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3.7 L’Hôpital’s Rule

When taking limits of slopes of secant lines, msec =
f (x + h)− f (x)

h
as h → 0, we frequently encountered one difficulty: both the numerator
and the denominator approached 0. And because the denominator
approached 0, we could not apply the Main Limit Theorem. In many
situations, however, we managed to get past this “ 0

0 ” difficulty by using
algebra or geometry or trigonometry to rewrite the expression and then
take the limit. But there was no common approach or pattern. The alge-

braic steps we used to evaluate lim
h→0

(2 + h)2 − 4
h

seem quite different

from the trigonometric steps needed for lim
h→0

sin(2 + h)− sin(2)
h

. Although discovered by Johann Bernoulli,
this rule was named for the Marquis
de l’Hôpital (pronounced low-pee-TALL),
who published it in his 1696 calculus text-
book, Analysis of the Infinitely Small for the
Understanding of Curved Lines.

In this section we consider a single technique, called l’Hôpital’s Rule,
that enables us to quickly and easily evaluate many limits of the form
“ 0

0 ” as well as several other challenging indeterminate forms.

A Linear Example

The graphs of two linear functions appear in the margin and we want

to find lim
x→5

f (x)
g(x)

. Unfortunately, lim
x→5

f (x) = 0 and lim
x→5

g(x) = 0 so we

cannot apply the Main Limit Theorem. We do know, however, that f
and g are linear, so we can calculate their slopes, and we know that they
both lines go through the point (5, 0) so we can find their equations:
f (x) = −2(x − 5) and g(x) = 3(x − 5).

Now the limit is easier to compute:

lim
x→5

f (x)
g(x)

= lim
x→5

−2(x − 5)
3(x − 5)

= lim
x→5

−2
3

= −2
3
=

slope of f
slope of g

In fact, this pattern works for any two linear functions: If f and g are
linear functions with slopes m ̸= 0 and n ̸= 0 and a common root
at x = a, then f (x)− f (a) = m(x − a) and g(x)− g(a) = n(x − a) so
f (x) = m(x − a) and g(x) = n(x − a). Then:

lim
x→a

f (x)
g(x)

= lim
x→a

m(x − a)
n(x − a)

= lim
x→a

m
n

=
m
n

=
slope of f
slope of g

A more powerful result—that the same pattern holds true for differen-
tiable functions even if they are not linear—is called l’Hôpital’s Rule.

L’Hôpital’s Rule (“ 0
0 ” Form)

If f and g are differentiable at x = a,
f (a) = 0, g(a) = 0 and g′(a) ̸= 0

then lim
x→a

f (x)
g(x)

=
f ′(a)
g′(a)

=
slope of f at a
slope of g at a
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Idea for a proof: Even though f and g may not be linear functions,
they are differentiable. So at the point x = a they are “almost linear” in
the sense that we can approximate them quite well using their tangent
lines at that point (see margin).

Because f (a) = g(a) = 0, f (x) ≈ f (a) + f ′(a)(x − a) = f ′(a)(x − a)
and g(x) ≈ g(a) + g′(a)(x − a) = g′(a)(x − a). So:

lim
x→a

f (x)
g(x)

≈ lim
x→a

f ′(a)(x − a)
g′(a)(x − a)

= lim
x→a

f ′(a)
g′(a)

=
f ′(a)
g′(a)

Unfortunately, we have ignored some
subtle difficulties, such as g(x) or g′(x)
possibly being 0 when x is close to, but
not equal to, a. Because of these issues,
a full-fledged proof of l’Hôpital’s Rule is
omitted.

Example 1. Determine lim
x→0

x2 + sin(5x)
3x

and lim
x→1

ln(x)
ex − e

.

Solution. We could evaluate the first limit without l’Hôpital’s Rule,
but let’s use it anyway. We can match the pattern of l’Hôpital’s Rule
by letting a = 0, f (x) = x2 + sin(5x) and g(x) = 3x. Then f (0) = 0,
g(0) = 0, and f and g are differentiable with f ′(x) = 2x + 5 cos(5x)
and g′(x) = 3, so:

lim
x→0

x2 + sin(5x)
3x

=
f ′(0)
g′(0)

=
2 · 0 + 5 cos(5 · 0)

3
=

5
3

For the second limit, let a = 1, f (x) = ln(x) and g(x) = ex − e. Then
f (1) = 0, g(1) = 0, f and g are differentiable for x near 1 (when x > 0),

and f ′(x) =
1
x

and g′(x) = ex. Then:

lim
x→1

ln(x)
ex − e

=
f ′(1)
g′(1)

=
1
1
e1 =

1
e

Here no simplification was possible, so we needed l’Hôpital’s Rule. ◀

Practice 1. Evaluate lim
x→0

1 − cos(5x)
3x

and lim
x→2

x2 + x − 6
x2 + 2x − 8

.

Strong Version of l’Hôpital’s Rule

We can strengthen L’Hôpital’s Rule to include cases when g′(a) = 0,
and the indeterminate form “ ∞

∞ ” when f and g increase without bound.

L’Hôpital’s Rule (Strong “ 0
0 ” and “ ∞

∞ ” Forms)

If f and g are differentiable on an open interval I con-
taining a, g′(x) ̸= 0 on I except possibly at a, and

lim
x→a

f (x)
g(x)

= “
0
0

” or “
∞
∞

”

then lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

if the limit on the right exists.

(Here “a” can represent a finite number or “∞.”)
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Example 2. Evaluate lim
x→∞

e7x

5x
.

Solution. As “x → ∞,” both e7x and 5x increase without bound, so
we have an “ ∞

∞ ” indeterminate form and can use the Strong Version of

l’Hôpital’s Rule: lim
x→∞

e7x

5x
= lim

x→∞

7e7x

5
= ∞. ◀

The limit of
f ′

g′
may also be an indeterminate form, in which case

we can apply l’Hôpital’s Rule again to the ratio
f ′

g′
. We can continue

using l’Hôpital’s Rule at each stage as long as we have an indeterminate
quotient.

Example 3. Compute lim
x→0

x3

x − sin(x)
.

Solution. As x → 0, f (x) = x3 → 0 and g(x) = x − sin(x) → 0 so:

lim
x→0

x3

x − sin(x)
= lim

x→0

3x2

1 − cos(x)
= lim

x→0

6x
sin(x)

= lim
x→0

6
cos(x)

= 6

where we have used l’Hôpital’s Rule three times in succession. (At each
stage, you should verify the conditions for l’Hôpital’s Rule hold.) ◀

Practice 2. Use l’Hôpital’s Rule to find lim
x→∞

x2 + ex

x3 + 8x
.

Which Function Grows Faster?

Sometimes we want to compare the asymptotic behavior of two systems
or functions for large values of x. L’Hôpital’s Rule can be useful in such
situations. For example, if we have two algorithms for sorting names,
and each algorithm takes longer and longer to sort larger collections
of names, we may want to know which algorithm will accomplish the
task more efficiently for really large collections of names.

Example 4. Algorithm A requires n · ln(n) steps to sort n names and
algorithm B requires n1.5 steps. Which algorithm will be better for
sorting very large collections of names?

Solution. We can compare the ratio of the number of steps each algo-

rithm requires,
n · ln(n)

n1.5 , and then take the limit of this ratio as n grows

arbitrarily large: lim
n→∞

n · ln(n)
n1.5 .

If this limit is infinite, we say that n · ln(n) “grows faster” than n1.5.
If the limit is 0, we say that n1.5 grows faster than n · ln(n).
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Because n · ln(n) and n1.5 both grow arbitrarily large when n becomes

large, we can simplify the ratio to
ln(n)
n0.5 and then use l’Hôpital’s Rule:

lim
n→∞

ln(n)
n0.5 = lim

n→∞

1
n

0.5n−0.5 = lim
n→∞

2√
n
= 0

We conclude that n1.5 grows faster than n · ln(n) so algorithm A requires
fewer steps for really large sorts. ◀

Practice 3. Algorithm A requires en operations to find the shortest path
connecting n towns, while algorithm B requires 100 · ln(n) operations
for the same task and algorithm C requires n5 operations. Which
algorithm is best for finding the shortest path connecting a very large
number of towns? The worst?

Other Indeterminate Forms

We call “ 0
0 ” an indeterminate form because knowing that f approaches

0 and g approaches 0 is not enough to determine the limit of f
g , even

if that limit exists. The ratio of a “small” number divided by a “small”
number can be almost anything as three simple “ 0

0 ” examples show:

lim
x→0

3x
x

= 3 while lim
x→0

x2

x
= 0 and lim

x→0

5x
x3 = ∞

Similarly, “ ∞
∞ ” is an indeterminate form because knowing that f and

g both grow arbitrarily large is not enough to determine the value of
the limit of f

g or even if the limit exists:

lim
x→∞

3x
x

= 3 while lim
x→∞

x2

x
= ∞ and lim

x→∞

5x
x3 = 0

In addition to the indeterminate quotient forms “ 0
0 ” and “ ∞

∞ ” there
are several other “indeterminate forms.” In each case, the resulting
limit depends not only on each function’s limit but also on how quickly
each function approaches its limit.

• Product: If f approaches 0 and g grows arbitrarily large, the product
f · g has the indeterminate form “0 · ∞.”

• Exponent: If f and g both approach 0, the function f g has the
indeterminate form “00.”

• Exponent: If f approaches 1 and g grows arbitrarily large, the
function f g has the indeterminate form “1∞.”

• Exponent: If f grows arbitrarily large and g approaches 0, the
function f g has the indeterminate form “∞0.”
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• Difference: If f and g both grow arbitrarily large, the function f − g
has the indeterminate form “∞ − ∞.”

Unfortunately, l’Hôpital’s Rule can only be used directly with an
indeterminate quotient ( 0

0 or “ ∞
∞ ”), but we can algebraically manipulate

these other forms into quotients and then apply l’Hôpital’s Rule.

Example 5. Evaluate lim
x→0+

x · ln(x).

Solution. This limit involves an indeterminate product (of the form
“0 · −∞”) but we need a quotient in order to apply l’Hôpital’s Rule. If
we rewrite the product x · ln(x) as a quotient:

lim
x→0+

x · ln(x) = lim
x→0+

ln(x)
1
x

= lim
x→0+

1
x
−1
x2

= lim
x→0+

−x = 0

results from applying the “ ∞
∞ ” version of l’Hôpital’s Rule. ◀

To use l’Hôpital’s Rule on a product f · g with indeterminate form

“0 · ∞,” first rewrite f · g as a quotient:
f
1
g

or
g
1
f

. Then apply

l’Hôpital’s Rule.

Example 6. Evaluate lim
x→0+

xx.

Solution. This limit involves the indeterminate form 00. We can con-
vert it to a product by recalling a property of exponential and logarith-
mic functions: for any positive number a, a = eln(a) so:

f g = eln( f g) = eg·ln( f )

Applying this to xx:

lim
x→0+

xx = lim
x→0+

eln(xx) = lim
x→0+

ex·ln(x)

This last limit involves the indeterminate product x · ln(x). From the
previous example we know that lim

x→0+
x · ln(x) = 0 so we can conclude

that:
lim

x→0+
xx = lim

x→0+
ex·ln(x) = elimx→0+ x·ln(x) = e0 = 1

because the function f (u) = eu is continuous everywhere. ◀

To use l’Hôpital’s Rule on an expression involving exponents, f g

with the indeterminate form “00,” “1∞” or “∞0,” first convert it to
an expression involving an indeterminate product by recognizing
that f g = eg·ln( f ) and then determining the limit of g · ln( f ). The
final result is elimit of g·ln( f ).
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Example 7. Evaluate lim
x→∞

(
1 +

a
x

)x
.

Solution. This expression has the form 1∞ so we first use logarithms
to convert the problem into a limit involving a product:

lim
x→∞

(
1 +

a
x

)x
= lim

x→∞
ex·ln(1+ a

x )

so now we need to compute lim
x→∞

x · ln
(

1 +
a
x

)
. This limit has the form

“∞ · 0” so we now convert the product to a quotient:

lim
x→∞

x · ln
(

1 +
a
x

)
= lim

x→∞

ln
(
1 + a

x
)

1
x

This last limit has the form “ 0
0 ” so we can finally apply l’Hôpital’s Rule:

lim
x→∞

ln
(
1 + a

x
)

1
x

= lim
x→∞

−a
x2

1+ a
x

−1
x2

= lim
x→∞

a
1 + a

x
=

a
1
= a

and conclude that:

lim
x→∞

(
1 +

a
x

)x
= lim

x→∞
ex·ln(1+ a

x ) = elimx→∞ x·ln(1+ a
x ) = ea

where we have again used the continuity of the function f (u) = eu. ◀

3.7 Problems

In Problems 1–15, evaluate each limit. Be sure to
justify any use of l’Hôpital’s Rule.

1. lim
x→1

x3 − 1
x2 − 1

2. lim
x→2

x4 − 16
x5 − 32

3. lim
x→0

ln(1 + 3x)
5x

4. lim
x→∞

ex

x3

5. lim
x→0

x · ex

1 − ex 6. lim
x→0

2x − 1
x

7. lim
x→∞

ln(x)
x

8. lim
x→∞

ln(x)√
x

9. lim
x→∞

ln(x)
xp (p > 0) 10. lim

x→0

e3x − e2x

4x

11. lim
x→0

1 − cos(3x)
x2 12. lim

x→0

1 − cos(2x)
x

13. lim
x→a

xm − am

xn − an 14. lim
x→0

cos(a + x)− cos(a)
x

15. lim
x→0

1 − cos(x)
x · cos(x)

16. Find a value for p so that lim
x→∞

3x
px + 7

= 2.

17. Find a value for p so that lim
x→0

epx − 1
3x

= 5.

18. The limit lim
x→∞

√
3x + 5√
2x − 1

has the indeterminate

form “ ∞
∞ .” Why doesn’t l’Hôpital’s Rule work

with this limit? (Hint: Apply l’Hôpital’s Rule
twice and see what happens.) Evaluate the limit
without using l’Hôpital’s Rule.

19. (a) Evaluate lim
x→∞

ex

x
, lim

x→∞

ex

x2 and lim
x→∞

ex

x5 .

(b) An algorithm is “exponential” if it requires
a · ebn steps (a, and b are positive constants).
An algorithm is “polynomial” if it requires
c · nd steps. Show that polynomial algorithms
require fewer steps than exponential ones for
large values of n.
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20. The problem lim
x→0

x2

3x2 + x
appeared on a test.

One student determined the limit was an indeter-
minate “ 0

0 ” form and applied l’Hôpital’s Rule to
get:

lim
x→0

x2

3x2 + x
= lim

x→0

2x
6x + 1

= lim
x→0

2
6
=

1
3

Another student also determined the limit was
an indeterminate “ 0

0 ” form and wrote:

lim
x→0

x2

3x2 + x
= lim

x→0

2x
6x + 1

=
0

0 + 1
= 0

Which student is correct? Why?

In Problems 21–30, evaluate each limit. Be sure to
justify any use of l’Hôpital’s Rule.

21. lim
x→0+

sin(x) · ln(x) 22. lim
x→∞

x3e−x

23. lim
x→0+

√
x · ln(x) 24. lim

x→0+
xsin(x)

25. lim
x→∞

(
1 − 3

x2

)x
26. lim

x→0
(1 − cos(3x))x

27. lim
x→0

(
1
x
− 1

sin(x)

)
28. lim

x→∞
[x − ln(x)]

29. lim
x→∞

(
x + 5

x

) 1
x

30. lim
x→∞

(
1 +

3
x

) 2
x

3.7 Practice Answers

1. Both numerator and denominator in the first limit are differentiable
and both equal 0 when x = 0, so we apply l’Hôpital’s Rule:

lim
x→0

1 − cos(5x)
3x

= lim
x→0

5 sin(5x)
3

=
0
3
= 0

Both numerator and denominator in the second limit are differen-
tiable and both equal 0 when x = 0, so we apply l’Hôpital’s Rule:

lim
x→2

x2 + x − 6
x2 + 2x − 8

= lim
x→2

2x + 1
2x + 2

=
5
6

2. Both numerator and denominator are differentiable and both become
arbitrarily large as x → ∞, so we apply l’Hôpital’s Rule:

lim
x→∞

x2 + ex

x3 + 8x
= lim

x→∞

2x + ex

3x2 + 8
= lim

x→∞

2 + ex

6x
= lim

x→∞

ex

6
= ∞ Note that we needed to apply l’Hôpital’s

Rule three times and that each stage in-
volved an “ ∞

∞ ” indeterminate form.

3. Comparing A with en operations to B with 100 · ln(n) operations we
can apply l’Hôpital’s Rule:

lim
n→∞

en

100 ln(n)
= lim

n→∞

en

1
n

= lim
n→∞

n · en

100
= ∞

to show that B requires fewer operations than A.

Comparing B with 100 ln(n) operations to C with n5 operations, we
again apply l’Hôpital’s Rule:

lim
n→∞

100 ln(n)
n5 = lim

n→∞

100
n

5n4 = lim
n→∞

20
n5 = 0
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to show that B requires fewer operations than C. So B requires the
fewest operations of the three algorithms.

Comparing A to C we must apply l’Hôpital’s Rule repeatedly:

lim
n→∞

en

n5 = lim
n→∞

en

5n4 = lim
n→∞

en

20n3 = lim
n→∞

en

60n2

= lim
n→∞

en

120n
= lim

n→∞

en

120
= ∞

So A requires more operations than C and thus A requires the most
operations of the three algorithms.
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