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2.7 Newton’s Method

Newton’s method is a process that can find roots of functions whose
graphs cross or just “kiss” the x-axis. Although this method is a bit
harder to apply than the Bisection Algorithm, it often finds roots that
the Bisection Algorithm misses, and it usually finds them faster.

Off on a Tangent

The basic idea of Newton’s Method is remarkably simple and graphical:
at a point (x, f (x)) on the graph of f , the tangent line to the graph
“points toward” a root of f , a place where the graph touches the x-axis.

To find a root of f , we just pick a starting value x0, go to the point
(x0, f (x0)) on the graph of f , build a tangent line there, and follow the
tangent line to where it crosses the x-axis, say at x1.

If x1 is a root of f , we are done. If x1 is not a root of f , then x1 is
usually closer to the root than x0 was, and we can repeat the process,
using x1 as our new starting point. Newton’s method is an iterative
procedure — that is, the output from one application of the method
becomes the starting point for the next application.

Let’s begin with the function f (x) = x2 − 5, whose roots we already
know (x = ±

√
5 ≈ ±2.236067977), to illustrate Newton’s method.

First, pick some value for x0, say x0 = 4, and move to the point
(x0, f (x0)) = (4, 11) on the graph of f . The tangent line to the graph of
f at (4, 11) “points to” a location on the x-axis that is closer to the root
of f than the point we started with. We calculate this location on the
x-axis by finding an equation of the line tangent to the graph of f at
(4, 11) and then finding where this line intersects the x-axis.

At (4, 11), the line tangent to f has slope f ′(4) = 2(4) = 8, so an
equation of the tangent line is y − 11 = 8(x − 4). Setting y = 0, we can
find where this line crosses the x-axis:

0 − 11 = 8(x − 4) ⇒ x = 4 − 11
8

=
21
8

= 2.625

Call this new value x1: The point x1 = 2.625 is closer to the actual
root

√
5, but it certainly does not equal the actual root. So we can use

this new x-value, x1 = 2.625, to repeat the procedure:

• move to the point (x1, f (x1)) = (2.625, 1.890625)

• find an equation of the tangent line at (x1, f (x1)):

y − 1.890625 = 5.25(x − 2.625)

• find x2, the x-value where this new line intersects the x-axis:

y − 1.890625 = 5.25(x − 2.625) ⇒ 0 − 1.890625 = 5.25(x2 − 2.625)

⇒ x2 = 2.264880952
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Repeating this process, each new estimate for the root of f (x) = x2 − 5
becomes the starting point to calculate the next estimate. We get:

x0 = 4 (0 correct digits)
x1 = 2.625 (1 correct digit)
x2 = 2.262880952 (2 correct digits)
x3 = 2.236251252 (4 correct digits)
x4 = 2.236067985 (8 correct digits)

It only took 4 iterations to get an approximation within 0.000000008 of
the exact value of

√
5 . One more iteration gives an approximation x5

that has 16 correct digits. If we start with x0 = −2 (or any negative
number), then the values of xn approach −

√
5 ≈ −2.23606.

Practice 1. Find where the tangent line to f (x) = x3 + 3x − 1 at (1, 3)
intersects the x-axis.

Practice 2. A starting point and a graph of f appear in the margin.
Label the approximate locations of the next two points on the x-axis
that will be found by Newton’s method.

The Algorithm for Newton’s Method

Rather than deal with each particular function and starting point, let’s
find a pattern for a general function f .

The process for Newton’s Method, start-
ing with x0 and graphically finding the
locations on the x-axis of x1, x2 and x3.

For the starting point x0, the slope of the tangent line at the point
(x0, f (x0)) is f ′(x0) so the equation of the tangent line is y − f (x0) =

f ′(x0) · (x − x0). This line intersects the x-axis at a point (x1, 0), so:

0 − f (x0) = f ′(x0) · (x1 − x0) ⇒ x1 = x0 −
f (x0)

f ′(x0)

Starting with x1 and repeating this process we get x2 = x1 −
f (x1)

f ′(x1)
,

x3 = x2 −
f (x2)

f ′(x2)
and so on. In general, starting with xn, the line

tangent to the graph of f at (xn, f (xn)) intersects the x-axis at (xn+1, 0)

with xn+1 = xn −
f (xn)

f ′(xn)
, our new estimate for the root of f .

Algorithm for Newton’s Method:

1. Pick a starting value x0 (preferably close to a root of f (x)).

2. For each xn, calculate a new estimate xn+1 = xn −
f (xn)

f ′(xn)

3. Repeat step 2 until the estimates are “close enough” to a root or
until the method “fails.”



the derivative 189

When we use Newton’s method with f (x) = x2 − 5, the function in
our first example, we have f ′(x) = 2x so

xn+1 = xn −
f (xn)

f ′(xn)
= xn −

xn
2 − 5
2xn

=
2xn

2 − xn
2 + 5

2xn

=
xn

2 + 5
2xn

=
1
2

(
xn +

5
xn

)
The new approximation, xn+1, is the average of the previous approxi-
mation, xn, and 5 divided by the previous approximation, 5

xn
.

Problem 16 helps you show this pattern —
called Heron’s method — approximates
the square root of any positive number:
just replace 5 with the number whose
square root you want to find.

Example 1. Use Newton’s method to approximate the root(s) of f (x) =
2x + x · sin(x + 3)− 5.

Solution. f ′(x) = 2 + x cos(x + 3) + sin(x + 3) so:

xn+1 = xn −
f (xn)

f ′(xn)
= xn −

2xn + xn · sin(xn + 3)− 5
2 + xn · cos(xn + 3) + sin(xn + 3)

The graph of f (x) (see margin) indicates only one root of f , which
is near x = 3, so pick x0 = 3. Then Newton’s method yields the
values x0 = 3, x1 = 2.96484457, x2 = 2.96446277, x3 = 2.96446273 (the
underlined digits agree with the exact answer). ◀

If we had picked x0 = 4 in the previous example, Newton’s method
would have required 4 iterations to get 9 digits of accuracy. For x0 = 5,
7 iterations are needed to get 9 digits of accuracy. If we pick x0 = 5.1,
then the values of xn are not close to the actual root after even 100

iterations: x100 ≈ −49.183. Picking a “good” value for x0 can result in
values of xn that get close to the root quickly. Picking a “poor” value
for x0 can result in xn values that take many more iterations to get close
to the root — or that don’t approach the root at all.

The graph of the function can help you pick a “good” x0.

Practice 3. Put x0 = 3 and use Newton’s method to find the first two
iterates, x1 and x2, for the function f (x) = x3 − 3x2 + x − 1.

Example 2. The function graphed in the margin has roots at x = 3 and
x = 7. If we pick x0 = 1 and apply Newton’s method, which root do
the iterates (the values of xn) approach?

Solution. The iterates of x0 = 1 are labeled in the margin graph. They
are approaching the root at 7. ◀

Practice 4. For the function graphed in the margin, which root do the
iterates of Newton’s method approach if:

(a) x0 = 2? (b) x0 = 3? (c) x0 = 5?
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Iteration

We have been emphasizing the geometric nature of Newton’s method,
but Newton’s method is also an example of iterating a function. If

N(x) = x − f (x)
f ′(x)

, the “pattern” in the algorithm, then:

x1 = x0 −
f (x0)

f ′(x0)
= N(x0)

x2 = x1 −
f (x1)

f ′(x1)
= N(x1) = N(N(x0)) = N ◦ N(x0)

x3 = x2 −
f (x2)

f ′(x2)
= N(x2) = N(N(N(x0))) = N ◦ N ◦ N(x0)

and, in general:

xn = N(xn−1) = nth iteration of N starting with x0

At each step, we use the output from N as the next input into N.

What Can Go Wrong?

When Newton’s method works, it usually works very well and the
values of xn approach a root of f very quickly, often doubling the
number of correct digits with each iteration. There are, however, several
things that can go wrong.

An obvious problem with Newton’s method is that f ′(xn) can be
0. Then the algorithm tells us to divide by 0 and xn+1 is undefined.
Geometrically, if f ′(xn) = 0, the tangent line to the graph of f at xn is
horizontal and does not intersect the x-axis at any point. If f ′(xn) = 0,
just pick another starting value x0 and begin again. In practice, a second
or third choice of x0 usually succeeds.

There are two other less obvious difficulties that are not as easy
to overcome — the values of the iterates xn may become locked into
an infinitely repeating loop (see margin), or they may actually move
farther away from a root (see lower margin figure).

Example 3. Put x0 = 1 and use Newton’s method to find the first two
iterates, x1 and x2, for the function f (x) = x3 − 3x2 + x − 1.

Solution. This is the function from the previous Practice Problem, but
with a different starting value for x0: f ′(x) = 3x2 − 6x + 1 so,

x1 = x0 −
f (x0)

f ′(x0)
= 1 − f (1)

f ′(1)
= 1 − −2

−2
= 0

and x2 = x1 −
f (x1)

f ′(x1)
= 0 − f (0)

f ′(0)
= 0 − −1

1
= 1

which is the same as x0, so x3 = x1 = 0 and x4 = x2 = 1. The values of
xn alternate between 1 and 0 and do not approach a root. ◀
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Newton’s method behaves badly at only a few starting points for this
particular function — for most starting points, Newton’s method con-
verges to the root of this function. There are some functions, however,
that defeat Newton’s method for almost every starting point.

Practice 5. For f (x) = 3
√

x = x
1
3 and x0 = 1, verify that x1 = −2,

x2 = 4 and x3 = −8. Also try x0 = −3 and verify that the same pattern
holds: xn+1 = −2xn. Graph f and explain why the Newton’s method
iterates get farther and farther away from the root at 0.

Newton’s method is powerful and quick and very easy to program
on a calculator or computer. It usually works so well that many people
routinely use it as the first method they apply. If Newton’s method
fails for their particular function, they simply try some other method.

Chaotic Behavior and Newton’s Method

An algorithm leads to chaotic behavior if two starting points that
are close together generate iterates that are sometimes far apart and
sometimes close together: |a0 − b0| is small but |an − bn| is large for lots
(infinitely many) of values of n and |an − bn| is small for lots of values
of n. The iterates of the next simple algorithm exhibit chaotic behavior.

A Simple Chaotic Algorithm: Starting with any number between 0
and 1, double the number and keep the fractional part of the result:
x1 is the fractional part of 2x0, x2 is the fractional part of 2x1, and in
general, xn+1 = 2xn − ⌊2xn⌋.

If x0 = 0.33, then the iterates of this algorithm are 0.66, 0.32 =

fractional part of 2 · 0.66, 0.64, 0.28, 0.56, . . . The iterates for two other
starting values close to 0.33 are given below as well as the iterates of
0.470 and 0.471:

x0 0.32 0.33 0.34 0.470 0.471

x1 0.64 0.66 0.68 0.940 0.942
x2 0.28 0.32 0.36 0.880 0.884
x3 0.56 0.64 0.72 0.760 0.768
x4 0.12 0.28 0.44 0.520 0.536
x5 0.24 0.56 0.88 0.040 0.072
x6 0.48 0.12 0.76 0.080 0.144
x7 0.96 0.24 0.56 0.160 0.288
x8 0.92 0.48 0.12 0.320 0.576
x9 0.84 0.96 0.24 0.640 0.152

There are starting values as close together as we want whose iterates
are far apart infinitely often.

Many physical, biological and financial phenomena exhibit chaotic
behavior. Atoms can start out within inches of each other and several
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weeks later be hundreds of miles apart. The idea that small initial
differences can lead to dramatically diverse outcomes is sometimes
called the “butterfly effect” from the title of a talk (“Predictability: Does
the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?”)
given by Edward Lorenz, one of the first people to investigate chaos.
The “butterfly effect” has important implications about the possibility —
or rather the impossibility — of accurate long-range weather forecasting.
Chaotic behavior is also an important aspect of studying turbulent air
and water flows, the incidence and spread of diseases, and even the
fluctuating behavior of the stock market.

Newton’s method often exhibits chaotic behavior and — because it
is relatively easy to study — is often used as a model to investigate
the properties of chaotic behavior. If we use Newton’s method to
approximate the roots of f (x) = x3 − x (with roots 0, +1 and −1),
then starting points that are very close together can have iterates that
converge to different roots. The iterates of 0.4472 and 0.4473 converge
to the roots 0 and +1, respectively. The iterates of the median value
0.44725 converge to the root −1, and the iterates of another nearby

point,
1√
5
≈ 0.44721, simply cycle between − 1√

5
and +

1√
5

and do

not converge at all.

Practice 6. Find the first four Newton’s method iterates of x0 = 0.997
and x0 = 1.02 for f (x) = x2 + 1. Try two other starting values very
close to 1 (but not equal to 1) and find their first four iterates. Use the
graph of f (x) = x2 + 1 to explain how starting points so close together
can quickly have iterates so far apart.

2.7 Problems

1. The graph of y = f (x) appears below. Estimate
the locations of x1 and x2 when you apply New-
ton’s method with the given starting value x0.

2. The graph of y = g(x) appears below. Estimate
the locations of x1 and x2 when you apply New-
ton’s method starting value with the value x0

shown in the graph.
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3. The function graphed below has several roots.
Which root do the iterates of Newton’s method
converge to if we start with x0 = 1? With x0 = 5?

4. The function graphed below has several roots.
Which root do the iterates of Newton’s method
converge to if we start with x0 = 2? With x0 = 6?

5. What happens to the iterates if we apply New-
ton’s method to the function graphed below and
start with x0 = 1? With x0 = 5?

6. What happens if we apply Newton’s method to a
function f and start with x0 = a root of f ?

7. What happens if we apply Newton’s method to a
function f and start with x0 = a maximum of f ?

In Problems 8–9, a function and a value for x0 are
given. Apply Newton’s method to find x1 and x2.

8. f (x) = x3 + x − 1 and x0 = 1

9. f (x) = x4 − x3 − 5 and x0 = 2

In Problems 10–11, use Newton’s method to find
a root, accurate to 2 decimal places, of the given
functions using the given starting points.

10. f (x) = x3 − 7 and x0 = 2

11. f (x) = x − cos(x) and x0 = 0.7

In Problems 12–15, use Newton’s method to find all
roots or solutions, accurate to 2 decimal places, of
the given equation. It is helpful to examine a graph
to determine a “good” starting value x0.

12. 2 + x = ex

13.
x

x + 3
= x2 − 2

14. x = sin(x)

15. x = 5
√

3

16. Show that if you apply Newton’s method to
f (x) = x2 − A to approximate

√
A, then

xn+1 =
1
2

(
xn +

A
xn

)
so the new estimate of the square root is the aver-
age of the previous estimate and A divided by the
previous estimate. This method of approximating
square roots is called Heron’s method.

17. Use Newton’s method to devise an algorithm for
approximating the cube root of a number A.

18. Use Newton’s method to devise an algorithm for
approximating the n-th root of a number A.

Problems 19–22 involve chaotic behavior.

19. The iterates of numbers using the Simple Chaotic
Algorithm have some interesting properties.

(a) Verify that the iterates starting with x0 = 0 are
all equal to 0.

(b) Verify that if x0 = 1
2 , 1

4 , 1
8 and, in general, 1

2n ,
then the n-th iterate of x0 is 0 (and so are all
iterates beyond the n-th iterate.)

20. When Newton’s method is applied to the func-
tion f (x) = x2 + 1, most starting values for x0

lead to chaotic behavior for xn. Find a value for
x0 so that the iterates alternate: x1 = −x0 and
x2 = −x1 = x0.
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21. The function f (x) defined as:

f (x) =

{
2x if 0 ≤ x < 1

2
2 − 2x if 1

2 ≤ x ≤ 1

is called a “stretch and fold” function.

(a) Describe what f does to the points in the inter-
val [0, 1].

(b) Examine and describe the behavior of the iter-
ates of 2

3 , 2
5 , 2

7 and 2
9 .

(c) Examine and describe the behavior of the iter-
ates of 0.10, 0.105 and 0.11.

(d) Do the iterates of f lead to chaotic behavior?

22. (a) After many iterations (50 is fine) what hap-
pens when you apply Newton’s method start-
ing with x0 = 0.5 to:

i. f (x) = 2x(1 − x)

ii. f (x) = 3.3x(1 − x)

iii. f (x) = 3.83x(1 − x)

(b) What do you think happens to the iterates of
f (x) = 3.7x(1 − x)? What actually happens?

(c) Repeat parts (a)–(b) with some other starting
values x0 between 0 and 1 (0 < x0 < 1). Does
the starting value seem to effect the eventual
behavior of the iterates?

(The behavior of the iterates of f depends in a
strange way on the numerical value of the leading
coefficient. The behavior exhibited in part (b) is
an example of “chaos.”)

2.7 Practice Answers

1. f ′(x) = 3x2 + 3, so the slope of the tangent line at (1, 3) is f ′(1) = 6
and an equation of the tangent line is y − 3 = 6(x − 1) or y = 6x − 3.
The y-coordinate of a point on the x-axis is 0 so putting y = 0 in
this equation: 0 = 6x − 3 ⇒ x = 1

2 . The line tangent to the graph
of f (x) = x3 + 3x + 1 at the point (1, 3) intersects the x-axis at the
point ( 1

2 , 0).

2. The approximate locations of x1 and x2 appear in the margin.

3. Using f ′(x) = 3x2 + 3 and x0 = 3:

x1 = x0 −
f (x0)

f ′(x0)
= 3 − f (3)

f ′(3)
= 3 − 2

10
= 2.8

x2 = x1 −
f (x1)

f ′(x1)
= 2.8 − f (2.8)

f ′(2.8)
= 2.8 − 0.232

7.72
≈ 2.769948187

x3 = x2 −
f (x2)

f ′(x2)
≈ 2.769292663

4. The margin figure shows the first iteration of Newton’s Method for
x0 = 2, 3 and 5: If x0 = 2, the iterates approach the root at a; if
x0 = 3, they approach the root at c; and if x0 = 5, they approach the
root at a.



the derivative 195

5. f (x) = x
1
3 ⇒ f ′(x) = 1

3 x−
2
3 . If x0 = 1, then:

x1 = 1 − f (1)
f ′(1)

= 1 − 1
1
3
= 1 − 3 = −2

x2 = −2 − f (−2)
f ′(−2)

= −2 − (−2)
1
3

1
3 (−2)−

2
3
= −2 − −2

1
3

= 4

x3 = 4 − f (4)
f ′(4)

= 4 − (4)
1
3

1
3 (4)

− 2
3
= 4 − 4

1
3
= −8

and so on. If x0 = −3, then:

x1 = −3 − f (−3)
f ′(−3)

= −3 − (−3)
1
3

1
3 (−3)−

2
3
= −3 + 9 = 6

x2 = 6 − f (6)
f ′(6)

= 6 − (6)
1
3

1
3 (6)

− 2
3
= 6 − 6

1
3
= −12

The graph of f (x) = 3
√

x has a shape similar to the margin figure
and the behavior of the iterates is similar to the pattern shown in that
figure. Unless x0 = 0 (the only root of f ) the iterates alternate in sign
and double in magnitude with each iteration: they get progressively
farther from the root with each iteration.

6. If x0 = 0.997, then x1 ≈ −0.003, x2 ≈ 166.4, x3 ≈ 83.2, x4 ≈ 41.6.
If x0 = 1.02, then x1 ≈ 0.0198, x2 ≈ −25.2376 , x3 ≈ −12.6 and
x4 ≈ −6.26.
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