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4.4 Areas, Integrals and Antiderivatives

This section explores properties of functions defined as areas and
examines some connections among areas, integrals and antiderivatives.
In order to focus on these connections and their geometric meaning, all
of the functions in this section are nonnegative, but in the next section
we will generalize (and prove) the results for all continuous functions.
This section also introduces examples showing how you can use the
relationships between areas, integrals and antiderivatives in various
applications.

When f is a continuous, nonnegative function, the “area function”

A(x) =
∫ x

a
f (t) dt represents the area of the region bounded by the

graph of f , the t-axis, and vertical lines at t = a and t = x (see margin
figure), and the derivative of A(x) represents the rate of change (growth)
of A(x) as the vertical line t = x moves rightward. Examples 2 and 3

of Section 4.3 showed that for certain functions f , A′(x) = f (x) so that
A(x) was an antiderivative of f (x). The next theorem says the result is
true for every continuous, nonnegative function f .

The Area Function Is an Antiderivative

If f is a continuous, nonnegative function

and A(x) =
∫ x

a
f (t) dt for x ≥ a

then
d

dx

(∫ x

a
f (t) dt

)
= A′(x) = f (x)

so A(x) is an antiderivative of f (x).

This result relating integrals and antiderivatives is a special case (for
nonnegative functions f ) of the first part of the Fundamental Theorem
of Calculus (FTC1), which we will prove in Section 4.5. This result is
important for two reasons:

• It says that a large collection of functions have antiderivatives.

• It leads to an easy way to exactly evaluate definite integrals.

Example 1. Define A(x) =
∫ x

1
f (t) dt for the function f (t) shown in

the margin. Estimate the values of A(x) and A′(x) for x = 2, 3, 4 and 5
and use these values to sketch a graph of y = A(x).

Solution. Dividing the region into squares and triangles, it is easy to
see that A(2) = 2, A(3) = 4.5, A(4) = 7 and A(5) = 8.5. Because
A′(x) = f (x), we know that A′(2) = f (2) = 2, A′(3) = f (3) = 3,
A′(4) = f (4) = 2 and A′(5) = f (5) = 1. A graph of y = A(x) appears
in the margin at the top of the next page. ◀
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It is important to recognize that f is not differentiable at x = 2 or
x = 3 but that the values of A change smoothly near x = 2 and x = 3,
and the function A is differentiable at those points and at every other
point between x = 1 and x = 5. Also note that f ′(4) = −1 ( f is clearly
decreasing near x = 4) but that A′(4) = f (4) = 2 is positive (the area
A is growing even though f is getting smaller).

Practice 1. Let B(x) be the area bounded by the horizontal axis, vertical
lines at t = 0 and t = x, and the graph of f (t) shown in the margin.
Estimate the values of B(x) and B′(x) for x = 1, 2, 3, 4 and 5.

Example 2. Let G(x) =
d

dx

(∫ x

0
sin(t) dt

)
. Evaluate G(x) for x =

π

4
,

π

2
and

3π

4
.

Solution. The middle margin figure shows A(x) =
∫ x

0
sin(t) dt graph-

ically. By the theorem, A′(x) = sin(x), so:

G
(π

4

)
= A′

(π

4

)
= sin

(π

4

)
=

1√
2
≈ 0.707

G
(π

2

)
= A′

(π

2

)
= sin

(π

2

)
= 1

G
(

3π

4

)
= A′

(
3π

4

)
= sin

(
3π

4

)
=

1√
2
≈ 0.707

The penultimate margin figure shows a graph of y = A(x) and the
bottom margin figure shows the graph of y = A′(x) = G(x). ◀

Using Antiderivatives to Evaluate
∫ b

a
f (x) dx

Now we combine the ideas of areas and antiderivatives to devise a
technique for evaluating definite integrals that is exact — and often
easy.

If A(x) =
∫ x

a
f (t) dt, then we know that A(a) =

∫ a

a
f (t) dt = 0,

A(b) =
∫ b

a
f (t) dt and that A(x) is an antiderivative of f , so A′(x) =

f (x). We also know that if F(x) is any antiderivative of f , then F(x)
and A(x) have the same derivative so F(x) and A(x) are “parallel”
functions and differ by a constant: F(x) = A(x) + C for all x and some
constant C. As a consequence:

F(b)− F(a) = [A(b) + C]− [A(a) + C] = A(b)− A(a)

=
∫ b

a
f (t) dt −

∫ a

a
f (t) dt =

∫ b

a
f (t) dt

This result says that, to evaluate a definite integral A(b) =
∫ b

a
f (t) dt,

we can find any antiderivative F of f and simply evaluate F(b)− F(a).
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This result is a special case of the second part of the Fundamental
Theorem of Calculus (FTC2, stated and proved in Section 4.5), which
you will use hundreds of times over the next several chapters.

Antiderivatives and Definite Integrals

If f is a continuous, nonnegative function and F is any
antiderivative of f (so that F′(x) = f (x)) on [a, b]

then
∫ b

a
f (t) dt = F(b)− F(a)

The problem of finding the exact value of a definite integral has been
reduced to finding some (any) antiderivative F of the integrand and
then evaluating F(b)− F(a). Even finding one antiderivative can be
difficult, so for now we will restrict our attention to functions that have
“easy” antiderivatives. Later we will explore some methods for finding
antiderivatives of more “difficult” functions.

Because an evaluation of the form F(b)− F(a) will occur quite often,

we represent it symbolically as F(x)
∣∣∣b
a

or
[

F(x)
]b

a
.

Example 3. Evaluate
∫ 3

1
x dx in two ways:

(a) by sketching a graph of y = x and finding the area represented
by the definite integral.

(b) by finding an antiderivative F(x) of f (x) = x and evaluating
F(3)− F(1).

Solution. (a) A graph of y = x appears in the margin; the area of the
trapezoidal region in question has area 4. (b) One antiderivative of x is

F(x) =
1
2

x2 (you should check for yourself that D
(

x2

2

)
= x), so:

F(x)

∣∣∣∣∣
3

1

= F(3)− F(1) =
1
2
(3)2 − 1

2
(1)2 =

9
2
− 1

2
= 4

which agrees with the area from part (a).
If someone chose another antiderivative of x, say F(x) = 1

2 x2 + 7

(you should check for yourself that D
(

x2

2
+ 7
)
= x), then:

F(x)

∣∣∣∣∣
3

1

= F(3)− F(1) =
[

1
2
(3)2 + 7

]
−
[

1
2
(1)2 + 7

]
=

23
2

− 15
2

= 4

No matter which antiderivative F we choose, F(3)− F(1) = 4. ◀

Practice 2. Evaluate
∫ 3

1
(x − 1) dx in the two ways specified in the

previous Example.
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This antiderivative method provides an extremely powerful way to
evaluate some definite integrals, and we will use it often.

Example 4. Find the area of the region in the first quadrant bounded
by the graph of y = cos(x), the horizontal axis, and the line x = 0.

Solution. The area we want (see margin) is
∫ π

2

0
cos(x) dx so we need

an antiderivative of f (x) = cos(x). F(x) = sin(x) is one such an-
tiderivative (you should check that D (sin(x)) = cos(x)), so

∫ π
2

0
cos(x) dx = sin(x)

∣∣∣∣ π
2

0
= sin

(π

2

)
− sin(0) = 1 − 0 = 1

is the area of the region in question. ◀

Practice 3. Find the area of the region bounded by the graph of y = 3x2,
the horizontal axis and the vertical lines x = 1 and x = 2.

Integrals, Antiderivatives and Applications

The antiderivative method for evaluating definite integrals can also be
used when we need to find a more general “area,” so it is often useful
for solving applied problems.

Example 5. A robot has been programmed so that when it starts to
move, its velocity after t seconds will be 3t2 feet per second.

(a) How far will the robot travel during its first four seconds of
movement?

(b) How far will the robot travel during its next four seconds of
movement?

(c) How long will it take for the robot to move 729 feet from its
starting place?

Solution. (a) The distance during the first four seconds will be the area
under the graph of the velocity function (see margin figure) from
t = 0 to t = 4, an area we can compute with the definite integral∫ 4

0
3t2 dt. One antiderivative of 3t2 is t3 so:

∫ 4

0
3t2 dt =

[
t3
]4

0
= 43 − 03 = 64

and we can conclude that the robot will be 64 feet away from its
starting position after four seconds.

(b) Proceeding similarly:∫ 8

4
3t2 dt =

[
t3
]8

4
= 83 − 43 = 512 − 64 = 448 feet
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(c) This question is different from the first two. Here we know the
lower integration endpoint, t = 0, and the total distance, 729 feet,
and need to find the upper integration endpoint (the time when the
robot is 729 feet away from its starting position). Calling this upper
endpoint T, we know that:

729 =
∫ T

0
3t2 dt =

[
t3
]T

0
= T3 − 03 = T3

so T = 3
√

729 = 9. The robot is 729 feet away after 9 seconds. ◀

Practice 4. Refer to the robot from the previous Example.

(a) How far will the robot travel between t = 1 and t = 5 seconds?

(b) How long will it take for the robot to move 343 feet from its
starting place?

Example 6. Suppose that t minutes after placing 1,000 bacteria on a
Petri plate the rate of growth of the bacteria population is 6t bacteria
per minute.

(a) How many new bacteria are added to the population during the
first seven minutes?

(b) What is the total population after seven minutes?

(c) When will the total population reach 2,200 bacteria?

Solution. (a) The number of new bacteria is represented by the area
under the rate-of-growth graph (see margin) and one antiderivative
of 6t is 3t2 (check that D

(
3t2) = 6t) so:

new bacteria =
∫ 7

0
6t dt =

[
3t2
]7

0
= 3(7)2 − 3(0)2 = 147

(b) [old population] + [new bacteria] = 1000 + 147 = 1147 bacteria.

(c) When the total population reaches 2,200 bacteria, then there are
2200 − 1000 = 1200 new bacteria, hence we need to find the time T
required for that many new bacteria to grow:

1200 =
∫ T

0
6t dt =

[
3t2
]T

0
= 3(T)2 − 3(0)2 = 3T2

so T2 = 400 ⇒ T = 20. After 20 minutes, the total bacteria popula-
tion will be 1000 + 1200 = 2200. ◀

Practice 5. Refer to the bacteria population from the previous Example.

(a) How many new bacteria will be added to the population between
t = 4 and t = 8 minutes?

(b) When will the total population reach 2,875 bacteria?
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4.4 Problems

In Problems 1–8, A(x) =
∫ x

1
f (t) dt with f (t) given.

(a) Graph y = A(x) for 1 ≤ x ≤ 5.
(b) Estimate the values of A(1), A(2), A(3) and A(4).
(c) Estimate A′(1), A′(2), A′(3) and A′(4).

1. 2.

3. 4.

5. f (t) = 2 6. f (t) = 1 + t

7. f (t) = 6 − t 8. f (t) = 1 + 2t

In Problems 9–18, use the Antiderivatives and Defi-
nite Integrals Theorem to evaluate each integral.

9. (a)
∫ 3

0
2x dx (b)

∫ 3

1
2x dx (c)

∫ 1

0
2x dx

10. (a)
∫ 2

0
4x3 dx (b)

∫ 1

0
4x3 dx (c)

∫ 2

1
4x3 dx

11. (a)
∫ 3

1
6x2 dx (b)

∫ 2

1
6x2 dx (c)

∫ 3

0
6x2 dx

12. (a)
∫ 2

−2
2x dx (b)

∫ −1

−2
2x dx (c)

∫ 0

−2
2x dx

13. (a)
∫ 3

0
4x3 dx (b)

∫ 3

1
4x3 dx (c)

∫ 1

0
4x3 dx

14. (a)
∫ 5

0
4x3 dx (b)

∫ 2

0
4x3 dx (c)

∫ 5

2
4x3 dx

15. (a)
∫ 3

−3
3x2 dx (b)

∫ 0

−3
3x2 dx (c)

∫ 3

0
3x2 dx

16. (a)
∫ 3

0
5 dx (b)

∫ 2

0
5 dx (c)

∫ 3

2
5 dx

17. (a)
∫ 2

0
3x2 dx (b)

∫ 3

1
3x2 dx (c)

∫ 1

3
3x2 dx

18. (a)
∫ 2

−2

[
12 − 3x2

]
dx (b)

∫ 2

1

[
12 − 3x2

]
dx

In 19–21, use the given velocity of a car (in feet per
second) after t seconds to find:

(a) how far the car travels during the first 10 seconds.

(b) how many seconds it takes the car to travel half
the distance in part (a).

19. v(t) = 2t 20. v(t) = 3t2
21. v(t) = 4t3

Problems 22–23 give the velocity of a car (in feet per
second) after t seconds.

(a) How many seconds does it take for the car to
come to a stop (velocity = 0)?

(b) How far does the car travel before coming to a
stop?

(c) How many seconds does it take the car to travel
half the distance in part (b)?

22. v(t) = 20 − 2t 23. v(t) = 75 − 3t2

24. Find the exact area under half of one arch of the

sine curve:
∫ π

2

0
sin(x) dx.

25. An artist you know wants to make a figure con-
sisting of the region between the curve y = x2

and the x-axis for 0 ≤ x ≤ 3.

(a) Where should the artist divide the region with
a vertical line (see figure below) so that each
piece has the same area?

(b) Where should she divide the region with verti-
cal lines to get three pieces with equal areas?
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4.4 Practice Answers

1. B(1) = 2.5, B(2) = 5, B(3) = 8.5, B(4) = 12, B(5) = 14.5

B(x) =
∫ x

0
f (t) dt ⇒ B′(x) =

d
dx

(∫ x

0
f (t) dt

)
= f (x)

(by the Area Function Is an Antiderivative Theorem), hence:
B′(1) = f (1) = 2, B′(2) = f (2) = 3, B′(3) = 4, B′(4) = 3 and B′(5) = 2.

2. (a)
∫ 3

1
(x − 1) dx gives the area of the triangular region between the

graph of y = x − 1 and the x-axis for 1 ≤ x ≤ 3:

area =
1
2
(base) (height) =

1
2
(2)(2) = 2

(b) F(x) = 1
2 x2 − x is an antiderivative of f (x) = x − 1 so:

∫ 3

1
(x − 1) dx = F(3)− F(1) =

[
1
2
· 33 − 3

]
−
[

1
2
· 13 − 1

]
= 2

3. Area =
∫ 2

1
3x2 dx = x3

∣∣∣∣2
1
= 23 − 13 = 8 − 1 = 7

4. (a) distance =
∫ 5

1
3t2 dt = t3

∣∣∣5
1
= 125 − 1 = 124 feet.

(b) We know the starting point is x = 0 and the total distance (“area”
under the velocity curve) is 343 feet. We need to find the time T

(see margin figure) so that 343 feet =
∫ T

0
3t2 dt:

343 =
∫ T

0
3t2 dt = t3

∣∣∣∣T
0
= T3 − 0 = T3

hence T = 3
√

343 = 7 seconds.

5. (a) new bacteria =
∫ 8

4
6t dt = 3t2

∣∣∣∣8
4
= 3 · 64 − 3 · 16 = 144 bacteria.

(b) We know the total new population (“area” under the rate-of-
change graph) is 2875 − 1000 = 1875 so:

1875 =
∫ T

0
6t dt = 3t2

∣∣∣∣T
0
= 3T2 − 0 = 3T2 ⇒ T2 = 625

hence T =
√

625 = 25 minutes.
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