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3.2 Mean Value Theorem

If you averaged 30 miles per hour during a trip, then at some instant
during the trip you were traveling exactly 30 miles per hour.

That relatively obvious statement is the Mean Value Theorem as it
applies to a particular trip. It may seem strange that such a simple
statement would be important or useful to anyone, but the Mean Value
Theorem is important and some of its consequences are very useful in
a variety of areas. Many of the results in the rest of this chapter depend
on the Mean Value Theorem, and one of the corollaries of the Mean
Value Theorem will be used every time we calculate an “integral” in
later chapters. A truly delightful aspect of mathematics is that an idea
as simple and obvious as the Mean Value Theorem can be so powerful.

Before we state and prove the Mean Value Theorem and examine
some of its consequences, we will consider a simplified version called
Rolle’s Theorem.

Rolle’s Theorem

Pick any two points on the x-axis and think about all of the differ-
entiable functions that pass through those two points. Because our
functions are differentiable, they must be continuous and their graphs
cannot have any holes or breaks. Also, since these functions are dif-
ferentiable, their derivatives are defined everywhere between our two
points and their graphs can not have any “corners” or vertical tangents.

The graphs of the functions in the margin figure can still have all
sorts of shapes, and it may seem unlikely that they have any common
properties other than the ones we have stated, but Michel Rolle (1652–
1719) found one. He noticed that every one of these functions has one
or more points where the tangent line is horizontal (see margin), and
this result is named after him.

Rolle’s Theorem:

If f (a) = f (b)
and f (x) is continuous for a ≤ x ≤ b
and differentiable for a < x < b

then there is at least one number c between a and b so that
f ′(c) = 0.

Proof. We consider three cases: when f (x) = f (a) for all x in (a, b),
when f (x) > f (a) for some x in (a, b), and when f (x) < f (a) for some
x in (a, b).

Case I: If f (x) = f (a) for all x between a and b, then the graph of
f is a horizontal line segment and f ′(c) = 0 for all values of c strictly
between a and b.



230 contemporary calculus

Case II: Suppose f (x) > f (a) for some x in (a, b). Because f is
continuous on the closed interval [a, b], we know from the Extreme
Value Theorem that f must attain a maximum value on the closed
interval [a, b]. Because f (x) > f (a) for some value of x in [a, b], then
the maximum of f must occur at some value c strictly between a and
b: a < c < b. (Why can’t the maximum be at a or b?) Because f (c) is a
local maximum of f , c is a critical number of f , meaning f ′(c) = 0 or
f ′(c) is undefined. But f is differentiable at all x between a and b, so
the only possibility is that f ′(c) = 0.

Notice that Rolle’s Theorem tells us that
(at least one) number c with the required
properties exists, but does not tell us how
to find c.

Case III: Suppose f (x) < f (a) for some x in (a, b). Then, arguing
as we did in Case II, f attains a minimum at some value x = c strictly
between a and b, and so f ′(c) = 0.

In each case, there is at least one value of c between a and b so that
f ′(c) = 0.

Example 1. Show that f (x) = x3 − 6x2 + 9x + 2 satisfies the hypotheses
of Rolle’s Theorem on the interval [0, 3] and find a value of c that the
theorem tells you must exist.

Solution. Because f is a polynomial, it is continuous and differentiable
everywhere. Furthermore, f (0) = 2 = f (3), so Rolle’s Theorem applies.
Differentiating:

f ′(x) = 3x2 − 12x + 9 = 3(x − 1)(x − 3)

so f ′(x) = 0 when x = 1 and when x = 3. The value c = 1 is between
0 and 3. The margin figure shows a graph of f . ◀

Practice 1. Find the value(s) of c for Rolle’s Theorem for the functions
graphed below.

The Mean Value Theorem

Geometrically, the Mean Value Theorem is a “tilted” version of Rolle’s
Theorem (see margin). In each theorem we conclude that there is a
number c so that the slope of the tangent line to f at x = c is the same
as the slope of the line connecting the two ends of the graph of f on the
interval [a, b]. In Rolle’s Theorem, the two ends of the graph of f are
at the same height, f (a) = f (b), so the slope of the line connecting the
ends is zero. In the Mean Value Theorem, the two ends of the graph
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of f do not have to be at the same height, so the line through the two
ends does not have to have a slope of zero.

Mean Value Theorem:

If f (x) is continuous for a ≤ x ≤ b
and differentiable for a < x < b

then there is at least one number c between a and b so the
line tangent to the graph of f at x = c is parallel to
the secant line through (a, f (a)) and (b, f (b)):

f ′(c) =
f (b)− f (a)

b − a

Proof. The proof of the Mean Value Theorem uses a tactic common in
mathematics: introduce a new function that satisfies the hypotheses of
some theorem we already know and then use the conclusion of that
previously proven theorem. For the Mean Value Theorem we introduce
a new function, h(x), which satisfies the hypotheses of Rolle’s Theorem.
Then we can be certain that the conclusion of Rolle’s Theorem is true for
h(x) and the Mean Value Theorem for f will follow from the conclusion
of Rolle’s Theorem for h.

First, let g(x) be the linear function passing through the points
(a, f (a)) and (b, f (b)) of the graph of f . The function g goes through
the point (a, f (a)) so g(a) = f (a). Similarly, g(b) = f (b). The slope of

the linear function g(x) is
f (b)− f (a)

b − a
so g′(x) =

f (b)− f (a)
b − a

for all x

between a and b, and g is continuous and differentiable. (The formula
for g is g(x) = f (a) + m(x − a) with m = f (b)− f (a)

b−a .)
Define h(x) = f (x)− g(x) for a ≤ x ≤ b (see margin). The function

h satisfies the hypotheses of Rolle’s theorem:

• h(a) = f (a)− g(a) = 0 and h(b) = f (b)− g(b) = 0

• h(x) is continuous for a ≤ x ≤ b because both f and g are continuous
there

• h(x) is differentiable for a < x < b because both f and g are differ-
entiable there

so the conclusion of Rolle’s Theorem applies to h: there is a c between
a and b so that h′(c) = 0.

The derivative of h(x) = f (x)− g(x) is h′(x) = f ′(x)− g′(x) so we
know that there is a number c between a and b with h′(c) = 0. But:

0 = h′(c) = f ′(c)− g′(c) ⇒ f ′(c) = g′(c) =
f (b)− f (a)

b − a

which is exactly what we needed to prove.
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Graphically, the Mean Value Theorem says that there is at least one
point c where the slope of the tangent line, f ′(c), equals the slope of
the line through the end points of the graph segment, (a, f (a)) and
(b, f (b)). The margin figure shows the locations of the parallel tangent
lines for several functions and intervals.

The Mean Value Theorem also has a very natural interpretation
if f (x) represents the position of an object at time x: f ′(x) repre-

sents the velocity of the object at the instant x and
f (b)− f (a)

b − a
=

change in position
change in time

represents the average (mean) velocity of the ob-

ject during the time interval from time a to time b. The Mean Value
Theorem says that there is a time c (between a and b) when the instan-
taneous velocity, f ′(c), is equal to the average velocity for the entire

trip,
f (b)− f (a)

b − a
. If your average velocity during a trip is 30 miles per

hour, then at some instant during the trip you were traveling exactly 30

miles per hour.

Practice 2. For f (x) = 5x2 − 4x + 3 on the interval [1, 3], calculate

m =
f (b)− f (a)

b − a
and find the value(s) of c so that f ′(c) = m.

Some Consequences of the Mean Value Theorem

If the Mean Value Theorem was just an isolated result about the exis-
tence of a particular point c, it would not be very important or useful.
However, the Mean Value Theorem is the basis of several results about
the behavior of functions over entire intervals, and it is these conse-
quences that give it an important place in calculus for both theoretical
and applied uses.

The next two corollaries are just the first of many results that follow
from the Mean Value Theorem.

We already know, from the Main Differentiation Theorem, that the
derivative of a constant function f (x) = K is always 0, but can a non-
constant function have a derivative that is always 0? The first corollary
says no.

Corollary 1:

If f ′(x) = 0 for all x in an interval I
then f (x) = K, a constant, for all x in I.

Proof. Assume f ′(x) = 0 for all x in an interval I. Pick any two points
a and b (with a ̸= b) in the interval. Then, by the Mean Value Theorem,

there is a number c between a and b so that f ′(c) =
f (b)− f (a)

b − a
. By

our assumption, f ′(x) = 0 for all x in I, so we know that 0 = f ′(c) =
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f (b)− f (a)
b − a

and thus f (b)− f (a) = 0 ⇒ f (b) = f (a). But a and b were

two arbitrary points in I, so the value of f (x) is the same for any two
values of x in I, and f is a constant function on the interval I.

We already know that if two functions are “parallel” (differ by a
constant), then their derivatives are equal, but can two non-parallel
functions have the same derivative? The second corollary says no.

Corollary 2:

If f ′(x) = g′(x) for all x in an interval I
then f (x) − g(x) = K, a constant, for all x in I, so the

graphs of f and g are “parallel” on the interval I.

Proof. This corollary involves two functions instead of just one, but
we can imitate the proof of the Mean Value Theorem and introduce
a new function h(x) = f (x)− g(x). The function h is differentiable
and h′(x) = f ′(x)− g′(x) = 0 for all x in I so, by Corollary 1, h(x) is a
constant function and K = h(x) = f (x)− g(x) for all x in the interval.
Thus f (x) = g(x) + K.

We will use Corollary 2 hundreds of times in Chapters 4 and 5 when
we work with “integrals.” Typically you will be given the derivative
of a function, f ′(x), and be asked to find all functions f that have that
derivative. Corollary 2 tells us that if we can find one function f that
has the derivative we want, then the only other functions that have the
same derivative are of the form f (x) + K where K is a constant: once
you find one function with the right derivative, you have essentially
found all of them.

Example 2. (a) Find all functions whose derivatives equal 2x. (b) Find
a function g(x) with g′(x) = 2x and g(3) = 5.

Solution. (a) Observe that f (x) = x2 ⇒ f ′(x) = 2x, so one func-
tion with the derivative we want is f (x) = x2. Corollary 2 guar-
antees that every function g whose derivative is 2x has the form
g(x) = f (x) + K = x2 + K. (b) Because g′(x) = 2x, we know that
g must have the form g(x) = x2 + K, but this gives a whole “family”
of functions (see margin) and we want to find one member of that
family. We also know that g(3) = 5 so we want to find the member
of the family that passes through the point (3, 5). Replacing g(x) with
5 and x with 3 in the formula g(x) = x2 + K, we can solve for the
value of K: 5 = g(3) = (3)2 + K ⇒ K = −4. The function we want is
g(x) = x2 − 4. ◀

Practice 3. Restate Corollary 2 as a statement about the positions and
velocities of two cars.
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3.2 Problems

1. In the figure below, find the number(s) “c” that
Rolle’s Theorem promises (guarantees).

For Problems 2–4, verify that the hypotheses of
Rolle’s Theorem are satisfied for each of the func-
tions on the given intervals, and find the value of
the number(s) “c” that Rolle’s Theorem promises.

2. (a) f (x) = x2 on [−2, 2]
(b) f (x) = x2 − 5x + 8 on [0, 5]

3. (a) f (x) = sin(x) on [0, π]

(b) f (x) = sin(x) on [π, 5π]

4. (a) f (x) = x3 − x + 3 on [−1, 1]
(b) f (x) = x · cos(x) on [0, π

2 ]

5. Suppose you toss a ball straight up and catch it
when it comes down. If h(t) is the height of the
ball t seconds after you toss it, what does Rolle’s
Theorem say about the velocity of the ball? Why
is it easier to catch a ball that someone on the
ground tosses up to you on a balcony, than for
you to be on the ground and catch a ball that
someone on a balcony tosses down to you?

6. If f (x) =
1
x2 , then f (−1) = 1 and f (1) = 1 but

f ′(x) = − 2
x3 is never equal to 0. Why doesn’t

this function violate Rolle’s Theorem?

7. If f (x) = |x|, then f (−1) = 1 and f (1) = 1 but
f ′(x) is never equal to 0. Why doesn’t this func-
tion violate Rolle’s Theorem?

8. If f (x) = x2, then f ′(x) = 2x is never 0 on the
interval [1, 3]. Why doesn’t this function violate
Rolle’s Theorem?

9. If I take off in an airplane, fly around for a while
and land at the same place I took off from, then
my starting and stopping heights are the same
but the airplane is always moving. Why doesn’t
this violate Rolle’s theorem, which says there is
an instant when my velocity is 0?

10. Prove the following corollary of Rolle’s Theorem:
If P(x) is a polynomial, then between any two
roots of P there is a root of P′.

11. Use the corollary in Problem 10 to justify the con-
clusion that the only root of f (x) = x3 + 5x − 18
is 2. (Suggestion: What could you conclude about
f ′ if f had another root?)

12. In the figure below, find the location(s) of the “c”
that the Mean Value Theorem promises.

In Problems 13–15, verify that the hypotheses of the
Mean Value Theorem are satisfied for each of the
functions on the given intervals, and find the num-
ber(s) “c” that the Mean Value Theorem guarantees.

13. (a) f (x) = x2 on [0, 2]

(b) f (x) = x2 − 5x + 8 on [1, 5]

14. (a) f (x) = sin(x) on [0, π
2 ]

(b) f (x) = x3 on [−1, 3]

15. (a) f (x) = 5 −
√

x on [1, 9]

(b) f (x) = 2x + 1 on [1, 7]



derivatives and graphs 235

16. For the quadratic functions in parts (a) and (b) of
Problem 13, the number c turned out to be the
midpoint of the interval: c = a+b

2 .

(a) For f (x) = 3x2 + x − 7 on [1, 3], show that

f ′(2) =
f (3)− f (1)

3 − 1
.

(b) For f (x) = x2 − 5x + 3 on [2, 5], show that

f ′
(

7
2

)
=

f (5)− f (2)
5 − 2

.

(c) For f (x) = Ax2 + Bx + C on [a, b], show that

f ′
(

a + b
2

)
=

f (b)− f (a)
b − a

.

17. If f (x) = |x|, then f (−1) = 1 and f (3) = 3 but

f ′(x) is never equal to
f (3)− f (−1)

3 − (−1)
=

1
2

. Why

doesn’t this violate the Mean Value Theorem?

In Problems 18–19, you are a traffic-court judge. In
each case, a driver has challenged a speeding ticket
and you need to decide if the ticket is appropriate.

18. A tolltaker says, “Your Honor, based on the
elapsed time from when the car entered the toll
road until the car stopped at my booth, I know
the average speed of the car was 83 miles per
hour. I did not actually see the car speeding, but
I know it was and I gave the driver a ticket.”

19. The driver in the next case says, “Your Honor, my
average velocity on that portion of the toll road
was only 17 miles per hour, so I could not have
been speeding.”

20. Find three different functions ( f , g and h) so that
f ′(x) = g′(x) = h′(x) = cos(x).

21. Find a function f so that f ′(x) = 3x2 + 2x + 5
and f (1) = 10.

22. Find g(x) so that g′(x) = x2 + 3 and g(0) = 2.

23. Find values for A and B so that the graph of the
parabola f (x) = Ax2 + B is:

(a) tangent to y = 4x + 5 at the point (1, 9).

(b) tangent to y = 7 − 2x at the point (2, 3).

(c) tangent to y = x2 + 3x − 2 at the point (0, 2).

24. Sketch the graphs of several members of the “fam-
ily” of functions whose derivatives always equal
3. Give a formula that defines every function in
this family.

25. Sketch the graphs of several members of the “fam-
ily” of functions whose derivatives always equal
3x2. Give a formula that defines every function
in this family.

26. At t seconds after takeoff, the upward velocity
of a helicopter was v(t) = 3t2 + 2t feet/second.
Two seconds after takeoff, the helicopter was 80

feet above sea level. Find a formula for the height
of the helicopter at every time t.

27. Assume that a rocket is fired from the ground
and has the upward velocity shown in the figure
below. Estimate the height of the rocket when
t = 1, 2 and 5 seconds.

28. The figure below shows the upward velocity of
a rocket. Use the information in the graph to
estimate the height of the rocket when t = 1, 2
and 5 seconds.
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29. Determine a formula for f (x) if you know:
f ′′(x) = 6, f ′(0) = 4 and f (0) = −5.

30. Determine a formula for g(x) if you know:
g′′(x) = 12x, g′(1) = 9 and g(2) = 30.

31. Define A(x) to be the area bounded by the t-axis,
the line y = 3 and a vertical line at t = x.

(a) Find a formula for A(x).
(b) Determine A′(x).

32. Define A(x) to be the area bounded by the t-axis,
the line y = 2t and a vertical line at t = x.

(a) Find a formula for A(x).
(b) Determine A′(x).

33. Define A(x) to be the area bounded by the t-axis,
the line y = 2t + 1 and a vertical line at t = x.

(a) Find a formula for A(x).

(b) Determine A′(x).

In Problems 34–36, given a list of numbers a1, a2, a3,
a4, . . . , the consecutive differences between num-
bers in the list are: a2 − a1, a3 − a2, a4 − a3, . . .

34. If a1 = 5 and the consecutive difference is always
0, what can you conclude about the numbers in
the list?

35. If a1 = 5 and the consecutive difference is always
3, find a formula for an.

36. Suppose the “a” list starts with 3, 4, 7, 8, 6, 10,
13,. . . , and there is a “b” list that has the same
consecutive differences as the “a” list.

(a) If b1 = 5, find the next six numbers in the “b”
list. How is bn related to an?

(b) If b1 = 2, find the next six numbers in the “b”
list. How is bn related to an?

(c) If b1 = B, find the next six numbers in the “b”
list. How is bn related to an?
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3.2 Practice Answers

1. f ′(x) = 0 when x = 2 and 6, so c = 2 and c = 6.
g′(x) = 0 when x = 2, 4 and 6, so c = 2, c = 4 and c = 6.

2. With f (x) = 5x2 − 4x + 3 on [1, 3], f (1) = 4 and f (3) = 36 so:

m =
f (b)− f (a)

b − a
=

36 − 4
3 − 1

= 16

f ′(x) = 10x − 4 so f ′(c) = 10c − 4 = 16 ⇒ 10c = 20 ⇒ c = 2. The
graph of f showing the location of c appears below.

3. If two cars have the same velocities during an interval of time (so that
f ′(t) = g′(t) for t in I) then the cars are always a constant distance
apart during that time interval. (Note: “Same velocity” means same
speed and same direction. If two cars are traveling at the same
speed but in different directions, then the distance between them
changes and is not constant.)
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