1, 0)?

(b) when P = (0, 1)?

(c) when P = (0.8, 0.6)?

(Suggestion: Write x and y as parametric func-
tions of time t.)
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21. You are walking along a sidewalk toward a 40-
foot-wide sign adjacent to the sidewalk and per-
pendicular to it. If your viewing angle θ is 10◦:

(a) how far are you from the corner of the sign?

(b) how fast is your viewing angle changing if you
are walking at 25 feet per minute?

(c) how fast are you walking if the angle is increas-
ing at 2◦ per minute?

2.6 Practice Answers

1. The surface area is S = 2πrh + 2πr2. From the Example, we know
that dh

dt = 7 m/sec and dr
dt = 3 m/sec, and we want to know how

fast the surface area is changing when h = 5 m and r = 6 m.

dS
dt

= 2πr · dh
dt

+ 2π
dr
dt
· h + 2π · 2r · dr

dt

= 2π(6 m)
(

7
m
sec

)
+ 2π

(
3

m
sec

)
(5m) + 2π (2 · 6 m)

(
3

m
sec

)
= 186π

m2

sec
≈ 584.34

m2

sec

Note that the units represent a rate of
change of area.

2. The volume is V = πr2h. We know that dr
dt = −3 m/sec and that

h = 5 m, r = 6 m and dh
dt = 7 m/sec.

dV
dt

= πr2 · dh
dt

+ π · 2r · dr
dt

= hπ(6 m)2
(

7
m
sec

)
+ π(2 · 6 m)

(
−3

m
sec

)
(5 m)

= 72π
m3

sec
≈ 226.19

m3

sec

Note that the units represent a rate of
change of volume.

3. See margin figure. We know dL
dt = −30 ft

min (always true); F rep-
resents the distance from the fish to a point directly below the tip
of the rod, and the distance from that point to the angler remains
constant, so dF

dt will equal the rate at which the fish is moving toward

the angler. We want to know dF
dt

∣∣∣
L=60

. The Pythagorean Theorem

connects F and L: F2 + 102 = L2. Differentiating with respect to t
and using the Power Rule for Functions:

2F · dF
dt

+ 0 = 2L · dL
dt

⇒ dF
dt

=
L
F
· dL

dt
At a particular moment in time, L = 60 ⇒ F2 + 102 = 602 ⇒ F =√

3600− 100 =
√

3500 = 10
√

35 so:
dF
dt

∣∣∣
L=60

= −30 · 60
10
√

35
= − 180√

35
≈ −30.43

ft
min
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