
the integral 375

4.9 Approximating Definite Integrals

The Fundamental Theorem of Calculus tells how to calculate the exact
value of a definite integral if the integrand is continuous and if we
can find a formula for an antiderivative of the integrand. In practice,
however, we may need to compute the definite integral of a function
for which we only have table values or a graph — or of a function
that does not have an elementary antiderivative. This section presents
several techniques for getting approximate numerical values for definite
integrals without using antiderivatives. Mathematically, exact answers
are preferable and satisfying, but for most applications a numerical
answer accurate to several digits is just as useful.

The ideas behind these methods are ge-
ometric and rather simple, but using the
methods to get good approximations typ-
ically requires lots of arithmetic, some-
thing calculators and computers are very
good (and quick) at doing.

The General Approach

The methods in this section approximate the definite integral of a
function f by partitioning the interval of integration and building an
“easy” function with values close to those of f on each interval, then
evaluating the definite integrals of the “easy” functions exactly. If the
“easy” functions are close to f , then the sum of the definite integrals of
the “easy” functions should be close to the definite integral of f .

The Left, Right and Midpoint Rules approximate f with horizontal
lines on each partition interval so the “easy” functions are constant
functions, and the approximating regions are rectangles (see top margin
figure). The Trapezoidal Rule approximates f with slanted lines, so the
“easy” functions are linear and the approximating regions are trapezoids
(see middle margin figure). Finally, Simpson’s Rule approximates f
with parabolas, so the “easy” functions are quadratic polynomials (see
bottom margin figure).

The Left and Right approximation rules are simply Riemann sums
with the point ck in the k-th subinterval chosen to be the left or right
endpoint of that subinterval. They typically require a large number
of computations to get even mediocre approximations to the definite
integral of f and are seldom used in practice. Along with the Midpoint
Rule (which chooses each ck to be the midpoint of the k-th subinterval),
they are discussed near the end of the Problems for this section.

All of these methods partition the interval [a, b] into n subintervals

of equal width, so each subinterval has width h = ∆xk =
b − a

n
. The

points of the partition are x0 = a, x1 = a+ h, x2 = a+ 2 · h, x3 = a+ 3 · h,
and so on. The k-th point in the partition is given by the formula
xk = a + k · h and the last (n-th) point is thus:

xn = a + n · h = a + n
(

b − a
n

)
= a + b − a = b
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Approximating a Definite Integral Using Trapezoids

If the graph of f is curved, then slanted lines typically come closer to
the graph of f than horizontal ones do. These slanted lines lead to
trapezoidal approximating regions.

See Problem 29.

The area of a trapezoid is (base) · (average height) so the area of the
first trapezoid in the margin figure is:

(∆x) ·
(

y0 + y1

2

)
Similarly, the areas of the next few trapezoids are:

(∆x) ·
(

y1 + y2

2

)
, (∆x) ·

(
y2 + y3

2

)
, (∆x) ·

(
y3 + y4

2

)
and so on, with the area of the last region being

(∆x) ·
(

yn−1 + yn

2

)
The sum of these n trapezoidal areas is:

Tn = (∆x)
(

y0 + y1

2

)
+ (∆x)

(
y1 + y2

2

)
+ (∆x)

(
y2 + y3

2

)
+ · · ·

. + (∆x)
(

yn−1 + yn

2

)
=

(
∆x
2

)
[(y0 + y1) + (y1 + y2) + (y2 + y3) + · · ·+ (yn−1 + yn)]

=

(
h
2

)
[y0 + 2y1 + 2y2 + 2y3 + · · ·+ 2yn−1 + yn]

=

(
h
2

)
[ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + · · ·+ 2 f (xn−1) + f (xn)]

Each f (xk) value, except the first (k = 0) and the last (k = n), is the
right-endpoint height of one trapezoid and the left-endpoint height of
the next, so it shows up in the calculation for two trapezoids and is
multiplied by 2 in the formula for the trapezoidal approximation.

Trapezoidal Approximation Rule

If f is integrable on [a, b] and [a, b] is partitioned
into n subintervals of width h = b−a

n

then the Trapezoidal approximation of
∫ b

a
f (x) dx is:

Tn =
h
2
[ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + · · ·+ 2 f (xn−1) + f (xn)]
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Example 1. Compute T4, the Trapezoidal approximation of
∫ 3

1
f (x) dx

for n = 4, with the values of f in the margin table.

Solution. The step size is h =
b − a

n
=

3 − 1
4

=
1
2

so:

T4 =
h
2
[ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)]

=
0.5
2

[4.2 + 2(3.4) + 2(2.8) + 2(3.6) + (3.2)] = (0.25)(27) = 6.75

so we can say that
∫ 3

1
f (x) dx ≈ 6.75. ◀

x f (x)

1.0 4.2
1.5 3.4
2.0 2.8
2.5 3.6
3.0 3.2

Let’s see how well the Trapezoidal Rule approximates an integral
whose value we can compute exactly:

∫ 3

1
x2 dx =

1
3

x3
∣∣∣∣3
1
=

1
3
[27 − 1] =

26
3

≈ 8.6666667

Example 2. Calculate T4 for
∫ 3

1
x2 dx.

Solution. The step size is h =
b − a

n
=

3 − 1
4

=
1
2

so:

T4 =
h
2
[ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)]

=
0.5
2

[
(1.0)2 + 2(1.5)2 + 2(2.0)2 + 2(2.5)2 + (3.0)2

]
= (0.25) [1 + 2(2.25) + 2(4) + 2(6.25) + 9] = 8.75

which is within 0.1 of the exact answer. Larger values for n give better
approximations: T20 = 8.67 and T100 = 8.6668. ◀

Practice 1. On a summer day, the level of the pond shown in the
margin fell 0.1 feet because of evaporation. Use the Trapezoidal Rule to
approximate the surface area of the pond and then estimate how much
water evaporated.

Approximating a Definite Integral Using Parabolas

This parabolic method is known as Simp-
son’s Rule, named after British mathe-
matician and inventor Thomas Simpson
(1710–1761); Germans call it Kepler’sche
Fassregel, after Johannes Kepler, who de-
veloped it 100 years before Simpson.

If the graph of f is curved, the slanted lines from the Trapezoidal Rule
may not fit the graph of f as closely as we would like, requiring a
large number of subintervals to achieve a good approximation of the
definite integral. Curves typically fit the graph of f better than straight
lines in such situations, and the easiest nonlinear curves we know are
parabolas.

Just as we need two points to determine an equation of a line, we
will need three points to determine an equation of a parabola.
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Calling these points (x0, y0), (x1, y1) and (x2, y2), the area under a
parabolic region with evenly spaced xk values (see margin) is:

(2∆x) ·
[

y0 + 4y1 + y2

6

]
=

∆x
3

[y0 + 4y1 + y2]

Taking the subintervals in pairs, the areas of the next few parabolic
regions are:

∆x
3

[y2 + 4y3 + y4] ,
∆x
3

[y4 + 4y5 + y6] ,
∆x
3

[y6 + 4y7 + y8]

and so on, with the area of the last pair of regions being:

∆x
3

[yn−2 + 4yn−1 + yn]

so the sum of all n parabolic areas (see margin) is:

Sn =
∆x
3

[y0 + 4y1 + y2] +
∆x
3

[y2 + 4y3 + y4] + · · ·+ ∆x
3

[yn−2 + 4yn−1 + yn] . +
∆x
3

[y2 + 4y3 + y4] + · · ·+ ∆x
3

[yn−2 + 4yn−1 + yn]

=

(
h
3

)
[(y0 + 4y1 + y2 + y2 + 4y3 + y4 · · ·+ yn−2 + 4yn−1 + yn]

=

(
h
3

)
[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−1 + 4yn−1 + yn)]

=

(
h
3

)
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + · · ·

. + 2 f (xn−2) + 4 f (xn−1) + f (xn)]

This result is not obvious; see Problem 32

for the necessary algebra.

In order to use pairs of subintervals, the number n of subintervals
must be even. Notice that the coefficient pattern for the area under a
single parabolic region is 1–4–1, but when we put several parabolas
next to each other, they share some edges and the pattern becomes
1–4–2–4–2–· · · –2–4–1 with the shared edges getting counted twice.

Parabolic Approximation Rule (Simpson’s Rule)

If f is integrable on [a, b] and [a, b] is partitioned

into n subintervals of width h =
b − a

n
then the Parabolic approximation of

∫ b

a
f (x) dx is:

Sn =
h
3
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + · · · .....................

.......................... + 2 f (xn−2) + 4 f (xn−1) + f (xn)]x f (x)

1.0 4.2
1.5 3.4
2.0 2.8
2.5 3.6
3.0 3.2

Example 3. Calculate S4, the Simpson’s Rule approximation of
∫ 3

1
f (x) dx

for the function f with values in the margin table.
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Solution. The step size is h =
b − a

n
=

3 − 1
4

=
1
2

, so:

S4 =
h
3
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)]

=
1
2
3
[4.2 + 4(3.4) + 2(2.8) + 4(3.6) + (3.2)] =

1
6
(41) =

41
6

or approximately 6.833. ◀

Example 4. Calculate S4 for
∫ 3

1
2x dx.

Solution. As in the previous Examples, h = b−a
n = 0.5 and x0 = 1,

x1 = 1.5, x2 = 2, x3 = 2.5 and x4 = 3.

S4 =
h
3
· [ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)]

=
1
2
3
· [ f (1) + 4 f (1.5) + 2 f (2) + 4 f (2.5) + f (3)]

=

(
1
6

) [
21 + 4

(
21.5
)
+ 2

(
22
)
+ 4

(
22.5
)
+
(

23
)]

=

(
1
6

) [
2 + 4(2

√
2) + 2(4) + 4(4

√
2) + 8

]
=

(
1
6

) [
18 + 20

√
2
]

or approximately 8.656854. The exact value of the integral is:

∫ 3

1
2x dx =

[
2x

ln(2)

]3

1
=

8
ln(2)

− 2
ln(2)

=
6

ln(2)
≈ 8.65617024533

Larger values of n give better approximations: S20 = 8.656171 and
S100 = 8.656170. ◀

Practice 2. Use Simpson’s Rule to estimate the surface area of the pond
in the margin figure.

Which Method Is Best?

The most difficult and time-consuming part of these approximations,
whether done by hand or by computer, is the evaluation of the function
at the xk values. For n subintervals, all of the methods require about
the same number of function evaluations. The table on the next page

illustrates how closely each method approximates
∫ 5

1

1
x

dx = ln(5) ≈
1.609437912 using several values of n. The results in the table also show
how quickly the actual error shrinks as the value of n increases: just
doubling n from 4 to 8 cuts the actual error of the Simpson’s Rule
approximation of this definite integral by a factor of 9 — a good reward
for our extra work.
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method approximation error bound actual error

T4 1.683333333 0.6666666 0.07389542

S4 1.622222222 0.5333333 0.01278431

L4 2.083333333 2.0000000 0.47389542

R4 1.283333333 2.0000000 0.32610458

M4 1.574603175 0.3333333 0.03483474

T8 1.628968254 0.1666666 0.01953034

S8 1.610846561 0.0333333 0.00140865

L8 1.828968254 1.0000000 0.21953034

R8 1.428968254 1.0000000 0.18046966

M8 1.599844394 0.0833333 0.00959352

T20 1.612624844 0.0266667 0.00318693

S20 1.609486789 0.0008533 0.00004888

L20 1.692624844 0.4000000 0.08318693

R20 1.532624844 0.4000000 0.07681307

M20 1.607849324 0.0133333 0.00158859

The “error bounds” in the third column
are discussed below.

Notice that for each value of n, the Simp-
son’s Rule approximation Sn has the
smallest error, and that the error for the
Midpoint Rule approximation Mn (dis-
cussed in the Problems) is roughly half
the error for the Trapezoidal Rule Tn. Ln
and Rn denote the Left and Right approx-
imations, respectively.

How Good Are the Approximations?

The approximation rules are valuable by themselves, but they are
particularly useful because we can find “error bound” formulas that
guarantee how close these approximations come to the exact values of
the definite integral. It is useful to know that the value of an integral
is “about 3.7,” but we can have more confidence in our approximation
if we know that value is “within 0.0001 of 3.7.” Then we can decide if
our approximation is good enough for the job at hand or if we need to
improve it.

We can also solve the formulas for the error bounds provided below
to determine how many subintervals we need to guarantee that our
approximation is within some specified distance of the exact answer.
There is no reason to use 1000 subintervals if 18 will give the needed
accuracy. Unfortunately, the formulas for the error bounds require
information about the derivatives of the integrands, so we cannot use
these error bound formulas for the approximations of integrals of
functions defined only by tables or graphs — or of continuous (hence
integrable) functions that fail to have continuous derivatives.

The “error bound” formula for the Trapezoidal Rule approximation
given at the top of the next page is just a “guarantee”: the actual error
is guaranteed to be no larger than the error bound. In fact, the actual
error is usually much smaller than the error bound (compare the error
bounds with the actual error for T4, T8 and T20 in the table above to see
this principle in action).
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The word “error” does not indicate a mistake, it simply means the
deviation or distance of the approximate answers from the exact answer.

Error Bound for Trapezoidal Approximation

If f ′′ is continuous on [a, b] and | f ′′(x)| ≤ B2

then the “error” of the Tn approximation of
∫ b

a f (x) dx satisfies:

|“error”| =
∣∣∣∣∫ b

a
f (x) dx − Tn

∣∣∣∣ ≤ (b − a)3B2

12n2

While it’s possible to prove this er-
ror bound formula using mathematics
you’ve already learned, the proof is
highly technical and sheds little or no
insight into the workings of the Trape-
zoidal Rule, so we (like the authors of
most calculus books) have omitted it.

Example 5. You can be certain that the T10 approximation of
∫ 2

0
sin(x2) dx

is within what distance of the exact value of the integral?

Solution. We know that b − a = 2, n = 10 and f (x) = sin
(
x2), so

f ′′(x) = −4x2 · sin
(

x2)+ 2 · cos
(

x2) is continuous on [0, 2]. Practice your differentiation skills by ver-
ifying this.

Notice that (a bound for) the “error” de-
pends on three things: the size of the
interval of integration (the bigger the in-
terval, the bigger the potential error); the
number of subintervals in the partition
(the more subintervals, the smaller the
potential error); and the size of the sec-
ond derivative of the integrand. We’ve
already seen that the second derivative
of a function is related to the concavity of
its graph — later on we will learn that the
second derivative helps measure the “cur-
vature” of the graph of f ; it should make
sense that the more “curvy” a function is,
the less effective a linear approximation
technique would be.

We now need an “upper bound” for | f ′′(x)|. If f ′′(x) is differentiable
(it is here) then we could use the techniques of Chapter 3 to find
its maximum value on [0, 2] but that would require finding a third
derivative of f , as well as some challenging algebra. Using the triangle
inequality and the facts that −1 ≤ sin(θ) ≤ 1 and −1 ≤ cos(θ) ≤ 1, we
can conclude:∣∣ f ′′(x)

∣∣ = ∣∣∣−4x2 · sin
(

x2
)
+ 2 · cos

(
x2
)∣∣∣ ≤ 4 · 22 · 1 + 2 · 1 = 18

so we could take B2 = 18. We can do a bit better, however, by consulting
a graph of f ′′(x) on [0, 2] (see margin); it appears clear from the graph
that | f ′′(x)| ≤ 11, so we take B2 = 11 instead.

Using these values for a, b, n and B2 in the “error bound” formula:

|“error”| =
∣∣∣∣∫ 2

0
sin(x2) dx − T10

∣∣∣∣ ≤ 23 · 11
12 · 102 =

88
1200

=
11

150
< 0.074

so we can be certain that our T10 approximation of the definite integral
is within 0.074 of the exact value:

T10 − 0.074 ≤
∫ 2

0
sin(x2) dx ≤ T10 + 0.074

Computing T10 = 0.7959247, we can be certain that the value of the
integral

∫ 2
0 sin(x2) dx is somewhere between 0.722 and 0.870. ◀

Practice 3. Find an error bound for the T12 approximation of
∫ 5

2

1
x

dx.

Example 6. How large must n be to be certain that Tn is within 0.001

of
∫ 2

0
sin(x2) dx?



382 contemporary calculus

Solution. Here we know the “allowable error” of 0.001 and we must
find n. From Example 5 we know that b − a = 2 and B2 = 11, so we
want the error bound to be less than the allowable error of 0.001:

23 · 11
12 · n2 < 0.001 ⇒ 12 · n2

88
> 1000 ⇒ n2 >

88000
12

⇒ n >

√
22000

3
≈ 85.6

Because n must be an integer, we can take n = 86. Computing T86 ≈
0.80465, we can be certain that the exact value of the integral is between
0.80365 and 0.80565. ◀

As often happens, T86 is even closer than
0.001 to the exact value of the integral:∣∣∣∣T86 −

∫ 2

0
sin
(

x2
)

dx
∣∣∣∣ ≈ 0.00012

Practice 4. Determine how large n must be in order to ensure that Tn

is within 0.001 of
∫ 5

2

1
x

dx.

Error Bound for Simpson’s Parabolic Approximation

If f (4) is continuous on [a, b] and
∣∣∣ f (4)(x)

∣∣∣ ≤ B4

then the “error” of the Sn approximation of
∫ b

a f (x) dx satisfies:

|“error”| =
∣∣∣∣∫ b

a
f (x) dx − Sn

∣∣∣∣ ≤ (b − a)5B4

180n4

Example 7. Find an error bound for the S10 approximation of
∫ 2

0
sin(x2) dx.

Solution. We have b − a = 2, n = 10 and f (x) = sin(x2), so f (4)(x) =
(16x4 − 12) sin(x2)− 48x2 cos(x2) is continuous on [0, 2]. From a graph
of f (4)(x) on [0, 2] (see margin), we can estimate that B4 = 165, so

|“error”| =
∣∣∣∣∫ 2

0
sin(x2) dx − S10

∣∣∣∣ ≤ 25 · 165
180 · 104 =

5280
1800000

< 0.003

and we can be certain that our S10 approximation of
∫ 2

0 sin(x2) dx is
within 0.003 of the exact value:

S10 − 0.003 ≤
∫ 2

0
sin(x2) dx ≤ S10 + 0.003

Computing S10 = 0.80537615, we are certain that the exact value of∫ 2
0 sin(x2) dx is between 0.80237615 and 0.80837615. Notice that we

achieved a much narrower guarantee using S10 compared to using T10

to approximate the same integral. ◀

Example 8. Determine how large n must be to ensure that Sn is within

0.001 of the exact value of
∫ 2

0
sin(x2) dx?
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Solution. We want the “error bound” to be less than 0.001 and need
to find n. We know that b − a = 2 and B4 = 165

25 · 165
180 · n4 < 0.001 ⇒ 180 · n2

5280
> 1000 ⇒ n2 >

5280000
180

=
88000

3

⇒ n >
4

√
88000

3
≈ 13.09

Because n must be an even integer, we can take n = 14 and be certain

that S14 is within 0.001 of
∫ 2

0
sin(x2) dx. ◀

As we have come to expect, S14 is even
closer than 0.001 to the exact value of the
integral; using advanced methods, we
can show that:∣∣∣∣∫ 2

0
sin(x2) dx − S14

∣∣∣∣ ≈ 0.00015Alternative Methods

In Section 8.7 and in Chapter 10, you will learn how to approximate
a function f over an entire interval [a, b] using a single polynomial
p(x) of degree n; you can then approximate

∫ b
a f (x) dx with

∫ b
a p(x) dx,

which is relatively easy to compute. One advantage of this method
is that (once we have found p(x)), we only need to evaluate another
polynomial (P(x) where P′(x) = p(x)) at two values (P(a) and P(b)) to
compute

∫ b
a p(x) dx ≈

∫ b
a f (x) dx and we can get better approximations

by increasing n and using polynomials of higher and higher degree;
using the Trapezoidal Rule or Simpson’s Rule requires us to evaluate
f (x) at n+ 1 points. A disadvantage of this approach is that our original
f (x) must have n continuous derivatives, which is not always the case,
and we need to be able to compute those n derivatives at a single
point. Most textbooks on Numerical Analysis offer more sophisticated
techniques for approximating definite integrals.

Using Technology

If you have written even the most basic computer code, you should
be able to write a program to compute any Trapezoidal Rule or Simp-
son’s Rule approximation you want (accurate up to the floating-point
limitations of the machine running your code). If you have a graph-
ing calculator, it likely has one or more numerical integration utili-
ties (see the margin for TI-83 output). The Web site Wolfram|Alpha
(www.wolframalpha.com) can approximate definite integrals to any de-
sired accuracy; typing integral sin(x^2) from x=0 to x=2 yields:

Wolfram|Alpha can also be used to quickly apply Simpson’s Rule:

use Simpson’s rule sin(x^2) from 0 to 2 with 10 intervals

yields an approximation of 0.804811 for
∫ 2

0 sin(x2) dx.
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4.9 Problems

1. Use the values in the table below left to approxi-
mate

∫ 6
2 f (x) dx by calculating T4 and S4.

2. Use the values in the table below left to approxi-
mate

∫ 6
2 f (x) dx by calculating T8 and S8.

x f (x)

2.0 2.1
2.5 2.7
3.0 3.8
3.5 2.3
4.0 0.3
4.5 -1.8
5.0 -0.9
5.5 0.5
6.0 2.2

x g(x)

-3.0 4.2
-2.5 1.8
-2.0 0.7
-1.5 1.5
-1.0 3.4
-0.5 4.3
0.0 3.5
0.5 -0.3
1.0 -4.6

3. Use the values in the table above right to approx-
imate

∫ 1
−3 g(x) dx by calculating T8 and S8.

4. Use the values in the table above right to approx-
imate

∫ 1
−3 g(x) dx by calculating T4 and S4.

For Problems 5–10, calculate (a) T4, (b) S4 and (c) the
exact value of the integral.

5.
∫ 3

1
x dx 6.

∫ 2

0
[1 − x] dx

7.
∫ 1

−1
x2 dx 8.

∫ 6

2

1
x

dx

9.
∫ π

0
sin(x) dx 10.

∫ 1

0

√
x dx

For Problems 11–16, calculate (a) T6 and (b) S6.

11.
∫ 2

0

1
1 + x3 dx 12.

∫ 2

1
2x dx

13.
∫ 1

−1

√
4 − x2 dx 14.

∫ 1

0
e−x2

dx

15.
∫ 4

1

sin(x)
x

dx 16.
∫ 1

0

√
1 + sin(x) dx

For 17–22, calculate (a) the error bound for T4, (b) the
error bound for S4, (c) the value of n so that the error

bound for Tn is less than 0.001, and (d) the value of
n so that the error bound for Sn is less than 0.001.

17.
∫ 3

1
x dx 18.

∫ 2

0
[1 − x] dx

19.
∫ 1

−1
x3 dx 20.

∫ 6

2

1
x

dx

21.
∫ π

0
sin(x) dx 22.

∫ 1

0

√
x dx

23. Estimate the area of the piece of land located be-
tween the river and the road in the figure below.

24. Estimate the area of the island in the figure below.

25. Estimate the volume of water in the reservoir
shown below if the average depth is 22 feet.
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26. The table below left shows the speedometer read-
ings (in feet per minute) for a car at one-minute in-
tervals. Estimate how far the car traveled (a) dur-
ing the first 5 minutes of the trip and (b) during
the first 10 minutes of the trip.

t v(t) t v(t)

0 0 6 5200

1 2000 7 4400

2 3000 8 3000

3 5000 9 2000

4 5000 10 1200

5 6000

t v(t) t v(t)

0 0 6 520

1 420 7 440

2 540 8 360

3 300 9 260

4 500 10 180

5 580

27. The table above right shows the speed (in feet per
minute) of a jogger at one-minute intervals. Esti-
mate how far the jogger ran during her workout.

28. Use the error-bound formula for Simpson’s Rule
to show that the parabolic approximation gives
the exact value of

∫ b
a f (x) dx if f (x) = Ax3 +

Bx2 + Cx + D is a polynomial of degree 3 or less.

29. A trapezoidal region with base b and heights h1

and h2 (assume h1 ̸= h2) can be cut into a rect-
angle with base b and height h1 and a triangle
with base b and height h1 − h2 (see figure at right).
Show that the sum of the area of the rectangle

and the area of the triangle is b ·
[

h1 + h2

2

]
.

30. Let f (m) be the minimum value of f on the inter-
val [x0, x1], f (M) be the maximum value of f on

[x0, x1], and h = x1 − x0. Show that:

h · f (m) ≤ b ·
[

f (x0) + f (x1

2

]
≤ h · f (M)

and use this result to show that the trapezoidal
approximation is between the lower and upper
Riemann sums for f . Because the limit (as h → 0)
of these Riemann sums is

∫ b
a f (x) dx, conclude

that the limit of the trapezoidal sums must equal∫ b
a f (x) dx.

31. Let f (m) be the minimum value of f on the inter-
val [x0, x2], f (M) the maximum of f on [x0, x2]

and h = x1 − x0 = x2 − x1. Show that the value

2h ·
[

f (x0) + 4 f (x1) + f (x2)

6

]
is between 2h · f (m) and 2h · f (M) and use this
result to show that the parabolic approximation
of
∫ b

a f (x) dx is between the lower and upper Rie-
mann sums for f . Conclude that the limit of the
parabolic sums must equal

∫ b
a f (x) dx.

32. This problem guides you through the steps to show that the area
under a parabolic region (see margin) with evenly spaced xk values
(which, for the purposes of this problem we will call x0 = m − h,
x1 = m and x2 = m + h) is:

h
3
· [ f (x0) + 4 f (x1) + f (x2)] =

h
3
· [y0 + 4y1 + y2]

(a) For f (x) = Ax2 + Bx + C, verify that:

∫ m+h

m−h
f (x) dx =

A
3

x3 +
B
2

x2 +Cx
∣∣m+h
m−h = 2Am2h+

2
3

Ah3 + 2Bmh+ 2Ch
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(b) Expand each of the polynomials:

y0 = f (m − h) = A(m − h)2 + B(m − h) + C

y1 = f (m) = Am2 + Bm + C

y2 = f (m + h) = A(m + h)2 + B(m + h) + C

and use the results to verify that:

h
3
[y0 + 4y1 + y2] = 2h

[
f (m − h) + 4 f (m) + f (m + h)

6

]
= 2Am2h +

2
3

Ah3 + 2Bmh + 2Ch

(c) Compare the results of parts (a) and (b) to conclude that for any
quadratic function f (x) = Ax2 + Bx + C:∫ m+h

m−h
f (x) dx =

h
3
[y0 + 4y1 + y2]

Left-Endpoint, Right-Endpoint and Midpoint Rules

The rectangular approximation methods approximate an integrand
with horizontal lines, so that the approximating regions are rectangles
and the sum of the areas of these rectangular regions is a Riemann
sum. The Left- and Right-Endpoint Rules are easy to understand and
use, but they typically require a very large number of subintervals to
ensure good approximations of a definite integral. The Midpoint Rule
uses the value of the integrand at the midpoint of each subinterval: if
these midpoint values of f are available (for example, when f is given
by a formula) then the Midpoint Rule is often more efficient than the
Trapezoidal rule. The rectangular approximation rules are:

Ln = h · [ f (x0) + f (x1) + f (x2) + · · ·+ f (xn−1)]

Rn = h · [ f (x1) + f (x2) + f (x3) + · · ·+ f (xn)]

Mn = h · [ f (c) + f (c + h) + f (c + 2h) + · · ·+ f (c + (n − 1)h)]

where c = x0 +
h
2

so that the points c, c + h, c + 2h, etc. are the mid-
points of the subintervals. The “error bounds” for these methods are:

|“error” for Ln or Rn| ≤
(b − a)2B1

2n

|“error” for Mn| ≤
(b − a)3B2

24n2

where B1 ≥ | f ′(x)| on [a, b] and B2 ≥ | f ′′(x)| on [a, b]. Notice that
the error bound for Mn is half the error bound of Tn, the trapezoidal
approximation.
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For Problems 33–38, calculate (a) L4, (b) R4, (c) M4

and (d) the exact value of the integral.

33.
∫ 3

1
x dx 34.

∫ 2

0
[1 − x] dx

35.
∫ 1

−1
x2 dx 36.

∫ 6

2

1
x

dx

37.
∫ π

0
sin(x) dx 38.

∫ 1

0

√
x dx

39. Show that the Trapezoidal approximation is the
average of the Left- and Right-Endpoint approxi-

mations: Tn =
1
2
(Ln + Rn).

The integrals in Problems 40–43 will arise in appli-
cations from Chapter 5. Use technology to approxi-
mate each integral by applying Simpson’s Rule with
n = 10 and n = 40 to approximate their values. (Is
S40 very different from S10?)

40.
1√
2π

∫ 2

−2
e−

1
2 x2

dx

41.
∫ 2

−1

√
1 + 4x2 dx

42.
∫ π

0

√
1 + cos2(x) dx

43.
∫ 2π

0

√
16 sin2(t) + 9 cos2(t) dt

4.9 Practice Answers

1. Using the Trapezoidal Rule to approximate the pond’s surface area:

T ≈ 5 ft
2

· [(0 + 2 · 12 + 2 · 14 + 2 · 16 + 2 · 18 + 2 · 18 + 0) ft] = 390 ft2

so the volume is (surface area)(depth) ≈
(

390 ft2
)
(0.1 ft) = 39 ft3.

2. Using Simpson’s Rule to approximate the pond’s surface area:

S ≈ 5 ft
3

· [(0 + 4 · 12 + 2 · 14 + 4 · 16 + 2 · 18 + 4 · 18 + 0) ft] ≈ 413 ft2

3. b − a = 3, n = 12 and f (x) =
1
x
⇒ f ′(x) = − 1

x2 ⇒ f ′′(x) =
2
x3 , so

on the interval [2, 5]: ∣∣ f ′′(x)
∣∣ = ∣∣∣∣ 2

x3

∣∣∣∣ ≤ 2
23 =

1
4

We can therefore take B2 = 1
4 , so:

|error| ≤ (b − a)3 · B2

12n2 ≤
33 · 1

4
12(12)2 =

27
6912

≈ 0.004

4. We want:

|error| ≤ (b − a)3 · B2

12n2 ≤
33 · 1

4
12 · n2 =

27
48n2 < 0.001

so solving for n:

48n2

27
> 1000 ⇒ n2 >

27000
48

=
1125

2
⇒ n >

√
562.5 ≈ 23.7

Using n = 24 will work. We can be certain that T24 is within 0.001
of the exact value of the integral. (We cannot guarantee that T23 is
within 0.001 of the exact value of the integral, but it probably is.)
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