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5.7 Improper Integrals

In Section 5.4, we computed the work required to lift a payload of mass
m from the surface of a moon of mass M and radius R to a height H
above the surface of the moon:∫ R+H

R

GMm
x2 dx =

[
−GMm

x

]R+H

R
=

GMm
R

− GMm
R + H

Notice that as the height H grows very large, the second term in this

answer becomes very small and the total work approaches
GMm

R
. We

can write:

lim
H→∞

[
GMm

R
− GMm

R + H

]
=

GMm
R

Here we’re taking a limit of an expression that arose as the value of a
definite integral, so we can also write:

GMm
R

= lim
H→∞

[
GMm

R
− GMm

R + H

]
= lim

H→∞

∫ R+H

R

GMm
x2 dx

We could write this last integral, at least informally, as:∫ ∞

R

GMm
x2 dx

We call this new type of integral an improper integral because the in-
terval of integration is infinite, violating an assumption we made when

originally developing the definite integral
∫ b

a
f (x) dx using Riemann

sums that the length of the interval of integration, [a, b], was finite.

Example 1. Represent the area of the infinite region between f (x) =
1
x2

and the x-axis for x ≥ 1 (see margin) as an improper integral.

Solution. We can represent the area of region (which has infinite
length) as: ∫ ∞

1

1
x2 dx

We don’t yet know whether this area is finite or infinite. ◀

Practice 1. Represent the volume swept out when the infinite region

between f (x) =
1
x

and the x-axis for x ≥ 4 is revolved about the x-axis
(see margin) using an improper integral.

General Strategy for Improper Integrals

In the lifting-a-payload example above, we defined our first improper
integral as the limit of a “proper” integral over a finite interval as the
length of the interval became larger and larger.
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Our general approach to evaluate improper integrals over infinitely
long intervals — as well as another type of improper integral introduced
later in this section — will mimic this strategy: Shrink the interval of
integration so you have a (proper) definite integral you can evaluate,
then let the interval grow to approach the desired interval of integration.
The value of the improper integral will be the limiting value of the
(proper) definite integrals as the intervals grow to the interval you want,
provided that this limit exists.

Infinitely Long Intervals of Integration

To evaluate an improper integral on an infinitely long interval:

• replace the infinitely long interval with a finite interval

• evaluate the integral on the finite interval

• let the finite interval grow longer and longer, approaching the origi-
nal infinitely long interval

Example 2. Evaluate
∫ ∞

1

1
x2 dx (see margin).

Solution. The interval [1, ∞) is infinitely long, but we can evaluate
the integral on finite intervals such as [1, 2], [1, 10], [1, 1000] and, more
generally, [1, M] where M is some massive positive number:∫ 2

1

1
x2 dx =

[
− 1

x

]2

1
=

[
−1

2

]
−
[
−1

1

]
= 1 − 1

2
=

1
2∫ 10

1

1
x2 dx =

[
− 1

x

]10

1
=

[
− 1

10

]
−
[
−1

1

]
= 1 − 1

10
=

9
10∫ 1000

1

1
x2 dx =

[
− 1

x

]1000

1
=

[
− 1

1000

]
−
[
−1

1

]
= 1 − 1

1000
=

999
1000

and, more generally,
∫ M

1

1
x2 dx = 1 − 1

M
so:

∫ ∞

1

1
x2 dx = lim

M→∞

∫ M

1

1
x2 dx = lim

M→∞

[
1 − 1

M

]
= 1

The value of the improper integral is 1. ◀

We say that the improper integral
∫ ∞

1

1
x2 dx in the Example 2 “is

convergent” and that it “converges to 1.”
Furthermore, from Example 1, we know that this improper integral

represents the area of an infinitely long region. We now have an
example — which you may find highly counterintuitive — of a region
with infinite length but finite area.

Not all improper integrals converge, however.
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Example 3. Evaluate each improper integral. (See margin for graphical
interpretations of these integrals as areas of unbounded regions.)

(a)
∫ ∞

0

1
1 + x2 dx (b)

∫ ∞

1

1
x

dx (c)
∫ ∞

0
cos(x) dx

Solution. (a) Replacing the upper limit of the improper integral with
a massive positive number M:∫ ∞

0

1
1 + x2 dx = lim

M→∞

∫ M

0

1
1 + x2 dx = lim

M→∞

[
arctan(x)

]M

0

= lim
M→∞

[
arctan(M)− 0

]
=

π

2

so the improper integral is convergent and converges to
π

2
.

(b) Replacing the upper limit of the improper integral with a massive
positive number M:∫ ∞

1

1
x

dx = lim
M→∞

∫ M

1

1
x

dx = lim
M→∞

[
ln(x)

]M

1
= lim

M→∞
ln(M) = ∞

Because this limit diverges, we say the improper integral is diver-
gent or that it diverges.

(c) Once again replacing ∞ with M in the upper limit of the integral:

lim
M→∞

∫ M

0
cos(x) dx = lim

M→∞

[
sin(x)

]M

0
= lim

M→∞
sin(M)

As M grows without bound, the values of sin(M) oscillate between
−1 and 1, never approaching a single value, so the limit does not
exist; we say that this improper integral diverges. ◀

Practice 2. Evaluate: (a)
∫ ∞

1

1
x3 dx (b)

∫ ∞

0
sin(x) dx

Definition: For any integrable function f (x) defined for all x ≥ a
and any integrable function g(x) defined for all x ≤ b:∫ ∞

a
f (x) dx = lim

M→∞

∫ M

a
f (x) dx∫ b

−∞
g(x) dx = lim

N→−∞

∫ b

N
g(x) dx

If the limit in question exists and is finite, we say that the corresponding
improper integral converges or is convergent and define the value of
the improper integral to be the value of the limit. If the limit in question
does not exist, we say that the corresponding improper integral diverges
or is divergent.
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Functions Undefined at an Endpoint of the Interval of Integration

Consider the graph of 1√
x on the interval (0, 1] (see margin) and com-

pare this region to the graph from Example 2. It appears we can
generate the new region by reflecting the old region across y = x and
adding a rectangle (of area 1) at the bottom, so we might reasonably
assume that the integral

∫ 1
0

1√
x dx is a finite number. This integral is

over a finite interval, [0, 1], but we have a new problem: the integrand
is undefined at x = 0, one of the endpoints of the interval of integra-
tion. This violates another assumption we made when developing the
definition of a definite integral as a limit of Riemann sums.

If the function you want to integrate is unbounded at one of the
endpoints of an interval of finite length, as in this situation, you can
shrink the interval of integration so that the function is bounded at
both endpoints of the new, smaller interval, then evaluate the integral
over the smaller interval, and finally let the smaller interval grow to
approach the original interval.

Example 4. Evaluate
∫ 1

0

1√
x

dx.

Solution. The function
1√
x

is not defined at x = 0, the lower endpoint

of integration, but the function is bounded on intervals such as [0.36, 1],
[0.09, 1] and, more generally, on the interval [c, 1] for any c > 0:∫ 1

0.36

1√
x

dx =
[
2
√

x
]1

0.36
= 2

√
1 − 2

√
0.36 = 2 − 1.2 = 0.8∫ 1

0.09

1√
x

dx =
[
2
√

x
]1

0.09
= 2

√
1 − 2

√
0.09 = 2 − 0.6 = 1.4

and, in general:∫ 1

c

1√
x

dx =
[
2
√

x
]1

c
= 2

√
1 − 2

√
c = 2 − 2

√
c

so, taking the limit as c decreases toward 0:

lim
c→0+

∫ 1

c

1√
x

dx = lim
c→0+

[
2 − 2

√
c
]
= 2

which is what you should have expected based on the graph. ◀ A region of area 1 plus a rectangle of area
1 should have an area of 1 + 1 = 2.

Definition: For any function f (x) defined and continuous on (a, b]
and any function g(x) defined and continuous on [a, b):∫ b

a
f (x) dx = lim

c→a+

∫ b

c
f (x) dx∫ b

a
g(x) dx = lim

c→b−

∫ c

a
g(x) dx
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If the limit exists, we say the integral converges and define the value of
the integral to be the value of the limit. If the limit does not exist, we
say that the integral diverges.

Practice 3. Show that (a)
∫ 10

1

1√
10 − x

dx = 6 and (b)
∫ 1

0

1
x

dx diverges.

If an integrand is unbounded at one or more points inside the interval
of integration, you can split the original improper integral into two
or more improper integrals over subintervals where the integrand is
unbounded at only one endpoint of each subinterval.

See Problems 22–26 for practice with in-
tegrals of this type.

Testing for Convergence: The P-Test and the Comparison Test

Sometimes we care only whether or not an improper integral converges.
We now consider two methods for testing the convergence of an im-
proper integral. Neither method gives you the actual value of the
integral, but each enables you to determine whether or not certain im-
proper integrals converge. The Comparison Test for Integrals enables
you to determine the convergence (or divergence) of certain integrals
by comparing them with other (easier) integrals. The P-Test involves
special cases often used with the Comparison Test for Integrals.

P-Test for integrals: For any a > 0, the improper integral
∫ ∞

a

1
xp dx

converges if p > 1 and diverges if p ≤ 1.

Proof. It is easiest to consider three cases rather than two: p = 1, p > 1
and p < 1. If p = 1 then:∫ ∞

a

1
xp dx =

∫ ∞

a

1
x

dx = lim
M→∞

∫ M

a

1
x

dx = lim
M→∞

[
ln (|x|)

]M

a

= lim
M→∞

[
ln(M)− ln(a)

]
= ∞

so the improper integral diverges. For the other two cases, p ̸= 1, so:

lim
M→∞

∫ M

a
x−p dx = lim

M→∞

[
x−p+1

−p + 1

]M

a
= lim

M→∞

[
M1−p

1 − p
− a1−p

1 − p

]

If p > 1, then 1 − p < 0 so lim
M→∞

M1−p

1 − p
= 0 and:

∫ ∞

a

1
xp dx = lim

M→∞

[
M−p+1

−p + 1
− a−p+1

−p + 1

]
=

a1−p

p − 1

which is a finite number, so the improper integral converges. If p < 1,

then 1 − p > 0 so lim
M→∞

M1−p

1 − p
= ∞ and:

∫ ∞

a

1
xp dx = lim

M→∞

[
M−p+1

−p + 1
− a−p+1

−p + 1

]
= ∞

so the improper integral diverges.
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Example 5. Determine the convergence or divergence of each integral.

(a)
∫ ∞

5

1
x2 dx (b)

∫ ∞

1

1√
x

dx (c)
∫ 8

1

1
3
√

x
dx

Solution. (a) The integral matches the form required by the P-Test
with p = 2 > 1, so the improper integral converges. The P-Test does
not tell us the value of the integral.

(b) The integral matches the form required by the P-Test with p = 1
2 < 1,

so the improper integral diverges.

(c) This is not an improper integral, so the P-Test does not apply, but:

∫ 8

1

1
3
√

x
dx =

∫ 8

1
x−

1
3 dx =

[
3
2

x
2
3

]8

1
=

3
2

[
8

2
3 − 1

2
3

]
=

3
2
[4 − 1] =

9
2

so the value of the integral is 4.5. ◀

The following Comparison Test enables us to determine the conver-
gence or divergence of an improper integral of a positive function by
comparing this function with functions whose improper integrals we
already know converge or diverge.

Comparison Test for Integrals of Positive Functions: Suppose f (x)
and g(x) are defined and integrable for all x ≥ a with 0 ≤ f (x) ≤
g(x). Then:

•
∫ ∞

a
g(x) dx converges ⇒

∫ ∞

a
f (x) dx converges.

•
∫ ∞

a
f (x) dx diverges ⇒

∫ ∞

a
g(x) dx diverges.

The proof involves a straightforward application of the definition of
an improper integral and various facts about limits, but the graph in
the margin provides a geometrically intuitive way of understanding
why these results must hold. If

∫ ∞
a g(x) dx converges, then the area

under the graph of g(x) is finite, so the (smaller) area under the graph
of f (x) must also be finite, and

∫ ∞
a f (x) dx must converge as well. If∫ ∞

a f (x) dx diverges, then the area under the graph of f (x) is infinite,
so the (bigger) area under the graph of g(x) must also be infinite, and∫ ∞

a g(x) dx must also diverge.
Just as important as understanding what this Comparison Test

does tell us is realizing what the Comparison Test does not tell us.
If
∫ ∞

a g(x) dx diverges, or if
∫ ∞

a f (x) dx converges, the Comparison Test
tells us absolutely nothing about the convergence or divergence of the
other integral. Geometrically, if

∫ ∞
a g(x) dx diverges, then the area

under the graph of g(x) is infinite, but the (smaller) area under the
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graph of f (x) could be either finite or infinite, so we can’t conclude
anything about the convergence or divergence of

∫ ∞
a f (x) dx. Likewise,

if
∫ ∞

a f (x) dx converges, then the area under the graph of f (x) is finite,
but the (bigger) area under the graph of g(x) could be either finite
or infinite, so we can’t conclude anything about the convergence or
divergence of

∫ ∞
a g(x) dx.

Example 6. Determine whether each of these integrals is convergent or
divergent by comparing it with an appropriate integral that you already
know converges or diverges.

(a)
∫ ∞

1

7
x3 + 5

dx (b)
∫ ∞

1

3 + sin(x)
x2 dx (c)

∫ ∞

6

9√
x − 5

dx

Solution. (a) We know that 5 > 0 and x ≥ 1 so:

x3 + 5 > x3 ⇒ 0 <
1

x3 + 5
<

1
x3 ⇒ 0 <

7
x3 + 5

<
7
x3

We also know, by the P-Test with p = 3 > 1, that
∫ ∞

1

1
x3 dx con-

verges, so
∫ ∞

1

7
x3 dx = 7 ·

∫ ∞

1

1
x3 dx also converges. By the Com-

parison Test, the smaller integral
∫ ∞

1

7
x3 + 5

dx must converge as

well.

(b) We know that −1 ≤ sin(x) ≤ 1, so:

2 ≤ 3 + sin(x) ≤ 4 ⇒ 0 <
3 + sin(x)

x2 ≤ 4
x2 = 4 · 1

x2

By the P-Test with p = 2 > 1,
∫ ∞

1

1
x2 dx converges, so

∫ ∞

1

4
x2 dx =

4 ·
∫ ∞

1

1
x2 dx also converges. By the Comparison Test, the smaller

integral
∫ ∞

1

3 + sin(x)
x2 dx must converge as well.

(c) We know that
√

u is an increasing function, so:

x − 5 < x ⇒
√

x − 5 <
√

x ⇒ 1√
x − 5

>
1√
x

By the P-Test with p = 1
2 < 1,

∫ ∞

6

1√
x

dx diverges, so the bigger

integral
∫ ∞

6

1√
x − 5

dx must also diverge. ◀

The numerator of the original integrand
is constant and the dominant term in the
denominator of that integrand is x3, so it
should make sense to compare the origi-

nal integrand with
1
x3 .

The numerator of the original integrand
fluctuates between 2 and 4 while the dom-
inant (and only) term in its denominator
is x2, so it should make sense to compare

the original integrand with
1
x2 .
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5.7 Problems

In Problems 1–26, evaluate each improper integral,
or show why it diverges.

1.
∫ ∞

10

1
x3 dx 2.

∫ ∞

e

5

x · [ln(x)]2
dx

3.
∫ ∞
√

3

1
1 + x2 dx 4.

∫ ∞

1

2
ex dx

5.
∫ ∞

e

5
x · ln(x)

dx 6.
∫ ∞

0

x
1 + x2 dx

7.
∫ ∞

3

1
x − 2

dx 8.
∫ ∞

3

1
(x − 2)2 dx

9.
∫ ∞

3

1
(x − 2)3 dx 10.

∫ ∞

3

1
x + 2

dx

11.
∫ ∞

3

1
(x + 2)2 dx 12.

∫ ∞

3

1
(x + 2)3 dx

13.
∫ 4

0

1√
x

dx 14.
∫ 8

0

1
3
√

x
dx

15.
∫ 16

0

1
4
√

x
dx 16.

∫ 2

0

1√
2 − x

dx

17.
∫ 2

0

1√
4 − x2

dx 18.
∫ 2

0

3x2
√

8 − x3
dx

19.
∫ ∞

−2
sin(x) dx 20.

∫ ∞

π
sin(x) dx

21.
∫ π

2

0
tan(x) dx 22.

∫ 3

0

1
x − 2

dx

23.
∫ π

0
tan(x) dx 24.

∫ ∞

3

1
x
√

x
dx

25.
∫ ∞

−∞

1
x2 + 1

dx 26.
∫ 0

−∞

1
x2 dx

In Problems 27–44, determine whether each im-
proper integral converges or diverges, but do not
evaluate the integral.

27.
∫ ∞

1

1
x5 dx 28.

∫ ∞

2

1
5
√

x
dx

29.
∫ ∞

3

1
5√x6

dx 30.
∫ ∞

4

1
5√x4

dx

31.
∫ ∞

5

1√
x 3
√

x
dx 32.

∫ ∞

6
x−

4
7 dx

33.
∫ ∞

7
x−

7
4 dx 34.

∫ ∞

8

1
1 + x2 dx

35.
∫ ∞

3

1
x2 + 5

dx 36.
∫ ∞

4

7
x2 + 5

dx

37.
∫ ∞

5

1
x3 + x

dx 38.
∫ ∞

6

1
x − 2

dx

39.
∫ ∞

e

7
x + ln(x)

dx 40.
∫ ∞

2

1
x2 − 1

dx

41.
∫ ∞

π

1 + cos(x)
x2 dx 42.

∫ ∞

0

x4

x6 + 1
dx

43.
∫ ∞

0

x4

x5 + 1
dx 44.

∫ ∞

0

√
x

x2 + 1
dx

45. Example 3(b) showed that
∫ M

1

1
x

dx grew arbi-

trarily large as M grew arbitrarily large, so no
finite amount of paint would cover the region

bounded by the x-axis and the graph of f (x) =
1
x

for x > 1:

Show that the volume of the solid obtained when
the region graphed above is revolved about the
x-axis:

is finite, so the 3-dimensional trumpet-shaped re-
gion can be filled with a finite amount of paint.
Does this present a contradiction?
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46. Determine whether or not the volume of the solid
obtained by revolving the region between the x-

axis and the graph of f (x) =
sin(x)

x
for for x ≥ 1

(see below) about the x-axis is finite.

47. Compute the volume of the solid obtained when
the region in the first quadrant between the pos-

itive x-axis and the graph of f (x) =
1

x2 + 1
(see

below) is revolved about the x-axis.

48. Compute the volume of the solid obtained when
the region in the first quadrant between the pos-
itive x-axis and the graph of f (x) = e−x is re-
volved about the x-axis.

49. Compute the volume of the solid obtained when
the region in the first quadrant between the pos-

itive x-axis and the graph of f (x) =
1

x2 + 1
(see

below) is revolved about the y-axis.

50. Compute the volume of the solid obtained when
the region in the first quadrant between the pos-
itive x-axis and the graph of f (x) = e−x is re-
volved about the y-axis.

51. Use the figure below left to help determine which

is larger:
∫ A

1

1
x

dx or
A−1

∑
k=1

1
k

.

52. Use the figure above right to help determine

which is larger:
∫ A

1

1
x

dx or
A

∑
k=2

1
k

.

53. Use the figure below left to help determine which

is larger:
∫ A

1

1
x2 dx or

A−1

∑
k=1

1
k2 .

54. Use the figure above right to help determine

which is larger:
∫ A

1

1
x2 dx or

A

∑
k=2

1
k2 .

The Laplace transform of a function f (t) is defined
using an improper integral involving a parameter s:

F(s) =
∫ ∞

0
e−st · f (t) dt

Laplace transforms are often used to solve differen-
tial equations.

55. Compute the Laplace transform of the constant
function f (t) = 1.

56. Compute the Laplace transform of f (t) = e4t.

57. Define a function g(t) by:

g(t) =

{
0 if t < 2
1 if t ≥ 2

Compute the Laplace transform of g(t).

58. Define a function h(t) by:

h(t) =

{
1 if t < 3
0 if t ≥ 3

Compute the Laplace transform of h(t).
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59. Devise a “Q-Test” to determine whether
∫ b

0

1
xq dx

converges or diverges for any number b > 0.

60. Use the result of the previous problem to test the

convergence of
∫ e

0

1
3
√

x
dx and

∫ π

0

1
x · 3

√
x

dx.

5.7 Practice Answers

1.
∫ ∞

4
π ·
(

1
x

)2
dx = π

∫ ∞

4

1
x2 dx

2. (a)
∫ ∞

1

1
x3 dx = lim

M→∞

∫ M

1
x−3 dx = lim

M→∞

[
−1

2
x−2

]M

1
= lim

M→∞

[
−1

2
· 1

M2 +
1
2

]
=

1
2

(b) Replacing ∞ with M in the upper limit of the integral:∫ ∞

0
sin(x) dx = lim

M→∞

∫ M

0
sin(x) dx = lim

M→∞

[
− cos(x)

]M

0

= lim
M→∞

[
− cos(M) + 1

]
= lim

M→∞
[1 − cos(M)

This limit does not exist (the values of 1 − cos(M) oscillate be-
tween 0 and 2 and never approach any fixed number) so the
improper integral diverges.

3. (a) The integral is improper at its upper limit, where x = 10, so:∫ 10

1

1√
10 − x

dx = lim
c→10−

∫ c

1
(10 − x)−

1
2 dx = lim

c→10−

[
−2

√
10 − x

]c

1

= lim
c→10−

[
−2

√
10 − c + 2

√
9
]
= 0 + 2 · 3 = 6

(b) The integral is improper at its lower limit, where x = 0, so:∫ 1

0

1
x

dx = lim
c→0+

∫ 1

c

1
x

dx = lim
c→0+

[
ln (|x|)

]1

c
= lim

c→0+
[ln(1)− ln(c)] = ∞

so the integral diverges.
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