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3.3 The First Derivative and the Shape of f

This section examines some of the interplay between the shape of the
graph of a function f and the behavior of its derivative, f ′. If we have a
graph of f , we will investigate what we can conclude about the values
of f ′. And if we know values of f ′, we will investigate what we can
conclude about the graph of f .

Definitions: Given any interval I, a function f is . . .

increasing on I if, for all x1 and x2 in I, x1 < x2 ⇒ f (x1) < f (x2)

decreasing on I if, for all x1 and x2 in I, x1 < x2 ⇒ f (x1) > f (x2)

monotonic on I if f is increasing or decreasing on I

In this definition, I can be of the form
(a, b), [a, b), (a, b], [a, b], (−∞, b), (−∞, b],
(a, ∞), [a, ∞) or (−∞, ∞), where a < b.

Graphically, f is increasing (decreasing) if, as we move from left to
right along the graph of f , the height of the graph increases (decreases).

These same ideas make sense if we consider h(t) to be the height (in
feet) of a rocket at time t seconds. We naturally say that the rocket is
rising or that its height is increasing if the height h(t) increases over a
period of time, as t increases.

Example 1. List the intervals on which the function graphed below is
increasing or decreasing.

Solution. f is increasing on the intervals [0, 0.3] (approximately), [2, 3]
and [4, 6]. f is decreasing on (approximately) [0.3, 2] and [6, 8]. On
the interval [3, 4] the function is not increasing or decreasing — it is
constant. It is also valid to say that f is increasing on the intervals
[0.5, 0.8] and (0.5, 0.8) as well as many others, but we usually talk about
the longest intervals on which f is monotonic. ◀

Practice 1. List the intervals on which the function graphed below is
increasing or decreasing.
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If we have an accurate graph of a function, then it is relatively easy
to determine where f is monotonic, but if the function is defined by a
formula, then a little more work is required. The next two theorems
relate the values of the derivative of f to the monotonicity of f . The
first theorem says that if we know where f is monotonic, then we also
know something about the values of f ′. The second theorem says that
if we know about the values of f ′ then we can draw conclusions about
where f is monotonic.

First Shape Theorem:
For a function f that is differentiable on an interval (a, b):

• if f is increasing on (a, b) then f ′(x) ≥ 0 for all x in (a, b)

• if f is decreasing on (a, b) then f ′(x) ≤ 0 for all x in (a, b)

• if f is constant on (a, b), then f ′(x) = 0 for all x in (a, b)

Proof. Most people find a picture such as the one in the margin to be
a convincing justification of this theorem: if the graph of f increases
near a point (x, f (x)), then the tangent line is also increasing, and the
slope of the tangent line is positive (or perhaps zero at a few places). A
more precise proof, however, requires that we use the definitions of the
derivative of f and of “increasing” (given above).

Case I: Assume that f is increasing on (a, b). We know that f is
differentiable, so if x is any number in the interval (a, b) then

f ′(x) = lim
h→0

f (x + h)− f (x)
h

and this limit exists and is a finite value. If h is any small enough
positive number so that x + h is also in the interval (a, b), then x <

x + h ⇒ f (x) < f (x + h) (by the definition of “increasing”). We know
that the numerator, f (x + h)− f (x), and the denominator, h, are both
positive, so the limiting value, f ′(x), must be positive or zero: f ′(x) ≥ 0.

The proof of this part is very similar to
the “increasing” proof.

Case II: Assume that f is decreasing on (a, b). If x < x + h, then
f (x) > f (x + h) (by the definition of “decreasing”). So the numerator
of the limit, f (x + h)− f (x), will be negative but the denominator, h,
will still be positive, so the limiting value, f ′(x), must be negative or
zero: f ′(x) ≤ 0.

Case III: The derivative of a constant is 0, so if f is constant on (a, b)
then f ′(x) = 0 for all x in (a, b).

The previous theorem is easy to understand, but you need to pay
attention to exactly what it says and what it does not say. It is possible
for a differentiable function that is increasing on an interval to have
horizontal tangent lines at some places in the interval (see margin). It is
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also possible for a continuous function that is increasing on an interval
to have an undefined derivative at some places in the interval. Finally,
it is possible for a function that is increasing on an interval to fail to be
continuous at some places in the interval (see margin).

The First Shape Theorem has a natural interpretation in terms of the
height h(t) and upward velocity h′(t) of a helicopter at time t. If the
height of the helicopter is increasing (h(t) is an increasing function),
then the helicopter has a positive or zero upward velocity: h′(t) ≥ 0. If
the height of the helicopter is not changing, then its upward velocity is
0: h′(t) = 0.

Example 2. A figure in the margin shows the height of a helicopter
during a period of time. Sketch the graph of the upward velocity of the

helicopter,
dh
dt

.

Solution. The graph of v(t) =
dh
dt

appears in the margin. Notice that

h(t) has a local maximum when t = 2 and t = 5, and that v(2) = 0
and v(5) = 0. Similarly, h(t) has a local minimum when t = 3, and
v(3) = 0. When h is increasing, v is positive. When h is decreasing, v is
negative. ◀

Practice 2. A figure in the margin shows the population of rabbits
on an island during a 6-year period. Sketch the graph of the rate of

population change,
dR
dt

, during those years.

Example 3. A graph of f appears in the margin; sketch a graph of f ′.

Solution. It is a good idea to look first for the points where f ′(x) = 0
or where f is not differentiable (the critical points of f ). These locations
are usually easy to spot, and they naturally break the problem into
several smaller pieces. The only numbers at which f ′(x) = 0 are x = −1
and x = 2, so the only places the graph of f ′(x) will cross the x-axis
are at x = −1 and x = 2: we can therefore plot the points (−1, 0) and
(2, 0) on the graph of f ′. The only place where f is not differentiable is
at the “corner” above x = 5, so the graph of f ′ will not be defined for
x = 5. The rest of the graph of f is relatively easy to sketch:

• if x < −1 then f (x) is decreasing so f ′(x) is negative

• if −1 < x < 2 then f (x) is increasing so f ′(x) is positive

• if 2 < x < 5 then f (x) is decreasing so f ′(x) is negative

• if 5 < x then f (x) is decreasing so f ′(x) is negative
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A graph of f ′ appears on the previous page: f (x) is continuous at
x = 5, but not differentiable at x = 5 (indicated by the “hole”). ◀

Practice 3. A graph of f appears in the margin. Sketch a graph of f ′.
(The graph of f has a “corner” at x = 5.)

The next theorem is almost the converse of the First Shape Theorem
and explains the relationship between the values of the derivative and
the graph of a function from a different perspective. It says that if
we know something about the values of f ′, then we can draw some
conclusions about the shape of the graph of f .

Second Shape Theorem:
For a function f that is differentiable on an interval I:

• if f ′(x) > 0 for all x in the interval I, then f is increasing on I

• if f ′(x) < 0 for all x in the interval I, then f is decreasing on I

• if f ′(x) = 0 for all x in the interval I, then f is constant on I

Proof. This theorem follows directly from the Mean Value Theorem,
and the last part is just a restatement of the First Corollary of the Mean
Value Theorem.

Case I: Assume that f ′(x) > 0 for all x in I and pick any points a
and b in I with a < b. Then, by the Mean Value Theorem, there is a

point c between a and b so that
f (b)− f (a)

b − a
= f ′(c) > 0 and we can

conclude that f (b)− f (a) > 0, which means that f (b) > f (a). Because
a < b ⇒ f (a) < f (b), we know that f is increasing on I.

Case II: Assume that f ′(x) < 0 for all x in I and pick any points
a and b in I with a < b. Then there is a point c between a and b so

that
f (b)− f (a)

b − a
= f ′(c) < 0, and we can conclude that f (b)− f (a) =

(b − a) f ′(c) < 0 so f (b) < f (a). Because a < b ⇒ f (a) > f (b), we
know f is decreasing on I.

Practice 4. Rewrite the Second Shape Theorem as a statement about the
height h(t) and upward velocity h′(t) of a helicopter at time t seconds.

The value of a function f at a number x tells us the height of the
graph of f above or below the point (x, 0) on the x-axis. The value
of f ′ at a number x tells us whether the graph of f is increasing or
decreasing (or neither) as the graph passes through the point (x, f (x))
on the graph of f . If f (x) is positive, it is possible for f ′(x) to be
positive, negative, zero or undefined: the value of f (x) has absolutely
nothing to do with the value of f ′. The margin figure illustrates some
of the possible combinations of values for f and f ′.
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Practice 5. Graph a continuous function that satisfies the conditions on
f and f ′ given below:

x −2 −1 0 1 2 3

f (x) 1 −1 −2 −1 0 2
f ′(x) −1 0 1 2 −1 1

The Second Shape Theorem can be particularly useful if we need to
graph a function f defined by a formula. Between any two consecutive
critical numbers of f , the graph of f is monotonic (why?). If we can
find all of the critical numbers of f , then the domain of f will be broken
naturally into a number of pieces on which f will be monotonic.

Example 4. Use information about the values of f ′ to help graph
f (x) = x3 − 6x2 + 9x + 1.

Solution. f ′(x) = 3x2 − 12x + 9 = 3(x − 1)(x − 3) so f ′(x) = 0 only
when x = 1 or x = 3; f ′ is a polynomial, so it is always defined. The
only critical numbers, x = 1 and x = 3, break the real number line into
three pieces on which f is monotonic: (−∞, 1), (1, 3) and (3, ∞).

• x < 1 ⇒ f ′(x) = 3(negative)(negative) > 0 ⇒ f increasing

• 1 < x < 3 ⇒ f ′(x) = 3(positive)(negative) < 0 ⇒ f is decreasing

• 3 < x ⇒ f ′(x) = 3(positive)(positive) > 0 ⇒ f is increasing

Although we don’t yet know the value of f anywhere, we do know a lot
about the shape of the graph of f : as we move from left to right along
the x-axis, the graph of f increases until x = 1, then decreases until
x = 3, after which the graph increases again (see margin). The graph
of f “turns” when x = 1 and x = 3. To plot the graph of f , we still
need to evaluate f at a few values of x, but only at a very few values:
f (1) = 5, and (1, 5) is a local maximum of f ; f (3) = 1, and (3, 1) is a
local minimum of f . A graph of f appears in the margin. ◀

Practice 6. Use information about the values of f ′ to help graph the
function f (x) = x3 − 3x2 − 24x + 5.

Example 5. Use the graph of f ′ in the margin to sketch the shape of the
graph of f . Why isn’t the graph of f ′ enough to completely determine
the graph of f ?

Solution. Several functions that have the derivative we want appear
in the margin, and each provides a correct answer. By the Second
Corollary to the Mean Value Theorem, we know there is a whole family
of “parallel” functions that share the derivative we want, and each
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of these functions provides a correct answer. If we had additional
information about the function — such as a point it passes through —
then only one member of the family would satisfy the extra condition
and there would be only one correct answer. ◀

Practice 7. Use the graph of g′ provided in the margin to sketch the
shape of a graph of g.

Practice 8. A weather balloon is released from the ground and sends
back its upward velocity measurements (see margin). Sketch a graph
of the height of the balloon. When was the balloon highest?

Using the Derivative to Test for Extremes

The first derivative of a function tells about the general shape of the
function, and we can use that shape information to determine whether
an extreme point is a (local) maximum or minimum or neither.

First Derivative Test for Local Extremes:
Let f be a continuous function with f ′(c) = 0 or f ′(c) undefined.

• If f ′(left of c) > 0 and f ′(right of c) < 0
then (c, f (c)) is a local maximum.

• If f ′(left of c) < 0 and f ′(right of c) > 0
then (c, f (c)) is a local minimum.

• If f ′(left of c) > 0 and f ′(right of c) > 0
then (c, f (c)) is not a local extreme.

• If f ′(left of c) < 0 and f ′(right of c) < 0
then (c, f (c)) is not a local extreme.

Practice 9. Find all extremes of f (x) = 3x2 − 12x + 7 and use the First
Derivative Test to classify them as maximums, minimums or neither.

3.3 Problems

In Problems 1–3, sketch the graph of the derivative of each function.

1. 2. 3.
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Problems 4–6 show the graph of the height of a helicopter; sketch a graph of its upward velocity.

4. 5. 6.

7. In the figure below, match the graphs of the func-
tions with those of their derivatives.

8. Match the graphs showing the heights of rockets
with those showing their velocities.

9. Use the Second Shape Theorem to show that
f (x) = ln(x) is monotonic increasing on the in-
terval (0, ∞).

10. Use the Second Shape Theorem to show that
g(x) = ex is monotonic increasing on the entire
real number line.

11. A student is working with a complicated function
f and has shown that the derivative of f is always
positive. A minute later the student also claims
that f (x) = 2 when x = 1 and when x = π. With-
out checking the student’s work, how can you be
certain that it contains an error?
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12. The figure below shows the graph of the deriva-
tive of a continuous function f .

(a) List the critical numbers of f .

(b) What values of x result in a local maximum?

(c) What values of x result in a local minimum?

13. The figure below shows the graph of the deriva-
tive of a continuous function g.

(a) List the critical numbers of g.

(b) What values of x result in a local maximum?

(c) What values of x result in a local minimum?

Problems 14–16 show the graphs of the upward velocities of three helicopters. Use the graphs to determine
when each helicopter was at a (relative) maximum or minimum height.

14. 15. 16.

In 17–22, use information from the derivative of each
function to help you graph the function. Find all
local maximums and minimums of each function.

17. f (x) = x3 − 3x2 − 9x − 5

18. g(x) = 2x3 − 15x2 + 6

19. h(x) = x4 − 8x2 + 3

20. s(t) = t + sin(t)

21. r(t) =
2

t2 + 1

22. f (x) =
x2 + 3

x
23. f (x) = 2x + cos(x) so f (0) = 1. Without graph-

ing the function, you can be certain that f has
how many positive roots?

24. g(x) = 2x − cos(x) so g(0) = −1. Without graph-
ing the function, you can be certain that g has how
many positive roots?

25. h(x) = x3 + 9x − 10 has a root at x = 1. Without
graphing h, show that h has no other roots.

26. Sketch the graphs of monotonic decreasing func-
tions that have exactly (a) no roots (b) one root
and (c) two roots.

27. Each of the following statements is false. Give (or
sketch) a counterexample for each statement.

(a) If f is increasing on an interval I, then f ′(x) >
0 for all x in I.

(b) If f is increasing and differentiable on I, then
f ′(x) > 0 for all x in I.

(c) If cars A and B always have the same speed,
then they will always be the same distance
apart.
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28. (a) Find several different functions f that all have
the same derivative f ′(x) = 2.

(b) Determine a function f with derivative
f ′(x) = 2 that also satisfies f (1) = 5.

(c) Determine a function g with g′(x) = 2 for
which the graph of g goes through (2, 1).

29. (a) Find several different functions h that all have
the same derivative h′(x) = 2x.

(b) Determine a function f with derivative
f ′(x) = 2x that also satisfies f (3) = 20.

(c) Determine a function g with g′(x) = 2x for
which the graph of g goes through (2, 7).

30. Sketch functions with the given properties to help
determine whether each statement is true or false.

(a) If f ′(7) > 0 and f ′(x) > 0 for all x near 7, then
f (7) is a local maximum of f on [1, 7].

(b) If g′(7) < 0 and g′(x) < 0 for all x near 7, then
g(7) is a local minimum of g on [1, 7].

(c) If h′(1) > 0 and h′(x) > 0 for all x near 1, then
h(1) is a local minimum of h on [1, 7].

(d) If r′(1) < 0 and r′(x) < 0 for all x near 1, then
r(1) is a local maximum of r on [1, 7].

(e) If s′(7) = 0, then s(7) is a local maximum of s
on [1, 7].

3.3 Practice Answers

1. g is increasing on [2, 4] and [6, 8]; g is decreasing on [0, 2] and [4, 5];
g is constant on [5, 6].

2. The graph in the margin shows the rate of population change,
dR
dt

.

3. A graph of f ′ appears below. Notice how the graph of f ′ is 0 where
f has a maximum or minimum.

4. The Second Shape Theorem for helicopters:

• If the upward velocity h′ is positive during time interval I then
the height h is increasing during time interval I.

• If the upward velocity h′ is negative during time interval I then
the height h is decreasing during time interval I.

• If the upward velocity h′ is zero during time interval I then the
height h is constant during time interval I.
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5. A graph satisfying the conditions in the table appears in the margin.

x −2 −1 0 1 2 3

f (x) 1 −1 −2 −1 0 2
f ′(x) −1 0 1 2 −1 1

6. f ′(x) = 3x2 − 6x − 24 = 3(x − 4)(x + 2) so f ′(x) = 0 if x = −2 or
x = 4.

• x < −2 ⇒ f ′(x) = 3(negative)(negative) > 0 ⇒ f increasing

• −2 < x < 4 ⇒ f ′(x) = 3(negative)(positive) < 0 ⇒ f decreasing

• x > 4 ⇒ f ′(x) = 3(positive)(positive) > 0 ⇒ f increasing

Thus f has a relative maximum at x = −2 and a relative minimum
at x = 4. A graph of f appears in the margin.

7. The figure below left shows several possible graphs for g. Each has
the correct shape to give the graph of g′. Notice that the graphs of g
are “parallel” (differ by a constant).

8. The figure above right shows the height graph for the balloon. The
balloon was highest at 4 p.m. and had a local minimum at 6 p.m.

9. f ′(x) = 6x − 12 so f ′(x) = 0 only if x = 2.

• x < 2 ⇒ f ′(x) < 0 ⇒ f decreasing

• x > 2 ⇒ f ′(x) > 0 ⇒ f increasing

From this we can conclude that f has a minimum when x = 2 and
has a shape similar to graph provided in the margin.

We could also have noticed that the graph of the quadratic function
f (x) = 3x2 − 12x + 7 must be an upward-opening parabola.
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