
5
Applications of Definite Integrals

The previous chapter introduced the concepts of a definite integral as
an “area” and as a limit of Riemann sums, demonstrated some of the
properties of integrals, introduced some methods to compute values
of definite integrals, and began to examine a few of their uses. This
chapter focuses on several common applications of definite integrals.

An obvious goal of the chapter is to enable you to use integration
when you encounter these particular applications later in mathematics
or in other fields. A deeper goal is to illustrate the process of going from
a problem to an integral, a process much broader than these particular
applications. If you understand the process, then you can understand
the use of integrals in many other fields and can even develop the
integrals needed to solve problems in new areas. Another goal is to
give you additional practice evaluating definite integrals.

Each section in this chapter follows the same basic format. First we
describe a problem and present some background information. Then
we approximate the solution to the basic problem using a Riemann
sum. An exact answer comes from taking a limit of the Riemann sum,
and we get a definite integral. After looking at several examples of the
same basic application, we will examine some variations.

5.1 Volumes by Slicing

The previous chapter emphasized a geometric interpretation of defi-
nite integrals as “areas” in two dimensions. This section emphasizes
another geometrical use of integration, computing volumes of solid
three-dimensional objects such as those shown in the margin.

Our basic approach will involve cutting the whole solid into thin
“slices” whose volumes we can approximate, adding the volumes of
these “slices” together (to get a Riemann sum), and finally obtaining an
exact answer by taking a limit of those sums to get a definite integral.
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The Building Blocks: Right Solids

A right solid is a three-dimensional shape swept out by moving a
planar region A some distance h along a line perpendicular to the plane
of A (see margin). We call the region A a face of the solid and use
the word “right” to indicate that the movement occurs along a line
perpendicular — at a right angle — to the plane of A. Two parallel cuts
produce one slice with two faces:

A slice has volume, and a face has area.

Example 1. Suppose a fine, uniform mist is suspended in the air and
that every cubic foot of mist contains 0.02 ounces of water droplets. If
you run 50 feet in a straight line through this mist, how wet do you
get? Assume that the front (or a cross section) of your body has an area
of 8 square feet.

Solution. As you run, the front of your body sweeps out a “tunnel”
through the mist:

The volume of the “tunnel” is the area of the front of your body
multiplied by the length of the tunnel:

volume =
(

8 ft2
)
(50 ft) = 400 ft3

Because each cubic foot of mist held 0.02 ounces of water (which is

now on you), you swept out a total of
(

400 ft3
)(

0.02
oz
ft3

)
= 8 ounces

of water. If the water were truly suspended and not falling, would it
matter how fast you ran? ◀
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If A is a rectangle, then the “right solid” formed by moving A along
a line (see margin) is a 3-dimensional solid box B. The volume of B is:

(area of A) (distance along the line) = (base) (height) (width)

If A is a circle with radius r meters (see margin), then the “right
solid” formed by moving A along a line a distance of h meters is a right
circular cylinder with volume equal to:

(area of A) (distance along the line) =
[
π (r ft)2

]
· [h ft] = πr2h ft3

If we cut a right solid perpendicular to its axis (like slicing a block
of cheese), then each face (cross-section) has the same two-dimensional
shape and area. In general, if a 3-dimensional right solid B is formed
by moving a 2-dimensional shape A along a line perpendicular to A,
then the volume of B is defined to be:

(area of A) · (distance moved along the line perpendicular to A)

Example 2. Calculate the volumes of the right solids in the margin.

Solution. The cylinder is formed by moving the circular base with
cross-sectional area πr2 = 9π in2 a distance of 4 inches along a line

perpendicular to the base, so the volume is
(

9π in2
)
· (4 in) = 36π in3.

The volume of the box is (base area) · (distance base is moved) =

(8 m2) · (3 m) = 24 m3. We can also simply multiply “length times
width times height” to get the same answer.

The last shape consists of two “easy” right solids with volumes
V1 =

(
π · 32) · (2) = 18π cm3 and V2 = (6)(1)(2) = 12 cm3, so the

total volume is (18π + 12) cm3 ≈ 68.5 cm3. ◀

Practice 1. Calculate the volumes of the right solids shown below.

Volumes of General Solids

We can cut a general solid into “slices,” each of which is “almost” a
right solid if the cuts are close together. The volume of each slice will
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then be approximately equal to the volume of a right solid, so we can
approximate the total volume of the entire solid by adding up the
approximate volumes of the right-solid “slices.”

First we position an x-axis below the solid shape (see margin) and let
A(t) be the area of the face formed when we cut the solid perpendicular
to the x-axis where x = t. If P = {x0 = a, x1, x2, . . . , xn = b} is a
partition of [a, b] and we cut the solid at each xk, then each slice of
the solid is “almost” a right solid and the volume of each slice is
approximately

(area of a face of the slice) (thickness of the slice) ≈ A (xk) · ∆xk

The total volume V of the solid is approximately equal to the sum of
the volumes of the slices:

V = ∑ (volume of each slice) ≈ ∑ A (xk) · ∆xk

which is a Riemann sum.
The limit, as the mesh of the partitions approaches 0 (taking thinner

and thinner slices), of the Riemann sum is the definite integral of A(x):

V ≈ ∑ A (xk) · ∆xk −→
∫ b

a
A(x) dx

Volume by Slices Formula

If S is a solid and A(x) is the area of the face formed
by a cut at x made perpendicular to the x-axis

then the volume V of the part of S sitting above [a, b] is:

V =
∫ b

a
A(x) dx

If S is a solid (see margin), and A(y) is the area of a face formed by
a cut at y perpendicular to the y-axis, then the volume of a slice with
thickness ∆yk is approximately A (yk) · ∆yk. The volume of the part of
S between cuts at y = c and y = d on the y-axis is therefore:

V =
∫ d

c
A(y) dy

Whether you slice a region with cuts perpendicular to the x-axis or
cuts perpendicular to the y-axis depends on which slicing method
results in slices with cross-sectional areas that are easiest to compute.
Furthermore, slicing one way may result in a definite integral that is
difficult to compute, while slicing the other way may result in a much
easier definite integral (although you often can’t tell which method
will result in an easier integration process until you actually set up the
integrals).
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Example 3. For the solid shown in the margin, the cross-section formed
by a cut at x is a rectangle with a base of 2 inches. (a) Find a formula for
the approximate volume of the slice between xk−1 and xk. (b) Compute

the volume of the solid for x between 0 and
π

2
.

Solution. (a) The volume of a “slice” is approximately:

(area of the face) · (thickness) = (base) · (height) · (thickness)

= (2 in) (cos(xk) in) · (∆xk in)

= 2 cos(xk)∆xk in3

(b) If we cut the solid into n slices of equal thickness ∆x and add up
the approximate volumes of the slices, we get a Riemann sum

n

∑
k=1

2 cos(xk)∆x −→
∫ π

2

0
2 cos(x) dx = 2 sin(x)

∣∣∣∣ π
2

0
= 2

so the volume of the solid is 2 in3. ◀

Practice 2. For the solid shown in the margin, the face formed by a
cut at x is a triangle with a base of 4 inches. (a) Find a formula for the
approximate volume of the slice between xk−1 and xk. (b) Use a definite
integral to compute the volume of the solid for x between 1 and 2.

Example 4. For the solid shown in margin, each face formed by a cut
at x is a square. Compute the volume of the solid.

Solution. The volume of a “slice” is approximately:

(area of the face) · (thickness) = (base)2 · (thickness)

= (
√

xk)
2 · ∆xk = xk · ∆xk

Adding up the approximate volumes of n slices, we get a Riemann sum
that approximates the volume of the entire solid:

n

∑
k=1

xk · ∆xk −→
∫ 4

0
x dx =

1
2

x2
∣∣∣∣4
0
= 8

so the volume of the solid is 8. ◀

Example 5. Find the volume of the square-based pyramid shown in
the margin.

Solution. Each cut perpendicular to the y-axis yields a square face,
but in order to find the area of each square we need a formula for the
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length of one side s of the square as a function of y, the location of the
cut. Using similar triangles (see margin), we know that:

s
10 − y

=
6
10

⇒ s =
6

10
(10 − y) = 6 − 3

5
y

The rest of the solution is straightforward:

A(y) = (side)2 =

[
3
5
(10 − y)

]2
=

9
25

(
100 − 20y + y2

)
so the volume of the solid is:

V =
∫ 10

0
A(y) dy =

∫ 10

0

9
25

(
100 − 20y + y2

)
dy

=
9

25

[
100y − 10y2 +

1
3

y3
]10

0

=
9

25

[(
1000 − 1000 +

1000
3

)
− (0 − 0 + 0)

]
= 120

You may recall from geometry that the formula for the volume of a

pyramid is
1
3

Bh where B is the area of the base, which yields the same

result as the definite integral:
1
3

(
62
)
(10) = 120. ◀

Example 6. Form a solid with a base that is the region between the
graphs of f (x) = x + 1 and g(x) = x2 for 0 ≤ x ≤ 2 by building
squares with heights (sides) equal to the vertical distance between the
graphs of f and g (see margin). Find the volume of this solid.

Solution. The area of a square face is A(x) = (side)2 and the length
of a side is either f (x)− g(x) or g(x)− f (x), depending on whether
f (x) ≥ g(x) or g(x) ≥ f (x). We can express this side length as
| f (x)− g(x)| but the side length is squared in the area formula, so
A(x) = | f (x)− g(x)|2 = ( f (x)− g(x))2. Then:

V =
∫ b

a
A(x) dx =

∫ 2

0
( f (x)− g(x))2 dx =

∫ 2

0

[
(x + 1)− x2

]2
dx

=
∫ 2

0

[
1 + 2x − x2 − 2x3 + x4

]
dx

=

[
x + x2 − 1

3
x3 − 1

2
x4 +

1
5

x5
]2

0

which results in a volume of
26
15

. ◀

Wrap-Up

At first, all of these volumes may seem overwhelming — there are so
many possible solids and formulas and different cases. If you con-
centrate on the differences, things can indeed seem very complicated.
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Instead, focus on the pattern of cutting, finding areas of faces, volumes
of slices, and adding those volumes. Then reason your way to a definite
integral. Try to make cuts so the resulting faces have regular shapes
(rectangles, triangles, circles) whose areas you can calculate easily. Try
not to let the complexity of the whole solid confuse you. Sketch the
shape of one face and label its dimensions. If you can find the area of
one face in the middle of the solid, you can usually find the pattern for
all of the faces — and then you can easily set up the integral.

5.1 Problems

In Problems 1–5, compute the volume of the solid
using the values provided in the table.

1.

box base height width

1 8 6 1

2 6 4 2

3 3 3 1

2.

box base height width

1 8 6 1

2 8 4 2

3 4 3 2

4 2 2 1

3.

disk radius width

1 4 0.5
2 3 1.0
3 1 2.0

4.

disk diameter width

1 8 0.5
2 6 1.0
3 2 2.0

5.

slice face area width

1 9 0.2
2 6 0.2
3 2 0.2

6. Five rock slices are embedded with mineral de-
posits. Use the information in the table to esti-
mate the total rock volume.

slice face area min. area width

1 4 1 0.6
2 12 2 0.6
3 20 4 0.6
4 10 3 0.6
5 8 2 0.6
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In Problems 7–12, represent the volume of each solid
as a definite integral, then evaluate the integral.

7. For 0 ≤ x ≤ 3, each face is a square with height
5 − x inches.

8. For 0 ≤ x ≤ 3, each face is a rectangle with base
x inches and height x2 inches.

9. For 0 ≤ x ≤ 4, each face is a triangle with base
x + 1 m and height

√
x m.

10. For 0 ≤ x ≤ 3, each face is a circle with height
(diameter) 4 − x m.

11. For 0 ≤ x ≤ 4, each face is a circle with height
(diameter) 4 − x m.

12. For 0 ≤ x ≤ 2, each face is a square with a side
extending from y = 1 to y = x + 2.

13. Suppose A and B are solids (see below) so that ev-
ery horizontal cut produces faces of A and B that
have equal areas. What can we conclude about
the volumes of A and B? Justify your answer.
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In 14–18, represent the volume of each solid as a
definite integral, then evaluate the integral.

14.

15.

16.

17.

18.

In 19–28, represent the volume of each solid as a
definite integral, then evaluate the integral.

19. The base of a solid is the region between one arch
of the curve y = sin(x) and the x-axis, and cross-
sections (“slices”) of the solid perpendicular to
the base (and to the x-axis) are squares.

20. The base of a solid is the region in the first quad-
rant bounded by the x-axis, the y-axis and the
curve y = cos(x), and cross-sections (“slices”) of
the solid perpendicular to the base (and to the
x-axis) are squares.

21. The base of a solid is the region in the first quad-
rant bounded by the x-axis, the y-axis and the
curve y = cos(x), and slices perpendicular to the
base (and to the x-axis) are semicircles.

22. The base of a solid is the region between one arch
of the curve y = sin(x) and the x-axis, and slices
perpendicular to the base (and to the x-axis) are
equilateral triangles.

23. The base of a solid is the region bounded by the
parabolas y = x2 and y = 3 + x − x2, and slices
perpendicular to the base (and to the x-axis) are:

(a) squares.

(b) semicircles.

(c) rectangles twice as tall as they are wide.

(d) isosceles right triangles with a hypotenuse in
the base of the solid.
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24. The base of a solid is the first-quadrant region
bounded by the y-axis, the curve y = sin(x) and
the curve y = cos(x), and slices perpendicular to
the base (and to the x-axis) are:

(a) squares.
(b) semicircles.
(c) rectangles twice as tall as they are wide.
(d) isosceles right triangles with a hypotenuse in

the base of the solid.

25. The base of a solid is the region bounded by the
x-axis, the y-axis and the parabola y = 8 − x2,
and slices perpendicular to the base (and to the
y-axis) are squares.

26. The base of a solid is the region bounded by the
x-axis, the line y = 3 and the parabola y = 8− x2,
and slices perpendicular to the base (and to the
y-axis) are squares.

27. The base of a solid is the region bounded below
by the line y = 1, on the left by the line x = 2
and above by the parabola y = 8 − x2, and slices
perpendicular to the base (and to the y-axis) are
semicircles.

28. The base of a solid is the region bounded below
by y = 1, on the left by x = 2 and above by
y = 8 − x2, and slices perpendicular to the base
(and to the x-axis) are semicircles.

29. Calculate (a) the volume of the right solid in the
top figure (b) the volume of the “right cone” in
the bottom figure and (c) the ratio of the “right
cone” volume to the right solid volume.

30. Calculate (a) the volume of the right solid in the
top figure (b) the volume of the “right cone” in
the bottom figure and (c) the ratio of the “right
cone” volume to the right solid volume.

31. Calculate (a) the volume of the right solid in the
top figure if each “blob” has area B (b) the volume
of the “right cone” in the bottom figure, using
“similar blobs” to conclude that the cross-section
x units from the y-axis has area A(x) =

B
L2 x2

and (c) the ratio of the “right cone” volume to the
right solid volume.

32. “Personal calculus”: Describe a practical way to
determine the volume of your hand and arm up
to the elbow.
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5.1 Practice Answers

1. triangular base: V = (base area) · (height) =
(

1
2
· 3 · 4

)
(6) = 36

semicircular base: V = (base area) · (height) =
(

1
2

π · 32
)
(7) ≈ 98.96

“blob”-shaped base: V = (base area) · (height) = (8) (5) = 40 in3

2. (a) The base of each triangular slice is 4 and the height is approxi-

mately xk
2 so A (xk) ≈

1
2
(4)
(

xk
2
)
= 2xk

2 and the volume of the

k-th slice is this approximately 2xk
2 · ∆xk.

(b) Adding up the approximate volumes of all n slices yields
∞

∑
n=1

2xk
2 · ∆xk,

which is a Riemann sum with limit:∫ 2

0
2x2 dx =

2
3

x3
∣∣∣∣2
1
=

16
3

− 2
3
=

14
3
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