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4.7 First Applications of Definite Integrals

The development of calculus by Newton and Leibniz was a vital step in
the advancement of pure mathematics, but Newton also advanced the
sciences and applied mathematics. Not only did he discover theoretical
results, he immediately used those results to answer important ques-
tions about gravity and motion. The success of these applications of
mathematics to the physical sciences helped establish what we now take
for granted: mathematics can and should be used to answer questions
about the world.

Newton applied mathematics to the outstanding problems of his
day, problems primarily in the field of physics. During the intervening
300-plus years, thousands upon thousands of people have continued
these theoretical and applied traditions, using mathematics to help
develop our understanding of the physical and biological sciences, as
well as the behavioral sciences and economics. Mathematics is still
used to answer new questions in physics and engineering, but it is also
important for modeling ecological processes, for understanding the
behavior of DNA, for determining how the brain works, and even for
devising financial strategies. The mathematics you are learning now
can help you become part of this tradition, and you might even use it
to add to our understanding of the world.

It is important to understand the special applications of integration
we will study in case you need to use those particular applications. But
it is also important that you understand the process of building models
with integrals so you can apply that process to other situations in a
variety of fields of study. Conceptually, converting an applied problem
to a Riemann sum is the most valuable step. Typically, it is also the most challenging.

Area between Two Curves

We have already used integrals to find the area between the graph of a
function and the horizontal axis. We can also use integrals to find the
area between the graphs of two functions.

If f (x) ≥ g(x) for all x in [a, b], then we can approximate the area
between the graphs of f and g by partitioning the interval [a, b] and
forming a Riemann sum (see margin). The height of each rectangle is
f (ck)− g(ck) so the area of the k-th rectangle is:

(height) · (base) = [ f (ck)− g(ck)] · ∆xk

and an approximation of the total area is given by

n

∑
k=1

[ f (ck)− g(ck)] · ∆xk

which is a Riemann sum.
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The limit of this Riemann sum, as the mesh of the partitions ap-
proaches 0, is a definite integral:∫ b

a
[ f (x)− g(x)] dx

We will sometimes use an arrow to indicate “the limit of the Riemann
sum as the mesh of the partitions approaches 0,” writing:

n

∑
k=1

[ f (ck)− g(ck)] · ∆xk −→
∫ b

a
[ f (x)− g(x)] dx

If T(x) ≥ B(x) for a ≤ x ≤ b
then the area of the region bounded by the graphs of the

“top” function T(x), the “bottom” function B(x),
and the lines x = a and x = b is given by:∫ b

a
[T(x)− B(x)] dx

Example 1. Find the area bounded between the graphs of f (x) = x
and g(x) = 3 for 1 ≤ x ≤ 4.

Solution. It is clear from the margin figure that the area between f and
g is 2.5 square units. Using the integration procedure above, we need
to identify a “top” function and a “bottom” function. For 1 ≤ x ≤ 3,
g(x) = 3 ≥ x = f (x) so the area of the left-hand triangle is given by
the integral:

∫ 3

1
[3 − x] dx =

[
3x − 1

2
x2
]3

1
=

[
9 − 9

2

]
−
[

3 − 1
2

]
= 2

For the interval 3 ≤ x ≤ 4, g(x) = 3 ≤ x = f (x) so the area of the
right-hand triangle is given by the integral:

∫ 4

3
[x − 3] dx =

[
1
2

x2 − 3x
]4

3
= [8 − 12]−

[
9
2
− 9
]
=

1
2

Adding these two areas, we get 2 + 0.5 = 2.5. ◀

If we had mindlessly integrated in the previous Example without
consulting a graph:

∫ 4

1
[3 − x] dx =

[
3x − 1

2
x2
]4

1
= [12 − 8]−

[
3 − 1

2

]
=

3
2

we would have arrived at an incorrect answer.

Graphing the region in question to de-
termine which function is on “top” and
which is on “bottom” is often crucial to
getting the right answer to a problem in-
volving the area between two curves.

Practice 1. Use integrals and the graphs of f (x) = 1 + x and g(x) =
3− x to determine the area between the graphs of f and g for 0 ≤ x ≤ 3.
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Example 2. Objects A and B start from the same location at the same
time and travel along the same path with respective velocities vA(t) =
t + 3 and vB(t) = t2 − 4t + 3 meters per second (see margin). How far
ahead is A after 3 seconds? After 5 seconds?

Solution. From the graph, it appears that vA(t) ≥ vB(t), at least for
0 ≤ t ≤ 3, but for the second question we need to know whether this
holds for 3 ≤ t ≤ 5 as well. Setting vA(t) = vB(t) to see where the
graphs intersect:

t + 3 = t2 − 4t + 3 ⇒ t2 − 5t = 0 ⇒ t = 0 or t = 5

Checking that vA(1) = 4 > 0 = vB(1) (or referring to the graph), we
can conclude that vA(t) ≥ vB(t) on the interval [0, 5].

Because vA(t) ≥ vB(t), the “area” between the graphs of vA and vB

over an interval [0, x] represents the distance between the objects after
x seconds. After three seconds, the distance apart is:∫ 3

0
[vA(t)− vB(t)] dt =

∫ 3

0

[
(t + 3)− (t2 − 4t + 3)

]
dt =

∫ 3

0

[
5t − t2

]
dt

=

[
5
2

t2 − 1
3

t3
]3

0
=

[
45
2

− 9
]
− [0 − 0] =

27
2

or 13.5 meters. After five seconds, the distance apart is

∫ 5

0
[vA(t)− vB(t)] dt =

[
5
2

t2 − 1
3

t3
]5

0
=

125
6

or approximately 20.83 meters. ◀

If f (x) ≥ g(x) ≥ 0 on an interval [a, b] (as illustrated in the margin
figure), we could have used a simpler geometric argument that the area
between the graphs of f and g is just the area below the graph of f
minus the area below the graph of g:∫ b

a
f (x) dx −

∫ b

a
g(x) dx =

∫ b

a
[ f (x)− g(x)] dx

which agrees with our previous result. We took a different approach at
the beginning of this section, however, because it provides a nice (yet
simple) example of translating a geometric or physical problem into a
Riemann sum and then into a definite integral.

Example 3. Find the area of the shaded region in the margin figure.

Solution. These are the same two functions from our previous Exam-
ple; in our previous solution we observed that t + 3 ≥ t2 − 4t + 3 for
0 ≤ t ≤ 5, and it is straightforward to check that t + 3 ≤ t2 − 4t + 3 for
t ≥ 5 (and, in particular, for 5 ≤ t ≤ 7).
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We therefore need to split our problem into two pieces and subtract
the “bottom” function from the “top” function on each interval. The
area of the left region is:

∫ 5

0

[
(t + 3)− (t2 − 4t + 3)

]
dt =

[
5
2

t2 − 1
3

t3
]5

0
=

125
6

(as worked out in the previous example), while the area of the region
on the right is:

∫ 7

5

[
(t2 − 4t + 3)− (t + 3)

]
dt =

[
1
3

t3 − 5
2

t2
]7

5
=

38
3

so the total area is
125
6

+
38
3

=
67
2

= 33.5. ◀

Average Value of a Function

We compute the average (or mean value) of n numbers, a1, a2, . . . , an

by adding them up and dividing by n:

average = a =
1
n

n

∑
k=1

ak

but computing the average value of a function requires an integral.

A “bar” above a quantity typically indi-
cates the mean of that quanitity.

To estimate the average value of f on the interval [a, b], we can

partition [a, b] into n equally long subintervals of length ∆x =
b − a

n
,

then choose a value ck in each subinterval, and find the average of the
function values f (ck) at those n points:

f = average of f ≈ f (c1) + f (c2) + · · ·+ f (cn)

n
=

n

∑
k=1

f (ck) ·
1
n

While this last term resembles a Riemann sum, it does not have the

form ∑ f (ck) · ∆xk, because
1
n

̸= ∆x =
b − a

n
. But multiplying and

dividing by b − a yields:

n

∑
k=1

f (ck) ·
1
n
=

n

∑
k=1

f (ck) ·
b − a

n
· 1

b − a
=

1
b − a

n

∑
k=1

f (ck) ·
b − a

n

This last (Riemann) sum converges to a definite integral:

1
b − a

n

∑
k=1

f (ck) ·
b − a

n
=

1
b − a

n

∑
k=1

f (ck) · ∆x −→ 1
b − a

∫ b

a
f (x) dx

as the number of subintervals n gets larger and the mesh, ∆x =
b − a

n
,

approaches 0.
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Definition: Average (Mean) Value of a Function
The average value of an integrable function f on [a, b] is

1
b − a

∫ b

a
f (x) dx

The average value of a positive function has a nice geometric in-
terpretation. Imagine that the area under f (see margin) represents a
liquid trapped above by the graph of f and on the other sides by the
x-axis and the lines x = a and x = b. If we remove the “lid” (the graph
of f ), the liquid would settle into the shape of a rectangle with the same
area as the region under the graph of f . If the height of this rectangle
is H, then the area of the rectangle is H · (b − a), so:

H · (b − a) =
∫ b

a
f (x) dx ⇒ H =

1
b − a

∫ b

a
f (x) dx

The average value of a positive function f is the height H of the rectan-
gle whose area is the same as the area under f .

Example 4. Find the average value of sin(x) on the interval [0, π].

Solution. Using our definition, the average value is:

1
π − 0

∫ π

0
sin(x) dx =

1
π

[
− cos(x)

]π

0
=

1
π
[(1)− (−1)] =

2
π

≈ 0.6366

A rectangle with height
2
π

≈ 0.64 on the interval [0, π] encloses the
same area as one arch of the sine curve. ◀

If the interval in the previous Example had been [0, 2π], the average
value would be 0. (Why?)

Practice 2. During a nine-hour work day, the production rate at time
t hours was r(t) = 5 +

√
t cars per hour. Find the average hourly

production rate.

Function averages, involving means as well as more complicated
techniques, are used to “smooth” data so that underlying patterns
become more obvious and to remove high frequency “noise” from
signals. In these situations, the value of the original function f at a
point is replaced by some “average of f ” over an interval including
that point. If f is the graph of rather jagged data (see margin), then the
10-year average of f is the integral:

g(x) =
1
10

∫ x+5

x−5
f (t) dt

an average of f over a timespan of five years on either side of x.
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The figure below shows the graphs of a monthly average (rather
“noisy” data) of surface-temperature data, an annual average (still rather
“jagged”) and a five-year average (a much smoother function):

Typically this “moving average” function reveals a pattern much more
clearly than the original data.

This “moving average” of “noisy” data
is frequently used with data such as
weather information and stock prices.

Work

In physics, the amount of work done on an object is defined as the force
applied to the object times the displacement of the object (the distance
the object is moved while the force is applied). Or, more succinctly:

work = (force) · (displacement)

If you lift a three-pound book two feet, then the force is 3 pounds (the
weight of the book), and the displacement is 2 feet, so you have done
(3 pounds) · (2 feet) = 6 foot-pounds of work. When the applied force
and the displacement are both constants, calculating work is simply a
matter of multiplication.

Practice 3. How much work is done lifting a 10-pound object from the
ground to the top of a 30-foot building?

If either the force or the displacement varies, however, we need to
use integration.

Example 5. How much work is done lifting a 10-pound object from
the ground to the top of a 30-foot building using a cable that weighs 2
pounds per foot?
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Solution. This is more challenging situation. We know the work
needed to move the object is (10)(30) = 300 foot-pounds, but once
we start pulling the cable onto the roof, we need to do less and less
work to pull the remaining part of the cable.

Let’s partition the cable into small increments so the displacement of
each small piece of the cable is roughly constant. If we break the cable

into n small pieces, each piece has length ∆x =
30
n

, so its weight (the
force required to move it) is:

(∆x ft) ·
(

2
lbs
ft

)
= 2∆x lbs

If this small piece of cable is initially ck feet above the ground, then
its displacement is 30 − ck feet, so the work done on this small piece
is 2(30 − ck)∆x ft-lbs and the total work done on the entire cable is
(approximately):

n

∑
k=1

2(30 − ck)∆x −→
∫ 30

0
2(30 − x) dx

Once again we have formed a Riemann sum, which converges to a
definite integral as we chop the cable into smaller and smaller pieces.
This integral represents the work needed to lift the cable to the roof:∫ 30

0
2(30 − x) dx =

∫ 30

0
(60 − 2x) dx = 60x − x2

∣∣∣∣30

0

= [1800 − 900]− [0 − 0] = 900 ft-lbs

so the total work required to lift the object and the cable to the roof is
300 + 900 = 1200 ft-lbs. ◀

Practice 4. Suppose the building in Example 5 is 50 feet tall and the
cable weighs 3 pounds per foot.

(a) Compute the work done raising the object from the ground to a
height of 10 feet.

(b) From a height of 10 feet to a height of 20 feet.

The situation in the previous Example and Practice problems is but
one of many that arise when computing work. We will examine others
in Section 5.4.

Summary

The area, average and work applications in this section merely introduce
a few of the many applications of definite integrals. They illustrate the
pattern of moving from an applied problem to a Riemann sum, to a
definite integral and, finally, to a numerical answer. We will explore
many more applications in Chapter 5.
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4.7 Problems

In Problems 1–4, use the values in the table below
to estimate the indicated areas.

x f(x) g(x) h(x)

0 5 2 5

1 6 1 6

2 6 2 8

3 4 2 6

4 3 3 5

5 2 4 4

6 2 5 2

1. Estimate the area between f and g for 1 ≤ x ≤ 4.

2. Estimate the area between f and g for 1 ≤ x ≤ 6.

3. Estimate the area between f and h for 0 ≤ x ≤ 4.

4. Estimate the area between g and h for 0 ≤ x ≤ 6.

5. Estimate the area of the island in the figure below.

6. Estimate the area of the island in figure above if
the distances between the lines is 50 feet instead
of 40 feet.

In Problems 7–18, sketch a graph of each function
and find the area between the graphs of f and g for
x in the given interval.

7. f (x) = x2 + 3, g(x) = 1, −1 ≤ x ≤ 2

8. f (x) = x2 + 3, g(x) = 1 + x, 0 ≤ x ≤ 3

9. f (x) = x2, g(x) = x, 0 ≤ x ≤ 2

10. f (x) = 4 − x2, g(x) = x + 2, 0 ≤ x ≤ 2

11. f (x) =
1
x

, g(x) = x, 1 ≤ x ≤ e

12. f (x) =
√

x, g(x) = x, 0 ≤ x ≤ 4

13. f (x) = x + 1, g(x) = cos(x), 0 ≤ x ≤ π

4

14. f (x) = (x − 1)2, g(x) = x + 1, 0 ≤ x ≤ 3

15. f (x) = ex, g(x) = x, 0 ≤ x ≤ 2

16. f (x) = cos(x), g(x) = sin(x), 0 ≤ x ≤ π

4
17. f (x) = 3, g(x) =

√
1 − x2, 0 ≤ x ≤ 1

18. f (x) = 2, g(x) =
√

4 − x2, −2 ≤ x ≤ 2

In Problems 19–22, use the values of f in the table
at the beginning of the page to estimate the average
value of f on the indicated interval.

19. [0.5, 4.5] 20. [0.5, 6.5] 21. [1.5, 3.5] 22. [3.5, 6.5]

In 23–26, find the average value of the function
whose graph appears below on the given interval.

23. [0, 2] 24. [0, 4] 25. [1, 6] 26. [4, 6]

In Problems 27–32, find the average value of the
given function on the indicated interval.

27. f (x) = 2x + 1, 0 ≤ x ≤ 4

28. f (x) = x2, 0 ≤ x ≤ 2

29. f (x) = x2, 1 ≤ x ≤ 3

30. f (x) =
√

x, 0 ≤ x ≤ 4

31. f (x) = sin(x), 0 ≤ x ≤ π

32. f (x) = cos(x), 0 ≤ x ≤ π

33. Calculate the average value of f (x) =
√

x on
[0, C] for C = 1, 9, 81, 100. What is the pattern?

34. Calculate the average value of f (x) = x on [0, C]
for C = 1, 10, 80, 100. What is the pattern?
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35. The figure below shows the velocity of a car dur-
ing a five-hour trip.

(a) Estimate how far the car traveled.

(b) At what constant velocity should you drive
in order to travel the same distance in five
hours?

36. The figure below shows the number of telephone
calls per minute at a large company. Estimate the
average number of calls per minute:

(a) from 8:00 a.m. to 5:00 p.m.

(b) from 9:00 a.m. to 1:00 p.m.

37. (a) How much work is done lifting a 20-pound
bucket from the ground to the top of a 30-
foot building with a cable that weighs three
pounds per foot?

(b) How much work is done lifting the same
bucket from the ground to a height of 15 feet
with the same cable?

38. (a) How much work is done lifting a 60-pound
chair from the ground to the top of a 20-foot
building with a cable that weighs 1 pound per
foot?

(b) How much work is done lifting the same chair
from the ground to a height of 5 feet with the
same cable?

39. (a) How much work is done lifting a 10-pound
calculus book from the ground to the top of
a 30-foot building with a cable that weighs 2

pounds per foot?

(b) From the ground to a height of 10 feet?

(c) From a height of 10 feet to a height of 20 feet?

40. How much work is done lifting an 80-pound in-
jured child to the top of a 20-foot hole using a
stretcher weighing 14 pounds and a cable that
weighs 1 pound per foot?

41. How much work is done lifting a 60-pound in-
jured child to the top of a 15-foot hole using a
stretcher weighing 10 pounds and a cable that
weighs 2 pound per foot?

42. How much work is done lifting a 120-pound in-
jured adult to the top of a 30-foot hole using a
stretcher weighing 10 pounds and a cable that
weighs 2 pound per foot?
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4.7 Practice Answers

1. Referring to a graph (see margin figure) and using geometry: A =
1
2
(2)(1) = 1 and B =

1
2
(4)(2) = 4 so the total area is 1 + 4 = 5.

Referring to a graph of the functions and using integrals:

A =
∫ 1

0
[(3 − x)− (1 + x)] dx =

∫ 1

0
[2 − 2x] dx

=
[
2x − x2

]1

0
= [2 − 1]− [0 − 0] = 1

B =
∫ 3

1
[(1 + x)− (3 − x)] dx =

∫ 3

1
[2x − 2] dx

=
[

x2 − 2x
]3

1
= [9 − 6]− [1 − 2)] = 4

which also results in a total area of 1 + 4 = 5.

2. Using the average value formula:

1
9 − 0

∫ 9

0

[
5 +

√
t
]

dt =
1
9

∫ 9

0

[
5 + t

1
2

]
dt =

1
9

[
5t +

2
3

t
3
2

]9

0

=
1
9

[(
45 +

2
3
· 27
)
− (0 + 0)

]
=

45 + 18
9

= 7

so the average hourly production rate is 7 cars per hour.

3. (force) · (displacement) = (10 pounds) · (30 feet) = 300 foot-pounds

4. (a) The work required to move the object a distance of 10 feet is
(10 pounds) · (10 feet) = 100 foot-pounds. The work required to
move the top 10 feet of the cable onto the roof is:∫ 10

0
(10 − x) · 3 dx =

[
30x − 3

2
x2
]10

0
= [300 − 150]− [0] = 150 ft-lbs

and the force required to move the remaining 40 feet of cable is:

(40 ft) ·
(

3
lbs
ft

)
(10 ft) = 1200 ft-lbs

so the total work required is 100 + 150 + 1200 = 1450 foot-
pounds.

(b) The work required to move the object a distance of 10 feet is again
(10 pounds) · (10 feet) = 100 foot-pounds. The work required to
move the top 10 feet of the cable onto the roof is again 150 foot-
pounds, and the force required to move the remaining 30 feet of
cable is:

(30 ft) ·
(

3
lbs
ft

)
(10 ft) = 900 ft-lbs

so the total work required is 100+ 150+ 900 = 1150 foot-pounds.
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