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5.4 More Work

In Section 4.7 we investigated the problem of calculating the work
done in lifting an object using a cable. This section continues that
investigation and extends the process to handle situations in which the
applied force or the distance — or both — may vary. The method we
used before turns up again here. The first step is to divide the problem
into small “slices” so that the force and distance vary only slightly on
each slice. Then we calculate the work done for each slice, approximate
the total work by adding together the work for each slice (to get a
Riemann sum) and, finally, take a limit of that Riemann sum to get a
definite integral representing the total work.

There are so many possible variations
in work problems that it is vital you
understand the process.

Recall that the work done on an object by a constant force is defined
to be the magnitude of the force applied to the object multiplied by the
distance over which the force is applied:

work = (force) · (distance)

A similar example appeared in Section
4.7, but it provides a good illustration of
the process of dividing a problem into
pieces and analyzing each piece.

Example 1. A 10-pound object is lifted 40 feet from the ground to
the top of a building using a cable that weighs 1

2 pound per foot (see
margin figure). How much work is done?

Solution. The work done on the object is simply:

W = F · d = (10 lbs) · (40 ft) = 400 ft-lbs

For the rope, we can partition it (see second margin figure) into n small
pieces, each with length ∆x. Each small piece of rope weighs:(

1
2

lb
ft

)
(∆x ft) =

1
2

∆x lb

and the k-th slice of rope is lifted a distance of (approximately) 40 − xk

feet, so the work done on the k-th slice of rope is (approximately):

Wk = Fk · dk =

(
1
2

∆x lb
)
·
(
(40 − xk) ft

)
=

1
2
(40 − xk)∆x ft-lbs

and the total work done to lift the rope is therefore:
n

∑
k=1

1
2
(40 − xk)∆x −→

∫ 40

0

1
2
(40 − x) dx

Evaluating this integral yields:

1
2

[
40x − 1

2
x2
]40

0
=

1
2
[1600 − 800] = 400 ft-lbs

so the total work done to lift the object is 400 + 400 = 800 ft-lbs. ◀

Practice 1. How much work is done lifting a 130-pound injured person
to the top of a 30-foot cliff using a stretcher that weighs 10 pounds and
a cable weighing 2 pounds per foot?
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Work in the Metric System Virtually all countries other than the
United States — along with U.S. scientists
and engineers — use the metric system,
so you need to know how to solve work
problems using metric units.

All of the work problems we have considered so far measured force
in pounds and distance in feet, so that work was measured in “foot-
pounds.” In the metric system, we often measure distance in meters
(m) and force in newtons (N). According to Newton’s second law of
motion:

force = (mass) · (acceleration)

or, more succinctly, F = ma. The force in many work problems is the
weight of an object, so the acceleration in question is the acceleration
due to gravity, denoted by g. Near sea level on Earth, g ≈ 9.80665 m

sec2 ,
although the value 9.81 is commonly used in computations. An object
with a mass of 10 kg would thus have a weight of:

mg = (10 kg) ·
(

9.81
m

sec2

)
= 98.1

kg · m
sec2 = 98.1 N

Sir Isaac Newton (1643–1727) not only in-
vented calculus, he formulated the laws
of motion and universal gravitation in
physics (among many other accomplish-
ments).

This unit for work is named after another
English physicist, James Prescott Joule
(1818–1889).

Example 2. An object with a mass of 10 kg is lifted 40 m from the
ground to the top of a building using a 40-meter cable with a mass of
20 kg. How much work is done?

Solution. The work done on the object is:

W = F · d = mg · d = (10 kg)
(

9.81
m

sec2

)
· (40 m) = 3924 N-m

or 3,924 joules (a joule, abbreviated “J,” is 1 N-m). The cable has total
mass 20 kg and is 40 m long, so it has a linear density of:

20 kg
40 m

=
1
2

kg
m

We can partition the cable into n small pieces, each with length ∆x, so
each small piece of cable has a mass of:(

1
2

kg
m

)
(∆x m) =

1
2

∆x kg

and thus has a weight of:

F = mg =

(
1
2

∆x kg
)(

9.81
m

sec2

)
= 4.905∆x

kg · m
sec2 = 4.905∆x N

The k-th slice of cable is lifted a distance of approximately 40 − xk m,
so the work done on the k-th slice of cable is:

Wk = Fk · dk = (4.905∆x N) ·
(
(40 − xk) m

)
= 4.905 (40 − xk)∆x N-m

and the total work done lifting the cable is therefore:
n

∑
k=1

4.905 (40 − xk)∆x −→
∫ 40

0
4.905 (40 − x) dx = 3924 J

so the total work done to lift the object is 3924 + 3924 = 7848 J. ◀

Much of this process should look familiar.
Compare the solution of Example 2 to
that of Example 1 on the previous page.
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Practice 2. How much work is done lifting an injured person of mass
50 kg to the top of a 30-meter cliff using a stretcher of mass 5 kg and a
30-meter cable of mass 10 kg?

Lifting Liquids

height radius

4 1.4
3 1.6
2 1.5
1 1.0
0 1.1

You might wonder why the displacement
is not computed by taking the distance
from the bottom of the straw up to the top
of the straw, but when computing work
we need to use the net displacement.

Water’s density is 62.5
lb
ft3 = 0.5787

oz
in3 .

Example 3. A cola glass (see margin figure) has dimensions given in
the margin table. Approximately how much work do you do when you
drink a cola glass full of water by sucking it through a straw to a point
3 inches above the top edge of the glass?

Solution. The table partitions the water into 1-inch “slices”:

The work needed to move each slice is approximately the weight of
the slice times the distance the slice is moved. We can use the radius
at the bottom of each slice to approximate the volume — and then the
weight — of the slice, and a point halfway up each slice to calculate the
distance the slice is moved. For the top slice:

weight = (volume) (density) ≈ π (1.6 in)2 (1 in)
(

0.5787
oz
in3

)
≈ 4.7 oz

and the distance this slice travels is roughly 3.5 inches, so:

W = F · d ≈ (4.7 oz) (3.5 in) ≈ 16.4 oz-in

For the next slice:

weight = (volume) (density) ≈ π (1.5 in)2 (1 in)
(

0.5787
oz
in3

)
≈ 4.1 oz

and the distance this slice travels is roughly 4.5 inches, so:

W = F · d ≈ (4.1 oz) (4.5 in) ≈ 18.4 oz-in
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The work for the last two slices is (1.8 oz) (5.5 in) = 9.9 oz-in and
(2.2 oz) (6.5 in) = 14.3 oz-in. The total work is then sum of the work
needed to raise each slice of water:

(16.4 oz-in) + (18.4 oz-in) + (9.9 oz-in) + (14.3 oz-in) = 59.0 oz-in

or about 0.31 ft-lbs. ◀

Practice 3. Approximate the total work needed to raise the water in
Example 3 by using the top radius of each slice to approximate its
weight and the midpoint of each slice to approximate the distance the
slice is raised.

If we knew the radius of the cola glass at every height, then we could
improve our approximation by taking thinner and thinner slices. In fact,
we could have formed a Riemann sum, taken the limit of the Riemann
sum as the thickness of the slices approached 0, and obtained a definite
integral. In the next Example we do know the radius of the container at
every height.

In this example, both the force and the
distance vary, and each depends on the
height of the “slice” above the bottom of
the cone.

Example 4. Find the work needed to raise the water in the cone shown
below to the top of the straw.

If you want, you can choose ck = yk like
you did in Practice 3.

To see this, use similar triangles in the
right-hand figure above:

x
y
=

2
6

⇒ x =
y
3

Solution. We can partition the cone to get n “slices” of water. The
work done raising the k-th slice is the product of the distance the slice
is raised and the force needed to move the slice (the weight of the slice).
For any ck in the subinterval [yk−1, yk], the slice is raised a distance of
approximately (10 − ck) cm. Each slice is approximately a right circular
cylinder, so its volume is:

π (radius)2 ∆y

At a height y above the bottom of the cone, the radius of the cylinder

is x =
y
3

so at a height ck the radius is
1
3

ck; the mass of each slice is
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therefore:

(volume) (density) ≈ π (radius)2 (∆y)
(

1
g

cm3

)
= π

(
1
3

ck cm
)2

(∆y cm)
(

1
g

cm3

)
=

π

9
(ck)

2 ∆y g

so the force required to raise the k-th slice is:

Fk = mk · g ≈
[π

9
(ck)

2 ∆y g
]
·
[
981

cm
sec2

]
= 109π (ck)

2 ∆y
g-cm
sec2

and the work required to lift the k-th slice is:

Wk = Fk · dk ≈
[
109π (ck)

2 ∆y dyn
]
· [(10 − ck) cm]

= 109π (ck)
2 (10 − ck)∆y dyn-cm

We can then add the work done on all n slices to get a Riemann sum:

W ≈
n

∑
k=1

109π (ck)
2 (10 − ck)∆y −→

∫ y=6

y=0
109πy2(10 − y) dy

Evaluating this integral is relatively straightforward:

W = 109π
∫ 6

0

(
10y2 − y3

)
dy = 109π

[
10
3

y3 − 1
4

y4
]6

0

= 109π [720 − 324] = 43164π erg

or about 135, 604 erg = 0.0135604 J. ◀

In the metric system, a gram (abbrevi-
ated “g”) is defined as the mass of one
cubic centimeter of water, so the density
of water is:

1
g

cm3 = 1, 000
kg
m3

In the g–cm–sec version of the metric sys-
tem, the standard unit of force is a dyne

(abbreviated “dyn”), which is 1
g-cm
sec2 :

1 N = 100, 000 dyn

In the g–cm–sec version of the metric sys-
tem, the standard unit of work is called
an erg, which is 1 dyn-cm:

1 J = 10, 000, 000 erg

We integrate from y = 0 to y = 6 because
the bottom slice of water is at a height
of 0 cm and the top slice of water is at a
height of 6 cm.

Practice 4. How much work is done drinking just the top 3 cm of the
water in Example 4?

Example 5. The trough shown in the margin is filled with a liquid
weighing 70 pounds per cubic foot. How much work is done pumping
the liquid over the wall next to the trough?

Solution. As before, we can partition the height of the trough to get
n “slices” of liquid (see margin figure at top of next page). To form a
Riemann sum for the total work, we need the weight of a typical slice
and the distance that slice is raised. The weight of the k-th slice is:

(volume) · (density) ≈ (length) (width) (height) ·
(

70
lb
ft3

)
The length of each slice is 5 feet, and the height of each slice is ∆y feet,
but the width of each slice (wk) varies and depends on how far the slice
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is above the bottom of the trough (ck). Using similar triangles on the
edge of the trough, we can observe that:

wk
ck

=
2
4

⇒ wk =
ck
2

so the weight of the k-th slice is therefore:

(5 ft)
( ck

2
ft
)
(∆y ft) ·

(
70

lb
ft3

)
= 175ck∆y lb

The k-th slice is raised from a height of ck feet to a height of 6 feet,
through a distance of 6 − ck feet, so the work done on the k-th slice is:

Wk = Fk · dk ≈
[
175ck∆y lb

]
·
[
(6 − ck) ft

]
= 175ck (6 − ck)∆y lb-ft

Adding up the work done on all n slices yields a Riemann sum that
converges to a definite integral:

n

∑
k=1

175ck (6 − ck)∆y −→
∫ 4

0
175y(6 − y) dy

Evaluating the integral is straightforward:

175
∫ 4

0

(
6y − y2

)
dy = 175

[
3y2 − 1

3
y3
]4

0
=

14000
3

or about 4, 667 ft-lbs. ◀

We integrate from y = 0 to y = 4 because
the bottom slice of liquid is at a height
of 0 feet and the top slice of liquid is at a
height of 4 feet.

You can generally handle “raise the liquid” problems by partitioning
the height of the container and then focusing on a typical slice.

If you can calculate the weight of a typical
slice and the distance it is raised, the rest
of the steps are straightforward: form a
Riemann sum, let it converge to a definite
integral, and evaluate the integral to get
the total work.

Practice 5. How much work is done pumping half of the liquid over
the wall in Example 5?

Work Moving an Object Along a Straight Path

The force f (x) discussed here is the min-
imum force required to counteract the
kinetic friction between the box and the
surface at any point. You will learn more
about friction in physics and engineering
classes.

If you push a box along a flat surface (as in the figure below) that is
smooth in some places and rough in others, at some places you only
need to push the box lightly and in other places you have to push hard.
If f (x) is the amount of force needed at location x, and you want to
push the box along a straight path from x = a to x = b, then we can
partition the interval [a, b] into n pieces, [a, x1], [x1, x2], . . . , [xn−1, b]:



426 contemporary calculus

The work required to move the box through the k-th subinterval,
from xk−1 to xk, is approximately:

(force) · (distance) ≈ f (ck) · (xk − xk−1) = f (ck) · ∆xk

for any ck in the subinterval [xk−1, xk]. The total work is the sum of the
work along these n pieces, which is a Riemann sum that converges to a
definite integral:

n

∑
k=1

f (ck) · ∆xk −→
∫ b

a
f (x) dx

This has a simple geometric interpretation. If f (x) is the force applied
at position x, then the work done to move the object from position x = a
to position x = b is the area under the graph of f between x = a and
x = b (see margin). This formula applies in more general situations, as
demonstrated in the next Example.

Example 6. If a force of 7x pounds is required to keep a spring stretched
x inches past its natural length, how much work will be done stretching
the spring from its natural length (x = 0) to five inches beyond its
natural length (x = 5)?

Solution. According to the formula we just developed:

work =
∫ b

a
f (x) dx =

∫ 5

0
7x dx =

[
7
2

x2
]5

0
=

175
2

= 87.5 in-lbs

or about 7.29 ft-lbs. (See margin for a graphical interpretation.) ◀

Practice 6. How much work is done to stretch the spring in Example 6

from 5 inches past its natural length to 10 inches past its natural length?

The preceding spring example is an application of a physical prin-
ciple discovered by English physicist Robert Hooke (1635–1703), a
contemporary of Newton.

Hooke’s Law: The force f (x) needed to keep a spring stretched
(or compressed) x units beyond its natural length is proportional
to the distance x: f (x) = kx for some constant k.

We call the “k” in Hooke’s Law a “spring constant.” It varies from
spring to spring (depending on the materials and dimensions of the
spring — and even on the temperature of the spring), but remains
constant for each spring as long as the spring is not overextended or
overcompressed. Most bathroom scales use compressed springs — and

In fact, Hooke’s Law holds for most
solid objects, at least for limited forces:
“Nor is it observable in these bodies only,
but in all other springy bodies whatso-
ever, whether metal, wood, stones, baked
earth, hair, horns, silk, bones, sinews,
glass and the like.” — Robert Hooke, De
Potentia Restitutiva, or Of Spring Hooke’s Law — to measure a person’s weight.
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Example 7. A spring has a natural length of 43 cm when hung from
a ceiling. A mass of 40 grams stretches it to a length of 75 cm. How
much work is done stretching the spring from a length of 63 cm to a
length of 93 cm?

Solution. First we need to use the given information to find the value
of k, the spring constant. A mass of 40 g produces a stretch of 75− 43 =

32 cm. Substituting x = 32 cm and f (x) = 40 g · 981
cm
sec2 into Hooke’s

Law f (x) = kx, we have:

40(981) = k(32) ⇒ k =
4905

4

The length of 63 cm represents a stretch of 20 cm beyond the spring’s
natural length, while the length of 93 cm represents a 50-cm stretch.
The work done is therefore:∫ 50

20

4905
4

x dx =

[
4905

8
x2
]50

20
= 613.125

[
502 − 202

]
= 1287562.5 ergs

or about 0.129 joules. ◀

Practice 7. A spring has a natural length of 3 inches when hung from a
ceiling, and a force of 2 pounds stretches it to a length of 8 inches. How
much work is done stretching the spring from a length of 5 inches to a
length of 10 inches?

Lifting a Payload

Calculating the work required to lift a payload from the surface of a
moon (or any body with no atmosphere) can be accomplished using a
similar computation. Newton’s Law of Universal Gravitation says that
the gravitational force between two bodies of mass M and m is:

F =
GMm

x2

where G ≈ 6.67310−11 N
(

m
kg

)2
is the gravitational constant and x is

the distance between (the centers of) the two bodies.
If the moon has a radius of R m and mass M, the payload has mass

m and x measures the distance (in meters) from payload to the center
of the moon (so x ≥ R), then the total amount of work done lifting the
payload from the surface of the moon (an altitude of 0, where x = R)
to an altitude of R (where x = R + R = 2R) is:∫ 2R

R

GMm
x2 dx = GMm

[
−1
x

]2R

R
= GMm

[
−1
2R

+
1
R

]
=

GMm
2R

Practice 8. How much work is required to lift the payload from an
altitude of R m above the surface (x = 2R) to an altitude of 2R m?
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The appropriate areas under the force graph (see margin) illustrate
why the work to lift the payload from x = R to x = 2R is much larger
than the work to lift it from x = 2R to x = 3R. In fact, the work to lift
the payload from x = 2R to x = 100R is 0.49GMmR−1, which is less
than the 0.5GMmR−1 needed to lift it from x = R to x = 2R.

The real-world problem of lifting a payload turns out to be much
more challenging, because the rocket doing the lifting must also lift
itself (more work) and the mass of the rocket keeps changing as it
burns up fuel. Lifting a payload from a moon (or planet) with an
atmosphere is even more difficult: the atmosphere produces friction,
and the frictional force depends on the density of the atmosphere
(which varies with height), the speed of the rocket and the shape of the
rocket. Life can get complicated.

Power

Scottish engineer James Watt (1736–1819)
devised horsepower to compare the out-
put of steam engines with the power of
draft horses.

In physics, power is defined as the rate of work done per unit of time.
One traditional measurement of power, horsepower (abbreviated “hp”),
originated with James Watt’s determination in 1782 that a horse could
turn a mill wheel of radius 12 feet 144 times in an hour while exerting
a force of 180 pounds. Such a horse would travel:

144
rev
hr

· 2π(12)
ft

rev
· 1

60
hr

min
=

288π

5
ft

min

and so it would produce work at a rate of:

(180 lb)
(

288π

5
ft

min

)
= 10368π

ft-lb
min

≈ 32572
ft-lb
min

which Watt subsequently rounded to:

33000
ft-lb
min

= 550
ft-lb
sec

= 1 horsepower

The metric unit of power, called a watt (abbreviated “W”) in Watt’s
honor, is equivalent to 1 joule per second.

1 hp ≈ 746 W

Example 8. How long will it take for a 1-horsepower electric pump to
pump all of the liquid in the trough from Example 5 over the wall?

Solution. Power (P) is the rate at which work (W) is done, so:

P =
W
t

⇒ t =
W
P

=
14000

3 ft-lbs
1 hp

=
14000

3 ft-lbs

550 ft-lbs
sec

=
280
33

sec

or about 8.5 seconds. ◀
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5.4 Problems

1. A tank 4 feet long, 3 feet wide and 7 feet tall (see
below) is filled with water. How much work is
required to pump the water out over the top edge
of the tank?

2. A tank 4 feet long, 3 feet wide and 6 feet tall is
filled with a oil with a density of 60 pounds per
cubic foot.

(a) How much work is needed to pump all of the
oil over the top edge of the tank?

(b) How much work is needed to pump the top
3 feet of oil over the top edge of the tank?

3. A tank 5 m long, 2 m wide and 4 m tall is filled
with an oil of density 900 kg/m3.

(a) How much work is needed to pump all of the
oil over the top edge of the tank?

(b) How much work is needed to pump the top
10 m3 of oil over the top edge of the tank?

(c) How long does it take for a 200-watt pump to
empty the tank?

4. A cylindrical aquarium with radius 2 feet and
height 5 feet (see below) is filled with salt water
(which has a density of 64 pounds per cubic foot).

(a) How much work is done pumping all of the
water over the top edge of the aquarium?

(b) How long does it take for a 1
2 -horsepower

pump to empty the tank? A 1
4 -horsepower

pump? Which pump does more work?

(c) If the aquarium is only filled to a height of
4 feet with sea water, how much work is re-
quired to empty it?

5. A cylindrical barrel with a radius of 1 m and a
height of 6 m is filled with water.

(a) How much work is done pumping all of the
water over the top edge of the barrel?

(b) How much work is done pumping the top 1 m
of water to a point 2 m above the top edge of
the barrel?

(c) How long will it take a 1
2 -horsepower pump to

remove half of the water from the barrel?

6. The conical container shown below is filled with
oats that weigh 25 pounds per ft3.

(a) How much work is done lifting all of the grain
over the top edge of the cone?

(b) How much work is required to lift the top
2 feet of grain over the top edge of the cone?

7. If you and a friend share the work equally in
emptying the conical container in the previous
problem, what depth of grain should the first
person leave for the second person to empty?
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8. A trough (see below) is filled with pig slop weigh-
ing 80 pounds per ft3. How much work is done
lifting all the slop over the top of the trough?

9. In the preceding problem, how much work is
done lifting the top 14 ft3 of slop over the top
edge of the trough?

10. The parabolic container shown below (with a
height of 4 m) is filled with water.

(a) How much work is done pumping all of the
water over the top edge of the tank?

(b) How much work is done pumping all of the
water to a point 3 m above the top of the tank?

11. The parabolic container shown below (with a
height of 2 m) is filled with water.

(a) How much work is done pumping all of the
water over the top edge of the tank?

(b) How much work is done pumping all of the
water to a point 3 m above the top of the tank?

12. A spherical tank with radius 4 m is full of water.
How much work is done lifting all of the water
to the top of the tank?

13. The spherical tank shown above is filled with wa-
ter to a depth of 2 m. How much work is done
lifting all of that water to the top of the tank?

14. A student said, “I’ve got a shortcut for these tank
problems, but it doesn’t always work. I figure
the weight of the liquid and multiply that by the
distance I have to move the ‘middle point’ in the
water. It worked for the first five problems and
then it didn’t.”

(a) Does this “shortcut” really give the right an-
swer for the first five problems?

(b) How do the containers in the first five prob-
lems differ from the others?

(c) For which of the containers shown below will
the “shortcut” work?

15. All of the containers shown below have the same
height and hold the same volume of water.

(a) Which requires the most work to empty? Jus-
tify your response with a detailed explanation.

(b) Which requires the least work to empty?
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16. All of the containers shown below have the same
total height and at each height x above the ground
they all have the same cross-sectional area.

(a) Which requires the most work to empty? Jus-
tify your response with a detailed explanation.

(b) Which requires the least work to empty?

17. The figure below shows the force required to
move a box along a rough surface. How much
work is done pushing the box:

(a) from x = 0 to x = 5 feet?

(b) from x = 3 to x = 5 feet?

18. How much work is done pushing the box in the
figure above:

(a) from x = 3 to x = 7 feet?

(b) from x = 0 to x = 7 feet?

19. A spring requires a force of 6x ounces to keep it
stretched x inches past its natural length. How
much work is done stretching the spring:

(a) from its natural length (x = 0) to 3 inches
beyond its natural length?

(b) from its natural length to 6 inches beyond its
natural length?

20. A spring requires a force of 5x dyn to keep it
compressed x cm from its natural length. How
much work is done compressing the spring:

(a) 7 cm from its natural length?

(b) 10 cm from its natural length?

21. The figure below shows the force required to
keep a spring that does not obey Hooke’s Law
stretched beyond its natural length of 23 cm.
About how much work is done stretching it:

(a) from a length of 23 cm to a length 33 cm?

(b) from a length of 28 cm to a length 33 cm?

22. Approximately how much work is done stretch-
ing the defective spring in the previous problem:

(a) from a length of 23 cm to a length 26 cm?

(b) from a length of 30 cm to a length 35 cm?

23. A 3-kg object attached to a spring hung from the
ceiling stretches the spring 15 cm. How much
work is done stretching the spring 4 more cm?

24. A 2-lb fish stretches a spring 3 in. How much
work is done stretching the spring 3 more inches?

25. A payload of mass 100 kg sits on the surface
of the asteroid Ceres, a dwarf planet that is the
largest object in the asteroid belt between Mars
and Jupiter. Ceres has diameter 950 km and mass
896 × 1018 kg. How much work is required to
lift the payload from the asteroid’s surface to an
altitude of (a) 10 km? (b) 100 km? (c) 500 km?

26. Calculate the amount of work required to lift you
from the surface of the Earth’s moon to an alti-
tude of 100 km above the moon’s surface. (The
moon’s radius is approximately 1,737.5 km and
its mass is about 7.35 × 1022 kg.)
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27. Calculate the amount of work required to lift you
from the surface of the Earth’s moon (see previ-
ous problem) to an altitude of:

(a) 200 km.

(b) 400 km.

(c) 10,000 km.

28. An object located at the origin repels you with
a force inversely proportional to your distance

from the object (so that f (x) =
k
x

where x is your
distance from the object, measured in feet). When
you are 10 feet away from the origin, the repelling
force is 0.1 pound. How much work must you do
to move:

(a) from x = 20 to x = 10?

(b) from x = 10 to x = 1?

(c) from x = 1 to x = 0.1?

29. An object located at the origin repels you with a
force inversely proportional to the square of your

distance from the object (so that f (x) =
k
x2 where

x is your distance from the object, measured in
meters). When you are 10 m away from the ori-
gin, the repelling force is 0.1 N. How much work
must you do to move:

(a) from x = 20 to x = 10?

(b) from x = 10 to x = 1?

(c) from x = 1 to x = 0.1?

30. A student said “I’ve got a ‘work along a line’
shortcut that always seems to work. I figure the
average force and then multiply by the total dis-
tance. Will it always work?”

(a) Will it? Justify your answer. (Hint: What is the
formula for “average force”? )

(b) Is this a shortcut?

Work Along a Curved Path

If the location of a moving object is defined parametrically as x = x(t)
and y = y(t) for a ≤ t ≤ b (where t often represents time), and the
force required to overcome friction at time t is given as f (t), we can
represent the work done moving along the (possibly curved) path as
a definite integral. Partitioning [a, b] into n subintervals of the form
[tk−1, tk], we can choose any ck in [tk−1, tk] and approximate the force
required on [tk−1, tk] by f (ck) so that the work done between t = tk−1

and t = tk is approximately:

f (ck) ·
√
[∆xk]

2 + [∆yk]
2 = f (ck) ·

√[
∆xk
∆tk

]2
+

[
∆yk
∆tk

]2
· ∆tk

The total work done between times t = a and t = b is then:

n

∑
k=1

f (ck) ·

√[
∆xk
∆tk

]2
+

[
∆yk
∆tk

]2
·∆tk −→

∫ b

a
f (t)

√
[x′(t)]2 + [y′(t)]2 dt

In 31–35, find the work done as an object is moved
along the given parametric path (with distance mea-
sured in meters), where f (t) (in newtons) is the force
required at time t (in seconds). If necessary, approx-
imate the value of the integral using technology.

31. f (t) = t, x(t) = cos(t), y(t) = sin(t), 0 ≤ t ≤ 2π

32. f (t) = t, x(t) = t, y(t) = t2, 0 ≤ t ≤ 1

33. f (t) = t, x(t) = t2, y(t) = t, 0 ≤ t ≤ 1
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34. f (t) = sin(t), x(t) = 2t, y(t) = 3t, 0 ≤ t ≤ π: 35. f (t) = t, x(t) = cos(t), y(t) = sin(t), 0 ≤ t ≤ 2π:

(Can you find a geometric way to calculate the
shaded area?)

5.4 Practice Answers

1. The work done lifting the person and the stretcher is:

(130 lb + 10 lb) · (30 ft) = 4200 ft-lbs

The work done lifting a small piece of cable with length ∆x ft at an
initial height of x feet above the ground is:(

2
lb
ft

)
(∆x ft)

(
(30 − x) ft

)
= (60 − 2x)∆x ft-lbs

so the work done lifting the cable is:

n

∑
k=1

(60 − 2x)∆x −→
∫ 30

0
(60 − 2x) dx = 900 ft-lbs

and the total work is 4200 + 900 = 5100 ft-lbs.

2. The work done lifting the person and the stretcher is:

(50 kg + 5 kg) ·
(

9.81
m

sec2

)
· (30 m) = (55 N) (30 m) = 16186.5 J

The work done lifting a small piece of cable with length ∆x m at an
initial height of x m above the ground is:(

1
3

kg
m

)(
9.81

m
sec2

)
(∆x m)

(
(30 − x) m

)
= 3.27(30 − x)∆x J

so the work done lifting the cable is:

n

∑
k=1

3.27(30 − x)∆x −→ 3.27
∫ 30

0
(30 − x) dx = 1471.5 J

and the total work is 16186.5 + 1471.5 = 17658 J.
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3. The total work done is approximately[
π(1.4)2(3.5) + π(1.6)2(4.5) + π(1.5)2(5.5) + π(1.0)2(6.5)

]
(0.5787)

or 67.73 oz-in ≈ 0.35 ft-lbs.

4. We can use the same integral as in the solution to Example 4, but
instead integrate from y = 3 to y = 6:

W = 109π
∫ 6

3

(
10y2 − y3

)
dy = 109π

[
10
3

y3 − 1
4

y4
]6

3

= 109π

[
(720 − 324)−

(
90 − 81

4

)]
= 35561.25π erg

or about 111, 719 erg = 0.0111719 J.

5. The total amount of liquid in the trough is 1
2 · 4 · 2 · 5 = 20 ft3, so

we need to lift the top 10 ft3 of liquid out of the trough. To find
the height separating the bottom 10 ft3 of liquid from the rest, we
can recall that (from our similar-triangles computation), the width at
height h is w = h

2 , so the volume of liquid between height y = 0 and
height y = h is:

10 =
1
2
· h · h

2
· 5 ⇒ h2 = 8 ⇒ h = 2

√
2

The work to lift the top 10 ft3 of liquid is thus:

175
∫ 4

2
√

2

(
6y − y2

)
dy = 175

[
3y2 − 1

3
y3
]4

2
√

2

= 175

[(
48 − 64

3

)
−
(

24 − 16
√

2
3

)]
or about 1, 786.6 ft-lbs.

6. We can use the same integral as in the solution to Example 6, but
instead integrate from x = 5 to x = 10:∫ 10

5
7x dx =

[
7
2

x2
]10

5
= 350 − 175

2
= 262.5 in-lbs = 21.875 ft-lbs

7. According to Hooke’s Law, 2 lb = k · (8 in − 3 in) ⇒ k =
2
5

, so
stretching the spring from 5 − 3 = 2 in to 10 − 3 = 7 in beyond its
natural length requires:∫ 7

2

2
5

x dx =

[
1
5

x2
]7

2
= 9 in-lb =

3
4

ft-lb

8. The work required to lift the payload from x = 2R to x = 3R is:∫ 3R

2R

GMm
x2 dx = GMm

[
−1
x

]3R

2R
= GMm

[
−1
3R

+
1

2R

]
=

GMm
6R
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