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5.5 Volumes: Tubes

In Section 5.2, we devised the “disk” method to find the volume swept
out when a region is revolved about a line. To find the volume swept
out when revolving a region about the x-axis (see margin), we made
cuts perpendicular to the x-axis so that each slice was (approximately)
a “disk” with volume π (radius)2 · (thickness). Adding the volumes
of these slices together yielded a Riemann sum. Taking a limit as the
thicknesses of the slices approached 0, we obtained a definite integral
representation for the exact volume that had the form:∫ b

a
π [ f (x)]2 dx

The disk method, while useful in many circumstances, can be cumber-
some if we want to find the volume when a region defined by a curve
of the form y = f (x) is revolved about the y-axis or some other vertical
line. To revolve the region about the y-axis, the disk method requires
that we rewrite the original equation y = f (x) as x = g(y). Sometimes
this is easy: if y = 3x then x = y

3 . But sometimes it is not easy at all: if
y = x + ex, then we cannot solve for x as an elementary function of y.

Refer to Examples 6(b) and 6(c) from Sec-
tion 5.2 to refresh your memory.

The “Tube” Method

Partition the x-axis (as we did in the “disk” method) to cut the region
into thin, almost-rectangular vertical “slices.” When we revolve one
of these slices about the y-axis (see below), we can approximate the
volume of the resulting “tube” by cutting the “wall” of the tube and
rolling it out flat:

to get a thin, solid rectangular box. The volume of the tube is approxi-
mately the same as the volume of the solid box:

Vtube ≈ Vbox = (length) · (height) · (thickness)

= (2π · [radius]) · (height) · (∆xk)

= (2πck)
(

f (ck)
)
· ∆xk

where ck is (as usual) any point chosen from the interval [xk−1, xk].
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The volume swept out when we revolve the whole region about
the y-axis is (approximately) the sum of the volumes of these “tubes,”
which is a Riemann sum that converges to a definite integral:

n

∑
k=1

(2πck)
(

f (ck)
)
· ∆xk −→

∫ b

a
2πx · f (x) dx

Example 1. Use a definite integral to represent the volume of the solid
generated by rotating the region between the graph of y = sin(x) (for
0 ≤ x ≤ π) and the x-axis around the y-axis.

Solution. Slicing this region vertically (see margin for a representative
slice), yields slices with width ∆x and height sin(x). Rotating a slice
located x units away from the y-axis results in a “tube” with volume:

2π (radius) (height) (thickness) = 2π (x)
(

sin(x)
)

∆x

where the radius of the tube (x) is the distance from the slice to the y-
axis and the height of the tube is the height of the slice (sin(x)). Adding
the volumes of all such tubes yields a Riemann sum that converges to a
definite integral:∫ π

0
2π (radius) (height) dx =

∫ π

0
2πx sin(x) dx

We don’t (yet) know how to find an antiderivative for x sin(x) but we
can use technology (or a numerical method from Section 4.9) to compute
the value of the integral, which turns out to be 2π2 ≈ 19.74. J

You’ll learn how to find an antiderivative
for x sin(x) in Section 8.2 or, for now, you
can look for this pattern in Appendix I.

Practice 1. Use a definite integral to compute the volume of the solid
generated by rotating the region in the first quadrant bounded by
y = 4x− x2 about the y-axis.

If we had sliced the region in Example 1 horizontally instead of
vertically, the rotated slices would have resulted in “washers”; applying
the “washer” method from Section 5.2 yields the integral:∫ 1

0
π
[
(π − arcsin(y))2 − (arcsin(y))2

]
dy

The value of this integral is also 2π2, but finding an antiderivative
for this integrand will be much more challenging than finding an
antiderivative for x sin(x).

Furthermore, the washer-method integral
in this situation is more challenging to
set up than the integral using the tube
method, so the tube method is the most
efficient choice on all counts.

Rotating About Other Axes

The “tube” method extends easily to solids generated by rotating a
region about any vertical line (not just the y-axis).
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Example 2. Use a definite integral to represent the volume of the solid
generated by rotating the region between the graph of y = sin(x) (for
0 ≤ x ≤ π) and the x-axis around the line x = 4.

Solution. The region is the same as the one in Example 1, but here
we’re rotating that region about a different vertical line:

Vertical slices again generate tubes when rotated about x = 4; the only
difference here is that the radius for a slice located x units away from
y-axis is now 4− x (the distance from the axis of rotation to the slice).
The volume integral becomes:∫ π

0
2π (radius) (height) dx =

∫ π

0
2π(4− x) · sin(x) dx

which turns out to be 2π(8− π) ≈ 4.8584. J Use technology (or a table of integrals) to
verify this numerical result.

Practice 2. Use a definite integral to compute the volume of the solid
generated by rotating the region in the first quadrant bounded by
y = 4x− x2 about the line x = −7.

More General Regions

The “tube” method also extends easily to more general regions.

Many textbooks refer to this method as
the “method of cylindrical shells” or the
“shell method,” but “cylindrical shells” is
a mouthful (compared with “tube”) and
“shell method” is not precise, as shells are
not necessarily cylindrical.

Volumes of Revolved Regions (“Tube Method”)

If the region constrained by the graphs of y = f (x) and
y = g(x) and the interval [a, b] is revolved about a
vertical line x = c that does not intersect the region

then the volume of the resulting solid is:

V =
∫ b

a
2π · |x− c| · | f (x)− g(x)| dx

The absolute values appear in the general formula because the radius
and the height are both distances, hence both must be positive.

You can ensure that these ingredients in
your tube-method integral will be posi-
tive by always subtracting smaller values
from larger values: think “right − left”
for x-values and “top − bottom” for y-
values.

Example 3. Compute the volume of the solid generated by rotating the
region between the graphs of y = x and y = x2 for 2 ≤ x ≤ 4 around
the y-axis using (a) vertical slices and (b) horizontal slices.
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Solution. (a) Vertical slices (see margin) result in tubes when rotated
about the y-axis, and a slice x units away from the y-axis results in a
tube of radius x and height x2 − x, so the volume of the solid is:∫ 4

2
2πx

[
x2 − x

]
dx = 2π

∫ 4

2

[
x3 − x2

]
dx = 2π

[
1
4

x4 − 1
3

x3
]4

2

= 2π

[(
64− 64

3

)
−
(

4− 8
3

)]
=

248π

3

or about 259.7. (b) Horizontal slices result in washers when rotated
about the y-axis, but we have a new problem: the lower slices (where
2 ≤ y ≤ 4) extend from the line x = 2 on the left to the line y = x on
the right, while the upper slices (where 4 ≤ y ≤ 16) extend from the
parabola y = x2 on the left to the line x = 4 on the right. This requires
us to use two integrals to compute the volume:∫ y=4

y=2
π
[
y2 − 22

]
dy +

∫ y=16

y=4
π
[
42 − (

√
y)2
]

dy

Evaluating these integrals also results in a volume of 248π
3 ≈ 259.7. JEvaluating these integrals is straightfor-

ward, but setting them up was more time-
consuming than using the tube method.

Practice 3. Find the volume of the solid formed by rotating the region
between the graphs of y = x and y = x2 for 2 ≤ x ≤ 4 around x = 13.

Practice 4. Compute the volume of the solid generated by rotating
the region in the first quadrant bounded by the graphs of y =

√
x,

y = x + 1 and x = 4 around (a) the y-axis (b) the x-axis.

Both types of slices are perpendicular to
the x-axis, so the width of each slice is
of the form ∆x and our integrals should
involve dx.

Example 4. Compute the volume of the solid swept out by rotating

the region in the first quadrant between the graphs of y =

√
x
2

and

y =
√

x− 1 about the x-axis.

Solution. Graphing the region (see margin), it is apparent that the
curves intersect where:√

x
2
=
√

x− 1 ⇒ x
2
= x− 1 ⇒ x = 2

Slicing the region vertically results in two cases: when 0 ≤ x ≤ 1, the

slice extends from the x-axis to the curve y =
√

x
2 ; when 1 ≤ x ≤ 2, the

slice extends from y =
√

x− 1 to y =
√

x
2 . Rotating the first type of

slice about the x-axis results in a disk; rotating the second type of slice
about the x-axis results in a washer. Using the disk method for the first
interval and the washer method for the second interval, the volume of
the solid is:∫ 1

0
π

[√
x
2

]2

dx +
∫ 2

1
π

[(√
x
2

)2

−
(√

x− 1
)2
]

dx
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Evaluating these integrals is straightforward:

π
∫ 1

0

x
2

dx + π
∫ 2

1

[ x
2
− (x− 1)

]
dx = π

[
x2

4

]1

0
+ π

[
x− x2

4

]2

1
=

π

2

If you had instead sliced the region horizontally, you would only need
one type of slice (see margin). Rotating a horizontal slice around the
x-axis results in a tube. Because this slice is perpendicular to the y-axis,
the thickness of the slice is of the form ∆y, so the tube-method integral
will include a dy and we will need to formulate the radius and “height”
of the tube in terms of y. The radius of the slice is merely y, the distance
between the slice and the x-axis. The “height” of the slice is its length,
which is the distance between the two curves. The left-hand curve is:

y =

√
x
2
⇒ y2 =

x
2
⇒ x = 2y2

and the right-hand curve is:

y =
√

x− 1 ⇒ y2 = x− 1 ⇒ x = y2 + 1

so the distance between the two curves is:(
y2 + 1

)
−
(

2y2
)
= 1− y2

The curves intersect where: y2 + 1 = 2y2 ⇒ y2 = 1 ⇒ y = ±1; from
the graph we can see that the bottom of the region corresponds to y = 0
and the top of the region is at y = 1. Applying the tube method, the
volume of the solid is:∫ y=1

y=0
2πy ·

[
1− y2

]
dy = 2π

∫ 1

0

[
y− y3

]
dy = 2π

[
y
2
− y4

4

]1

0
=

π

2

which agrees with the result above from the disk+washer method. J

This application of the tube method ro-
tates a horizontal slice around a horizon-
tal axis; in previous tube-method applica-
tions we have only rotated a vertical slice
about a vertical axis. Either option results
in a tube, and the general formula on
page 433 can be further extended to this
new situation — as we have done here —
by swapping the roles of x and y,

Practice 5. Compute the volume of the solid swept out by rotating

the region in the first quadrant between the graphs of y =

√
x
2

and

y =
√

x− 1 about (a) the line x = 5 (b) the line y = 5.

Which Method Is Best?

We will investigate a method for com-
puting volumes of solids formed by ro-
tating a region around “tilted” axes in
Section 5.6.

In theory, both the washer method and the tube method will work for
any volume-of-revolution problem involving a horizontal or vertical
axis. In practice, however, one of these methods is usually easier to
use than the other — but which one is easier depends on the particular
region and type of axis. As we have seen, challenges may include:

• The necessity to split the region into two (or more) pieces, resulting
in two (or more) integrals.
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• The difficulty (or impossibility) of solving an equation of the form
y = f (x) for x or an equation of the form x = g(y) for y.

• The difficulty (or impossibility) of finding an antiderivative for the
resulting integrand.

With experience (and lots of practice) you will begin to develop an
intuition for which method might be the best choice for a particular
situation. Sketching the region along with representative horizontal
and vertical slices is a vital first step.

The method that avoids the need to split the region up into more than
one piece is often — but not always — the superior choice. Avoiding the
need to find an inverse function for a boundary curve should also be a
priority. Finally, if you need an exact value and one method results in a
challenging antiderivative search, start over and try the other method.

5.5 Problems

In Problems 1–6, sketch the region and calculate
the volume swept out when the region is revolved
about the specified vertical line.

1. The region in the first quadrant between the curve
y =

√
1− x2 and the x-axis is rotated about the

y-axis.

2. The region in the first quadrant between the curve
y = 2x − x2 and the x-axis is rotated about the
y-axis.

3. The region in the first quadrant between between
y = 2x, y = x2 and the line x = 3 is rotated about
the line x = 4.

4. The region in the first quadrant between the curve

y =
1

1 + x2 , the x-axis and the line x = 3 is ro-

tated about the y-axis.

5. The region between y =
1
x

, y =
1
3

and x = 1 is
rotated about the line x = 5.

6. The region between y = x, y = 2x, x = 1 and
x = 3 is rotated about the line x = 1.

In Problems 7–11, use a definite integral to repre-
sent the volume swept out when the given region
is revolved about the y-axis, then use technology to
evaluate the integral.

7. The region in the first quadrant between the
graphs of y = ln(x), y = x and x = 4.

8. The region in the first quadrant between the
graphs of y = ex, y = x and x = 2.

9. The region between y = x2 and y = 6− x for
1 ≤ x ≤ 4.

10. The shaded region in the figure below.

11. The shaded region in the figure below.
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5.5 Problems

In Problems 12–30, set up an integral to calculate
the volume swept out when the region between
the given curves is rotated about the specified
axis, using any appropriate method (disks, wash-
ers, tubes). If possible, work out an exact value
of the integral; otherwise, use technology to find
an approximate numerical value.

12. y = x, y = x4, about the y-axis

13. y = x2, y = x4, about the y-axis

14. y = x2, y = x4, about the x-axis

15. y = sin(x2), y = 0, x = 0, x =
√

π, about x = 0

16. y = cos(x2), y = 0, x = 0, x =
√

π
2 , about x = 0

17. y =
1√

1− x2
, y = 0, x = 0, x = 1

2 , about x = 0

18. y =
1√

1− x2
, y = 0, x = 0, x = 1

2 , about y = 0

19. y = x, y = x4, about x = 3

20. y = x, y = x4, about y = 3

21. y = x, y = x4, about y = −3

22. y = x, y = x4, about x = −3

23. y =
1

1 + x2 , y = 0, x = 0, x = 1 about x = 2

24. y =
1

1 + x2 , y = 0, x = 1, x =
√

3, about x = 2

25. y =
1

1 + x2 , y = 1, x = 1, about x = −2

26. y =
1

1 + x2 , y = 1
2 , about x = 1

27. y =
√

x− 2, y =
√

x− 1, y = 0, x = 3, about
x = 4

28. y =
√

x− 2, y =
√

x− 1, y = 0, x = 3, about
x = −4

29. y =
√

x− 2, y =
√

x− 1, y = 0, x = 3, about
y = 4

30. y =
√

x− 2, y =
√

x− 1, y = 0, x = 3, about
y = −4

5.5 Practice Answers

1. Graph the region (see margin) and note that the curve y = 4x− x2

intersects the x-axis where 4x− x2 = 0⇒ x(4− x) = 0⇒ x = 0 or
x = 4. Rotating a vertical slice around the y-axis results in a tube
with radius x (the distance between the slice and the y-axis) and
height 4x− x2 so the volume of the solid is:∫ 4

0
2πx

(
4x− x2

)
dx = 2π

∫ 4

0

[
4x2 − x3

]
dx

= 2π

[
4
3

x3 − 1
4

x4
]4

0
=

128π

3
≈ 134

2. The region here is identical to the region in Practice 1, but we are now
rotating a slice around the axis x = −7, so the radius of the resulting
tube is x− (−7) = x + 7 (the distance from the slice at location x to
the axis of rotation). The volume of the solid is therefore:∫ 4

0
2π(x + 7)

(
4x− x2

)
dx = 2π

∫ 4

0

[
28x− 3x2 − x3

]
dx

= 2π

[
14x2 − x3 − 1

4
x4
]4

0
= 192π ≈ 603
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3. Rotating a vertical slice (see margin figure) about the line x = 13
results in a tube with radius 13− x and height x2 − x, so the volume
of the solid is:∫ 4

2
2π(13− x)(x2 − x) dx = 2π

∫ 4

2

[
−13x + 14x2 − x3

]
dx

= 2π

[
−13

2
x2 +

14
3

x3 − 1
4

x4
]4

2
= 2π

[
392

3
− 10

3

]
=

764π

3
≈ 800

4. Graph the region (see margin) and draw a representative vertical
slice. (Horizontal slices would require splitting the region into two
pieces — why?) (a) Rotating the vertical slice about the y-axis results
in a tube of radius x (the distance from the slice to the y-axis) and
height (x + 1)−

√
x, and the region sits between x = 0 and x = 4 so

the volume of the solid is:∫ 4

0
2πx

[
x + 1− x

1
2

]
dx = 2π

∫ 4

0

[
x2 + x− x

3
2

]
dx

= 2π

[
1
3

x3 +
1
2

x2 − 2
5

x
5
2

]4

0
=

496π

15
≈ 104

(b) Rotating the vertical slice around the x-axis results in a washer
with big radius x + 1 (the distance from the x-axis to the curve
farthest from the x-axis) and small radius

√
x (the distance from the

x-axis to the closer curve) so the volume of the solid is:∫ 4

0
π
[
(x + 1)2 −

(√
x
)2
]

dx = π
∫ 4

0

[
x2 + x + 1

]
dx =

100π

3
≈ 105

5. This region is the same as the one in Example 4, where it was ap-
parent that slicing horizontally resulted in a single type of slice
(compared with vertical slices, which required us to split the region
into two pieces). (a) Rotating a horizontal slice around the vertical
line x = 5 results in washers with thickness ∆y (so our integral will
involve dy), big radius 5− 2y2 (the distance between the axis of rota-
tion and the farthest curve) and small radius 5−

(
y2 + 1

)
= 4− y2

(the distance between the axis of rotation and closest curve). Apply-
ing the washer method, the volume of the solid is:∫ 1

0
π

[(
5− 2y2

)2
−
(

4− y2
)2
]

dy =
14π

5
≈ 8.8

(b) Rotating a horizontal slice around the horizontal line y = 5 results
in a tube of radius 5− y (the distance between the slice and the axis
of rotation) and “height” 1− y2 (the length of the slice). Applying
the tube method, the volume of the solid is:∫ 1

0
2π(5− y)

(
1− y2

)
dy =

37π

6
≈ 19.4


	Applications of Definite Integrals
	Volumes: Tubes


