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5.8 Additional Applications

This section introduces two additional applications of integrals that
once again illustrate the process of going from an applied problem to a
Riemann sum and on to a definite integral. A third application does
not follow this process: it uses the idea of “area” to model an election
and to qualitatively understand why certain election outcomes occur.

The main point of this section is to demonstrate the power of definite
integrals to solve a wide variety of applied problems. Each of these new
applications is treated more briefly than those in the previous sections.
These are far from the only applications that could be included here. By
now, however, you should have developed enough of an understanding
of the Riemann-sum process so that when you encounter other applica-
tions (in physics, engineering, biology, statistics, probability, economics,
computer graphics . . . ) you will be able to use that process to set up an
integral to compute or approximate a desired quantity.

Fluid Pressures and Forces

In physics, pressure is defined as force per unit of area. The hydrostatic
pressure on an object immersed in a fluid (such as water) is the product
of the density of that fluid and the depth of the object:

pressure = (density)(depth)

The total hydrostatic force applied against an immersed object is the
sum of the hydrostatic forces against each part of the object.

Fluids exert pressure in all possible direc-
tions, and the forces due to this pressure
act on solid objects in a direction perpen-
dicular to the object.

In the metric system, the standard unit
of force is a pascal (abbreviated “Pa”):

1 Pa = 1
N
m

and named after Blaise Pascal (1623–
1662), a French mathematician, physicist,
inventor, writer and philosopher.

If an entire object is at the same depth, we can determine the total
hydrostatic force against that (necessarily flat) object simply by multi-
plying the density of the fluid times the depth of the object times the
object’s area. If the unit of density is “pounds per cubic foot” and depth
is measured in “feet,” then the unit of pressure is “pounds per square
foot,” a measure of force per unit of area. If pressure, with the units
“pounds per square foot,” is multiplied by an area with units “square
feet,” the result is a force, measured in “pounds.”

Example 1. Find the total hydrostatic force against the bottom of the
freshwater aquarium shown in the margin.

Solution. Water’s desity is 62.5
lb
ft3 , so the total hydrostatic force is:

(density) · (depth) · (area) =
(

62.5
lb
ft3

)
· (3 ft) ·

(
2 ft2

)
or 375 lbs. Finding the total hydrostatic force against the front of the
aquarium is a very different problem, because different parts of that
front face are located at different depths and subject to different pres-
sures. ◀
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To compute the force against the front of the aquarium, we can
partition it into n thin horizontal slices (see margin) and focus on one
of them. Because the slice is very thin, every part of the k-th slice is at
(almost) the same depth, so every part of that slice is subject to (almost)
the same pressure. We can approximate the total hydrostatic force
against the slice at the depth xk as:

(density) · (depth) · (area) =
(

62.5
lb
ft3

)
· (xk ft) · (2 ft) (∆xk ft)

or 125xk · ∆xk lbs. The total hydrostatic force against the front is the
sum of the forces against each slice:

total hydrostatic force ≈
n

∑
k=0

125xk · ∆xk

which is a Riemann sum. The limit of this Riemann sum as the slices
get thinner (∆xk → 0) is a definite integral:

n

∑
k=0

125xk · ∆xk −→
∫ x=3

x=0
125x dx =

[
62.5x2

]x=3

x=0
= 562.5 lbs

Practice 1. Find the total hydrostatic force against one side of the
aquarium and the total force against the entire aquarium.

Example 2. Find the total hydrostatic force against viewing windows
A and B in the freshwater aquarium shown in the margin.

Solution. For window A, using similar triangles, the width w of a slice
at depth x m satisfies:

w
6 − x

=
3
2

⇒ w =
3
2
(6 − x) = 9 − 3

2
x

so the area of a slice of height ∆xk m at depth xk m is
(
9 − 3

2 xk
)

∆xk m2.

The density of water is 1000 kg
m3 . Multiplying this density by area (with

units m2) would give kg per m, but pressure is measured in N per m,
so we need to multiply by the acceleration due to gravity, g ≈ 9.81 m

sec2 .
The hydrostatic force applied to the k-th slice is thus:

1000(9.81)xk

(
9 − 3

2
xk

)
∆xk

and the total hydrostatic force applied to the window is therefore:

∫ x=6

x=4
9810

[
9x − 3

2
x2
]

dx = 9810
[

9
2

x2 − 1
2

x3
]6

4

= 9810 [(162 − 108)− (72 − 32)] = 137340 N
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For window B, applying the Pythagorean Theorem yields:

(5 − x)2 +
(w

2

)2
= 1 ⇒ w = 2

√
1 − (5 − x)2

The total hydrostatic force is thus:∫ x=6

x=4
1000(9.81)x · 2

√
1 − (5 − x)2 dx

which (using technology) is approximately 154,095 N. ◀

Practice 2. Find the total hydrostatic force against viewing windows C
and D of the freshwater aquarium shown in the margin.

Because the total force at even moderate depths is so large, under-
water windows are made of thick glass or plastic and strongly secured
to their frames. Similarly, the bottom of a dam is much thicker than the
top in order to withstand the greater force against the bottom.

Kinetic Energy

Physicists define the kinetic energy (energy of motion) of an object
with mass m and velocity v to be:

KE =
1
2

m · v2

The greater the mass of an object or the faster it is moves, the greater
its kinetic energy. If every part of the object has the same velocity,
computing its kinetic energy becomes relatively easy.

Sometimes, however, different parts of an object move with different
velocities. For example, if an ice skater is spinning with an angular
velocity of 2 revolutions per second, her arms travel further in one
second (have a greater linear velocity) when they are extended than
when drawn in close to her body (see margin). So the ice skater,
spinning at 2 revolutions per second, has greater kinetic energy when
her arms are extended. Similarly, the tip of a rotating propeller (or
the barrel of a swinging baseball bat) has a greater linear velocity than
other parts of the propeller (or the bat’s handle).

If the units of mass are kg and the units of velocity are m/sec2, then:

KE =
1
2
(m kg) ·

(
v

m
sec

)2
=

1
2

mv2 kg · m · m
sec2

so the units of kinetic energy are N-m, or Joules, the same as work.
Similarly, if the units of mass are g and the units of velocity are cm/sec2,
then the units of kinetic energy are dyn-cm, or ergs.

Example 3. A point-mass of 1 gram at the end of a (massless) 100-cm
string rotates at a rate of 2 revolutions per second (see margin).
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(a) Find the kinetic energy of the point-mass.

(b) Find its kinetic energy if the string is 200 cm long.

Solution. (a) In one second, the mass travels twice around a circle with
radius 100 cm so it travels 2 · (2π · 100) = 400π cm. Its velocity is
thus v = 400π cm/sec, and:

KE =
1
2

mv2 =
1
2
(1 g) ·

(
400π

cm
sec

)2
= 80000π2 ergs

or about 0.079 J.

(b) If the string is 200 cm long, then the velocity is 2 · (2π · 400) = 800π

cm/sec and:

KE =
1
2

mv2 =
1
2
(1 g) ·

(
800π

cm
sec

)2
= 320000π2 ergs

or about 0.316 J. ◀

When the length of the string doubles,
the velocity doubles and the kinetic en-
ergy quadruples.

Practice 3. A 1-gram point-mass at the end of a 2-meter (massless)
string rotates at a rate of 4 revolutions per second. Find the kinetic
energy of the point mass.

If different parts of a rotating object are different distances from the
axis of rotation, then those parts have different linear velocities, and it
becomes more difficult to calculate the total kinetic energy of the object.
By now the method should seem very familiar: partition the object into
small pieces, approximate the kinetic energy of each piece, and add the
kinetic energies of the small pieces (a Riemann sum) to approximate
the total kinetic energy of the object. The limit of the Riemann sum as
the pieces get smaller is a definite integral.

Example 4. The density of a narrow bar (see margin) is 5 grams per
meter of length. Find the kinetic energy of the 3-meter-long bar when
it rotates at a rate of 2 revolutions per second.

Solution. Partition the bar (see margin) into n pieces so that the mass
of the k-th piece is:

mk ≈ (length) · (density) = (∆xk m)
(

5
g
m

)
= 5 · ∆xk g

During one second, the k-th piece, located at a distance of xk m from
the pivot line, will make two revolutions, traveling approximately:

2 (2π [radius]) = 4π
[
100xk cm

]
= 400πxk cm

so vk ≈ 400πxk cm/sec. The kinetic energy of the k-th piece is:

1
2

mk · v2
k ≈ 1

2
(5∆xk g)

(
400πxk

cm
sec

)2
= 400000π2x2

k ergs
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and the total kinetic energy of the rotating bar is therefore:

n

∑
k=1

400000π2x2
k · ∆xk −→

∫ x=3

x=0
400000π2x2 dx = 400000π2

[
1
3

x3
]3

0

which equals 3600000π2 ergs, or about 3.55 J. ◀

Practice 4. Find the kinetic energy of the bar in the previous Example
if it rotates at 2 revolutions per second at the end of a 100-centimeter
(massless) string (see margin).

Example 5. Find the kinetic energy of the thin, flat object with density
0.17 g/cm2 shown in the margin when it rotates at 45 revolutions per
minute.

Solution. We can partition the object along one radial line and form
n annular “slices” each ∆x cm wide. Then the “slice” between xk and
xk + ∆x is a thin annulus (a disk with a smaller disk removed from its
center) with area:

π (xk + ∆x)2 − π (xk)
2 = π

[
x2

k + 2xk∆x + (∆x)2 − x2
k

]
= 2πxk∆x + π (∆x)2 ≈ 2πxk∆x

and mass (0.17)2πxk∆x. During one revolution, a point on this slice
travels approximately 2πxk cm and 45 rev/min is equivalent to 3

4
rev/sec, so the linear velocity of the point is 2πxk · 3

4 = 3
2 πxk cm/sec.

The kinetic energy of this slice is therefore:

(
(0.17)2πxk∆x

)(3
2

πxk

)2
=

9
2
(0.17)π2x3

k∆x

so the total kinetic energy of the object is:

n

∑
k=1

9
2
(0.17)π2x3

k · ∆x −→
∫ b

a

9
2
(0.17)π2x3 dx

Evaluating this integral yields:

9
2
(0.17)π2

[
1
4

x4
]b

a
=

9
8
(0.17)π2

[
b4 − a4

]
Because b is raised to the fourth power, a small increase in the value of
b (if b > 1) leads to a large increase in the object’s kinetic energy.

The “slices” that give rise to the Riemann
sum in this problem are — unlike most
examples we have seen previously — not
rectangles. We also use here the notion
that if ∆x is small, then (∆x)2 is very
small, so we can essentially ignore it in
our approximation of area.

If a = 0.75 in ≈ 1.905 cm and b = 3.75 in ≈ 9.525 cm, the total mass
of the object is 42 g and its total kinetic energy is about 15,512 ergs. ◀

In the not-so-distant past your grand-
parents (and perhaps even your parents)
used such objects to listen to music — and
each one only held two songs!
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Areas and Elections

The previous applications in this chapter have used definite integrals
to determine areas, volumes, pressures and energies precisely. But
exactness and numerical precision are not the same as “understanding,”
and sometimes we can gain insight and understanding simply by
determining which of two areas or integrals is larger. One situation of
this type involves models of elections.

Suppose the voters of a state have been surveyed about their positions
on a single issue, with their responses recorded on a quantitative scale.
The distribution of voters who place themselves at each position on this
issue appears in the margin. Suppose also that each voter casts his or
her vote for the candidate whose position on this issue is closest to his
or her position.

If two candidates have taken the positions labeled A and B, then a
voter at position c votes for the candidate at A because A is closer to c
than B is to c. Similarly, a voter at position d votes for the candidate
at B. The total votes for the candidate at A in this election is repre-
sented by the shaded area under the curve, and the candidate with the
larger number of votes — the larger area — wins the election. In this
illustration, the candidate at A wins.

Example 6. The distribution of voters on an issue appears below left. If
these voters decide between candidates on the basis of that single issue,
which candidate will win the election?

Solution. The figure above right illustrates that A corresponds to a
larger area (more votes) than B: A will win. ◀

Practice 5. In an election between candidates with positions A and B
in the margin figure, who will win?

If voters behave as described and if the election is between two
candidates, then we can give the candidates some advice. The best
position for a candidate is at the “median point,” the location that
divides the voters into two equal-sized (equal-area) groups so that half
of the voters are on one side of the median point and half are on the
other side (see margin). A candidate at the median point gets more
votes than a candidate at any other point. (Why?)

If two candidates have positions on opposite sides of the median
point (see margin), then a candidate can get more votes by moving a
bit toward the median point. This “move toward the middle ground”
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commonly occurs in elections as candidates attempt to sell themselves
as “moderates” and their opponents as “extremists.”

If more than two candidates are running in an election, the situation
changes dramatically. A candidate at the median position, the unbeat-
able place in a two-candidate election can even get the fewest votes. If
the margin figure represents the distribution of voters on the single
issue in the election, then candidate A would beat B in an election just
between A and B (below left) and A would beat C in an election just
between A and C (below center). But in an election among all three
candidates, A would get the fewest votes (below right).

This type of situation really does occur. It leads to the political saying
about a primary election with many candidates and a general election
between the final nominees from two parties: “extremists can win
primaries, but moderates are elected to office.”

The previous discussion of elections and areas is greatly oversim-
plified. Most elections involve several issues of different importance
to different voters, and the views of the voters are seldom completely
known before the election. Many candidates take “fuzzy” positions on
issues. And it is not even certain that real voters vote for the candidate
with the “closest” position: perhaps they don’t vote at all unless some
candidate is “close enough” to their position. But this very simple
model of elections can still help us understand how and why some
things happen in elections. It is also a starting place for building more
sophisticated models to help understand more complicated election
situations and to test assumptions about how voters really do make
voting decisions.
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5.8 Problems

In Problems 1–5, use ρ for the density of the fluid
in the given container.

1. Calculate the force against windows A and B in
the figure below.

2. Calculate the force against windows C and D in
the figure above.

3. Calculate the total force against each end of the
tank shown below. How does the total force
against the ends of the tank change if the length
of the tank is doubled?

4. Calculate the total force against each end of the
tank shown below.

5. Calculate the total force against the end of the
tank shown below.

6. The three tanks shown below are all 6 feet tall and
the top perimeter of each tank is 10 feet. Which
tank has the greatest total force against its sides?

7. The three tanks shown below are all 6 feet tall
and the cross-sectional area of each tank is 16 ft2.
Which tank has the greatest total force against its
sides?

8. Calculate the total force against the bottom 2 feet
of the sides of a tank with a square 40-foot by 40-
foot base that is filled with water (a) to a depth
of 30 feet. (b) to a depth of 35 feet.

9. Calculate the total force against the bottom 2 feet
of the side of a cylindrical tank with a radius of
20 feet that is filled with water (a) to a depth of
30 feet. (b) to a depth of 35 feet.
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10. Calculate the total force against the side and bot-
tom of a cylindrical aluminum soda can with
diameter 6 cm and height 12 cm if it is filled with
385 g of soda. (Assume the can has been opened
so carbonization is not a factor.)

11. Find the kinetic energy of a 20-gram object rotat-
ing at 3 revolutions per second at the end of (a) a
15-cm (massless) string and (b) a 20-cm string.

12. Each centimeter of a metal bar has a mass of 3

grams. Calculate the kinetic energy of the 50-
centimeter bar if it is rotating at a rate of 2 revo-
lutions per second about one of its ends.

13. Each centimeter of a metal bar has a mass of 3

grams. Calculate the kinetic energy of the 50-
centimeter bar if it is rotating at a rate of 2 revo-
lutions per second at the end of a 10-cm cable.

14. Calculate the kinetic energy of a 20-gram meter
stick if it is rotating at a rate of 1 revolution per
second about one of its ends.

15. Calculate the kinetic energy of a 20-gram meter
stick if it is rotating at a rate of 1 revolution per
second about its center point.

16. A flat, circular plate is made from material that
has a density of 2 grams per cubic centimeter.
The plate is 5 centimeters thick, has a radius of
30 centimeters and is rotating about its center at
a rate of 2 revolutions per second. (a) Calculate
its kinetic energy. (b) Find the radius of a plate
that would have twice the kinetic energy of the
first plate, assuming the density, thickness and
rotation rate are the same.

17. Each “washer” in the figure below is made from
material with density of 1 gram per cm3, and
each is rotating about its center at a rate of 3 rev-
olutions per second. Calculate the kinetic energy
of each washer (dimensions are in cm).

18. The rectangular plate shown below is 1 cm thick,
10 cm long and 6 cm wide and is made of a mate-
rial with a density of 3 grams per cm3. Calculate
the kinetic energy of of the plate if it is rotating
at a rate of 2 revolutions per second (a) about its
10-cm side and (b) about its 6-cm side.

19. Calculate the kinetic energy of the plate in Prob-
lem 18 if it is rotating at a rate of 2 revolutions per
second about a vertical line through the center of
the plate, as shown below left.

20. Calculate the kinetic energy of the plate in Prob-
lem 18 if it is rotating at a rate of 2 revolutions per
second about a vertical line through the center of
the plate, as shown above right.

21. For the voter distribution shown below, which
candidates would the voters at positions a, b and
c vote for?
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22. For the voter distribution shown below, which
candidates would the voters at positions a, b and
c vote for?

23. Shade the region representing votes for candi-
date A in the distribution shown below. Which
candidate wins?

24. Shade the region representing votes for candi-
date A in the distribution shown below. Which
candidate wins?

25. Refer to the voter distribution shown below.

(a) Which candidate wins?

(b) If candidate B withdraws before the election,
which candidate will win?

(c) If candidate B stays in the election but C with-
draws, then who wins?

26. Refer to the voter distribution shown below.

(a) Which candidate wins?

(b) If candidate B withdraws before the election,
which candidate will win?

(c) If candidate B stays in the election but C with-
draws, then who wins?

27. Refer to the voter distribution shown below.

(a) If the election is between A and B, who wins?

(b) If the election is between A and C, who wins?

(c) If the election is among A, B and C, who wins?

28. Refer to the voter distribution shown below.

(a) If the election is between A and B, who wins?

(b) If the election is between A and C, who wins?

(c) If the election is among A, B and C, who wins?

29. Sketch a distribution for a two-issue election.
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5.8 Practice Answers

1. The reasoning for a side of the aquarium is exactly the same as for
the front, except a side is 1 foot long instead of 2, so the force is half
of that against the front: 281.25 lbs. The total force against all sides
(and the bottom) is:

2(281.25) + 2(562.5) + 375 = 2062.5 lbs

2. For window C, using similar triangles (see margin), the width w of a
slice at depth x m satisfies:

w
x − 4

=
3
2

⇒ w =
3
2
(x − 4) =

3
2

x − 6

so the area of a slice of height ∆xk m at depth xk m is
( 3

2 xk − 6
)

∆xk m2.

The density of water is 1000 kg
m3 and g ≈ 9.81 m

sec2 , so the hydrostatic
force applied to the k-th slice is:

1000(9.81)xk

(
3
2

xk − 6
)

∆xk

and the total hydrostatic force applied to the window is therefore:∫ x=6

x=4
9810

[
3
2

x2 − 6x
]

dx = 9810
[

1
2

x3 − 3x2
]6

4

= 9810
[
(108 − 108)− (32 − 48)

]
= 156960 N

For window D, the width is 3 at all depths, so the total hydrostatic
force against the window is:∫ x=6

x=4
1000(9.81)x · 3 dx = 14715x2

∣∣∣∣6
4
= 294300 N

Windows A (from Example 2) and C
(with a horizontal flip) fit together to
form window D, so it is encouraging that
the sum of the total hydrostatic forces
against A and C is 137340 + 156960 =
294300 N, the total hydrostatic force
against window D.

3. The object travels 2π (2 m) = 4π m during one revolution, so during
the 1 second it takes to make 4 revolutions, the object travels 16π m;
its velocity is thus v = 1600π cm

sec and its kinetic energy is:

1
2

m · v2 =
1
2
(1 g)

(
1600π

cm
sec

)2
= 1280000π2 ergs ≈ 12633094 ergs

4. Everything remains the same as in Example 4, except for the end-
points of integration:∫ x=4

x=1
400000π2x2 dx = 400000π2

[
1
3

x3
]4

1
= 8400000π2 ergs

which is approximately 82, 904, 677 ergs, or 8.29 J.

5. The shaded regions in the margin figure show the total votes for
each candidate: B wins.
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