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4.8 Using Tables (and Technology) to Find Antiderivatives

Appendix I shows patterns for many antiderivatives — some of which
you should already know based on your work in this chapter. Many
reference books and Web sites contain far more than the ones listed in
the appendix. A table of integrals helps you while you are learning
calculus and serves as a reference later when you are using calculus.

Think of an integral table as a dictionary: something to use when
you need to spell a challenging word or need the meaning of a new
word. It would be difficult to write a report if you had to look up the
spelling of every word, and it will be difficult to learn and use calculus
if you have to look up every antiderivative. Tables of antiderivatives
are limited by necessity and often take longer to use than finding an
antiderivative from scratch, but they can also be very valuable and
useful.

This section shows how to transform some integrals into forms found
in Appendix I and how to use “recursion” formulas found in integral
tables. The first Examples and Practice problems illustrate some of the
techniques used to change an integral into a standard form.

These techniques are useful whether
that standard form resides in a table
or in your head.

Appendix I (like some other integral ta-
bles) omits the “+C” arbitrary constant
for conciseness, but you need to remem-
ber to include it when using the results
of the table to find an indefinite integral.

Example 1. Use Appendix I to find
∫ 1

9 + x2 dx.

Solution. The integrand is a rational function, and the first entry you
see listed in the “Rational Functions” section of Appendix I should be:∫ 1

a2 + x2 dx =
1
a

arctan
( x

a

)
+ C

This resembles the pattern we need, so replacing the a with 3 we have:∫ 1
9 + x2 dx =

∫ 1
32 + x2 dx =

1
3

arctan
( x

3

)
+ C

You can (and should) check this answer by differentiating. ◀

Practice 1. Use Appendix I to find
∫ 1

25 + x2 dx and
∫ 1

25 − x2 dx.
Notice that a small change in the form
of the integrand (from + to − here) can
lead to a very different result.

Example 2. Use Appendix I to find
∫ 1

5 + x2 dx.

Solution. The integrand is again a rational function, and the general
form is the same as in the previous Example:∫ 1

5 + x2 dx =
∫ 1

(
√

5)2 + x2
dx =

1√
5

arctan
(

x√
5

)
+ C

but here we needed to put a =
√

5. ◀

The constant in the denominator of this
integrand was not a perfect square, but
the process is exactly the same — even if
the result looks a bit “messier” due to
the presence of the radical.

Practice 2. Use Appendix I to find
∫ 1

7 + x2 dx and
∫ 1

7 − x2 dx.
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We often need to perform some algebraic manipulations to change
an integrand into one that exactly matches a pattern in the table.

Example 3. Use Appendix I to find
∫ 1

9 + 4x2 dx.

Solution. The integrand is again a rational function, and the general
form resembles the one used in the previous Examples, but here we
have a 4x2 where we only see x2 in the table pattern. To get the
integrand in the form we want, we can factor a 4 out of the denominator:∫ 1

9 + 4x2 dx =
∫ 1

4
( 9

4 + x2
) dx =

1
4

∫ 1( 3
2
)2

+ x2
dx

=
1
4
· 1

3
2
· arctan

(
x
3
2

)
+ C =

1
6

arctan
(

2x
3

)
+ C

Another approach involves a change of variable. First write:∫ 1
9 + 4x2 dx =

∫ 1
32 + (2x)2 dx

We have 2x where we would like to see a standalone variable. To get
that pattern, put u = 2x ⇒ du = 2 dx ⇒ dx = 1

2 du:∫ 1
32 + (2x)2 dx =

∫ 1
32 + u2 · 1

2
du =

1
2
· 1

3
arctan

(u
3

)
+ C

=
1
6

arctan
(

2x
3

)
+ C

which yields the same result as our previous method. ◀

Practice 3. Use Appendix I to find
∫ 1

25 + 9x2 dx and
∫ 1

25 − 9x2 dx.

Sometimes a change of variable is absolutely necessary.

Example 4. Use Appendix I to find
∫ ex

9 + e2x dx.

Solution. Here the integrand is not a rational function, but we can
transform it into one by using the substitution u = ex ⇒ du = ex dx so
that u2 = (ex)2 = e2x:∫ ex

9 + e2x dx =
∫ 1

32 + (ex)2 · ex dx =
∫ 1

32 + u2 du

=
1
3

arctan
(u

3

)
+ C =

1
3

arctan
(

ex

3

)
+ C

If you don’t see the exact pattern you need in an integral table, try a
substitution first. ◀

Practice 4. Evaluate
∫ cos(x)

25 + sin2(x)
dx and

∫ cos(x)
25 − sin2(x)

dx.

How should you recognize whether algebra or a change of variable
is needed? Experience and practice, practice, practice.
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Using “Recursion” Formulas

A recursion formula gives one antiderivative in terms of another an-
tiderivative. Usually the new antiderivative is somehow simpler than
the original one. For example, the first recursion formula for a trigono-
metric function listed in Appendix I states:∫

sinn(x) dx = − 1
n

sinn−1(x) cos(x) +
n − 1

n

∫
sinn−2(x) dx

This formula would allow us to write
∫

sin8(x) dx, for instance, in

terms of
∫

sin6(x) dx, which should (theoretically, at least) be easier to

compute than the original integral.

We will develop this formula from
scratch in Problem 25 of Section 8.2. For
now, you can check that it works by com-
paring the derivative of your answer to
the original integrand for an integration
problem that uses this — or any other —
recursion formula.

Example 5. Use a recursion formula to evaluate
∫

sin4(x) dx.

Solution. Applying the formula given in the discussion above:∫
sin4(x) dx = −1

4
sin3(x) cos(x) +

3
4

∫
sin2(x) dx

This new integral is one we already know how to evaluate:∫
sin2(x) dx =

∫ [1
2
− 1

2
cos(2x)

]
dx =

1
2

x − 1
4

sin(2x) + K

Putting this together with the result of the recursion formula, we get:∫
sin4(x) dx = −1

4
sin3(x) cos(x) +

3
4

[
1
2

x − 1
4

sin(2x)
]
+ C

= −1
4

sin3(x) cos(x) +
3
8

x − 3
16

sin(2x) + C

We could have used Appendix I to find
∫

sin2(x) dx instead — or even

applied the recursion formula a second time to rewrite
∫

sin2(x) dx in

terms of
∫

sin0(x) dx =
∫

1 dx. ◀

We could have included the “+K′′ here
but then the result at the next stage
would have included the constant terms

· · ·+ 3
4

K + C

which is also an arbitrary constant.

Practice 5. Use Appendix I to evaluate
∫

cos4(x) dx and
∫

cos4(7x) dx.

Using Technology

Many Web sites (such as Wolfram|Alpha, www.wolframalpha.com),
computer programs (wxMaxima is a good free one) and calculators
(such as the TI-89 or TI-Nspire CAS) feature computer algebra systems
that can find antiderivatives of a wide variety of functions. For example,
typing integral sin^4(x) into Wolfram|Alpha yields:

which (applying some trig idenities) agrees with our result above.

Although technology can help us find
an antiderivative and evaluate a definite
integral, in an application problem you
still need to set up the Riemann sum that
leads to the definite integral.
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4.8 Problems

In Problems 1–48, use patterns and recursion formulas from the integral table in Appendix I as necessary
(along with any other antiderivatives and integration techniques you already know) to evaluate each integral.

1.
∫ 1

4 + x2 dx 2.
∫ 5

4 + x2 dx 3.
∫ [

2x +
2

25 + x2

]
dx

4.
∫ 1

4 − x2 dx 5.
∫ 2

9 − x2 dx 6.
∫ [

cos(x) +
3

25 − x2

]
dx

7.
∫ 1

3 + x2 dx 8.
∫ 5

7 + x2 dx 9.
∫ [

ex +
7

2 + x2

]
dx

10.
∫ 1√

4 − x2
dx 11.

∫ 3√
5 − x2

dx 12.
∫ 3√

4 − x2
dx

13.
∫ 1

4 + 25x2 dx 14.
∫ 2√

9 − 16x2
dx 15.

∫ 5√
1 − 4x2

dx

16.
∫

sec(x + 5) dx 17.
∫ 2√

1 + 9x2
dx 18.

∫
x · sec(2x2 + 7) dx

19.
∫

ln(x + 1) dx 20.
∫

ln(3x − 1) dx 21.
∫

3x · ln(5x2 + 7) dx

22.
∫

ex ln (ex − 3) dx 23.
∫

cos(x) · ln (sin(x)) dx 24.
∫ 2√

x2 − 9
dx

25.
∫ √

4 + x2 dx 26.
∫ √

9 + x2 dx 27.
∫ √

16 + x2 dx

28.
∫ 1

0

1
4 + x2 dx 29.

∫ 3

1

[
2x +

2
25 + x2

]
dx 30.

∫ 2

0

2
9 − x2 dx

31.
∫ 1

−1

1
3 + x2 dx 32.

∫ 1

0

[
ex +

7
2 + x2

]
dx 33.

∫ 2

1

3√
5 − x2

dx

34.
∫ 1

0

1
4 + 25x2 dx 35.

∫ 0.1

0

5√
1 − 4x2

dx 36.
∫ 1

0

1√
9 − 4x2

dx

37.
∫ 6

0
ln(x + 1) dx 38.

∫ 3

0
3x · ln(5x2 + 7) dx 39.

∫ π
2

0
cos(x) · ln (2 + sin(x)) dx

40.
∫ 2

0

√
4 + x2 dx 41.

∫ 3

−3

√
9 + x2 dx 42.

∫ 1

0

√
16 + x2 dx

43.
∫

sin3(x) dx 44.
∫

cos3(x) dx 45.
∫

cos5(x) dx

46.
∫

sec5(x) dx 47.
∫

x2 cos(x) dx 48.
∫

x2 sin5(x) dx
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49. Before doing any calculations, predict which you
expect to be larger:

• the average value of sin(x) on [0, π]

• the average value of sin2(x) on [0, π]

Then calculate each average to see if your predic-
tion was correct.

50. Find the area of the region bounded by the graph
of f (x) = ln(x), the x-axis and the lines x = 1
and x = C when C = e, 10, 100 and 200.

51. Find the average value of f (x) = ln(x) on the
interval 1 ≤ x ≤ C when C = e, 10, 100, 200.

52. Before doing any calculations, predict which
of the following integrals you expect to be the
largest, then evaluate each integral.

(a)
∫ 1

0
ex dx (b)

∫ 1

0
xex dx

(c)
∫ 1

0
x2ex dx

53. Before doing any calculations, predict which
of the following integrals you expect to be the
largest, then evaluate each integral.

(a)
∫ 2

1
ex dx (b)

∫ 2

1
xex dx

(c)
∫ 2

1
x2ex dx

54. Before doing any calculations, predict which
of the following integrals you expect to be the
largest, then evaluate each integral.

(a)
∫ π

0
sin(x) dx

(b)
∫ π

0
x sin(x) dx

(c)
∫ π

0
x2 sin(x) dx

55. Evaluate
∫ C

0

2
1 + x2 dx for C = 1, 10, 20 and 30.

Before doing the calculation, estimate the value
of the integral when C = 40.

4.8 Practice Answers

1. The integral
∫ 1

25 + x2 dx resembles the pattern from Example 1:

∫ 1
25 + x2 dx =

∫ 1
52 + x2 dx =

1
5

arctan
( x

5

)
+ C

The integrand in
∫ 1

25 − x2 dx is also a rational function, but we

need a different pattern from Appendix I (see margin) with a = 5:∫ 1
25 − x2 dx =

∫ 1
52 − x2 dx =

1
10

ln
∣∣∣∣ x + 5
x − 5

∣∣∣∣+ C

∫ 1
a2 − x2 dx =

1
2a

ln
∣∣∣∣ x + a

x − a

∣∣∣∣

2. The integral
∫ 1

7 + x2 dx matches the pattern in Example 2:

∫ 1
7 + x2 dx =

∫ 1
(
√

7)2 + x2
dx =

1√
7

arctan
(

x√
7

)
+ C

For
∫ 1

7 − x2 dx we need the pattern in the margin with a =
√

7:

∫ 1
7 − x2 dx =

∫ 1
(
√

7)2 − x2
dx =

1
2
√

7
ln

∣∣∣∣∣ x +
√

7
x −

√
7

∣∣∣∣∣+ C
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3. For the integral
∫ 1

25 + 9x2 dx we can factor 9 from the denominator:∫ 1
25 + 9x2 dx =

∫ 1
9
( 25

9 + x2
) dx =

1
9

∫ 1( 5
3
)2

+ x2
dx

=
1
9
· 1

5
3

arctan

(
x
5
3

)
+ C =

1
15

arctan
(

3x
5

)
+ C

and proceed as before. We could proceed similarly for
∫ 1

25 − 9x2 dx

or we could substitute u = 3x (see margin):∫ 1
25 − 9x2 dx =

∫ 1
52 − (3x)2 dx =

∫ 1
52 − u2 · 1

3
du

=
1
3
· 1

2 · 5
ln
∣∣∣∣u + 5
u − 5

∣∣∣∣+ C =
1
30

· ln
∣∣∣∣3x + 5
3x − 5

∣∣∣∣+ C

u = 3x ⇒ du = 3 dx ⇒ dx =
1
3

du

4. For
∫ cos(x)

25 + sin2(x)
dx, first use the substitution in the margin:

∫ cos(x)
25 + sin2(x)

dx =
∫ 1

25 + u2 du

followed by the result of the first part of Practice 1:∫ 1
25 + u2 du =

1
5

arctan
(u

5

)
+ C =

1
5

arctan
(

sin(x)
5

)
+ C

For
∫ cos(x)

25 − sin2(x)
dx use the same substitution, followed by the

result from the second part of Practice 1:∫ 1
25 − u2 du =

1
10

ln
∣∣∣∣u + 5
u − 5

∣∣∣∣+ C =
1

10
ln
∣∣∣∣ sin(x) + 5
sin(x)− 5

∣∣∣∣+ C

u = sin(x) ⇒ du = cos(x) dx

u = 7x ⇒ du = 7 dx ⇒ dx =
1
7

du∫
cos4(7x) dx =

1
7

∫
cos4(u) du

5. For
∫

cos4(x) dx we need the recursion formula:∫
cosn(x) dx =

1
n

cosn−1(x) sin(x) +
n − 1

n

∫
cosn−2(x) dx

with n = 4:∫
cos4(x) dx =

1
4

cos3(x) sin(x) +
3
4

∫
cos2(x) dx

=
1
4

cos3(x) sin(x) +
3
4

∫ [1
2
+

1
2

cos(2x)
]

dx

=
1
4

cos3(x) sin(x) +
3
4

[
1
2

x +
1
4

sin(2x)
]
+ C

For
∫

cos4(7x) dx, first use a substitution (see margin) and then the

result of the previous integration:∫
cos4(7x) dx =

1
28

cos3(7x) sin(7x)+
3

28

[
1
2
(7x) +

1
4

sin(14x)
]
+C
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