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6.2 The Differential Equation y′ = f (x)

This section introduces some basic concepts and vocabulary of the
study of ODEs as they apply to the familiar problem, y′ = f (x): the
notion of a general solution of an ODE, the (possibly unique) solution
to an IVP and the direction field of an ODE.

We’ll use these concepts in later sections
as we examine more complicated differ-
ential equations and their applications.

Solving y′ = f (x)

This is due to Corollary 2 to the Mean
Value Theorem in Section 3.2.

The solution of the ODE y′ = f (x) is the collection of all antiderivatives

of f : y =
∫

f (x) dx. If y = F(x) is one antiderivative of f , then we have

essentially found all antiderivatives of f because any antiderivative of
f has the form F(x) + C, for some value of the constant C. If F is one
particular antiderivative of f , the collection of functions F(x) + C is
called the general solution of y′ = f (x). The general solution consists
of a one-parameter family of functions (the parameter here is C).

Example 1. Find the general solution of the ODE y′ = 2x + e3x.

Solution. y =
∫ [

2x + e3x
]

dx = x2 +
1
3

e3x + C. ◀

Practice 1. Find general solutions for y′ = x +
3

x + 2
and y′ =

6
x2 + 1

.

Direction Fields

Geometrically, a derivative tells us the slope of the tangent line to a
curve, so we can interpret the ODE y′ = f (x) as a geometric condition:
at each point (a, b) on the graph of the solution function y, the slope of
the tangent line is f (a). The ODE y′ = 2x says that at each point (a, b)
on the graph of y, the slope of the line tangent to the graph is 2a: if the
point (5, 3) is on the graph of y, then the slope of the tangent line there
is 2 · 5 = 10. We can present this information graphically as a direction
field: a collection of short line segments through some sample points
in the plane so that the slope of the segment through (a, b) is f (a). A
direction field for y′ = 2x appears in the margin: at a point (a, b), the
slope is 2a. Direction fields for y′ = 3x2 and y′ = cos(x) appear below:

What are the solutions to y′ = 2x? Can
you “see” those solution curves in the
direction field graphed above?

What are the solutions to y′ = 3x2? To
y′ = cos(x)? Can you “see” those solu-
tion curves in the direction fields?
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For any ODE of the form y′ = f (x), the values of y′ depend only
on x, so along any vertical line (where x is fixed) all the small line
segments have the same y′, hence the same slope, and they are parallel
(see margin). If y′ depends on both x and y, then the slopes of the line
segments will depend on both x and y, and the slopes of the small line
segments along a vertical line are not all the same. The second margin
figure shows a direction field for y′ = x − y, where y′ is a function of
both x and y. A direction field of an ODE y′ = g(x, y) is a collection of
short line segments with slope g(a, b) at the point (a, b).

Practice 2. Construct direction fields for (a) y′ = x+ 1 and (b) y′ = x+ y
by sketching a short line segment with slope y′ at each point (a, b) with
integer coordinates from −3 to 3.

As you discovered in the previous Practice problem, direction fields
are usually tedious to plot by hand, but computers (and some calcula-
tors) can plot them quickly. If you only have a graph of the function f
in the differential equation y′ = f (x), you can construct an approximate
direction field using the information you have about f from its graph.

Example 2. Construct a direction field for the differential equation
y′ = f (x) for the f given graphically below left.

Solution. If x = 0 then y′ = f (0) = 1, so at every point on the vertical
line where x = 0 (the y-axis) the line segments of the direction field
have slope y′ = 1 (above right). Similarly, if x = 1 then y′ = f (1) = 0,
so the line segments of the direction field have slope y′ = 0 at every
point on the vertical line where x = 1. The small line segments along
any vertical line are parallel. ◀

Practice 3. Construct a direction field for the differential equation
y′ = f (x) for the f given graphically in the margin.

Once you have a direction field for an ODE, you can sketch curves
that have the appropriate tangent-line slopes so you can “see” the
shapes of the solution curves even if you do not have formulas for
them. (See margin.) These shapes can be useful for estimating which
initial conditions lead to straight-line solutions or periodic solutions or
solutions with other properties, and they can help us understand the
behavior of machines and organisms in applied problems.
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Initial Value Problems

An initial condition y(x0) = y0 specifies that the solution y of the dif-
ferential equation should go through the point (x0, y0) in the plane. To
solve a differential equation with an initial condition, you typically use
integration to find the general solution (a family of solutions containing
an arbitrary constant) and then you use algebra to find the one value
for the constant so the solution satisfies the initial condition.

Example 3. Solve the differential equation y′ = 2x with the initial
condition y(2) = 1.

Solution. The general solution is y =
∫

2x dx = x2 + C. Substituting

x0 = 2 and y0 = 1 into the general solution: 1 = (2)2 + C ⇒ C = −3.
So the solution we want is y = x2 − 3. (A quick check verifies that[
x2 − 3

]′
= 2x and 22 − 3 = 1.) The margin shows a direction field

for y′ = 2x and the solution curve that goes through (2, 1), y = x2 − 3,
along with the solution of the ODE that satisfies y(1) = −1. ◀

Example 4. If you toss a ball upward with an initial velocity of 100

feet per second, its height y (in feet) at time t (in seconds) satisfies the
differential equation y′ = 100 − 32t. Sketch the direction field for y (for
0 ≤ t ≤ 4) and then sketch the solution that satisfies the condition that
the ball is 200 feet high after 3 seconds.

Solution. y =
∫

[100 − 32t] dt = 100t − 16t2 + C; if y(3) = 200:

200 = 100(3)− 16(3)2 + C ⇒ 200 = 156 + C ⇒ C = 44

The function we want is y = 100t − 16t2 + 44. The direction field and
the solution satisfying y(3) = 200 appear in the margin. ◀

Practice 4. Find the solution of y′ = 9x2 − 6 sin(2x) + ex that goes
through the point (0, 6).

Example 5. A direction field for y′ = x − y appears in the margin.
Sketch the three solutions of the ODE y′ = x − y that satisfy the initial
conditions y(0) = 2, y(0) = −1 and y(1) = −2.

Solution. See margin figure. ◀

Existence and Uniqueness

When solving IVPs, three questions often present themselves:

• Does a solution to the IVP exist?

• Is that solution unique?

• On what interval(s) is that solution valid?
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We typically hope the answer the first two questions is “yes,” but (as
we will see in the next section) that will not always be true.

Surprisingly, for reasonably “nice” IVPs,
we will eventually be able to answer these
questions without actually finding the
solution.For IVPs of the form y′ = f (x), y(x0) = y0, where f (x) is continuous

on some interval (a, b) with a < x0 < b, the answer to the first two
questions is “yes” and the answer to third question is “on the interval
(a, b), and possibly on some larger interval.” In this situation, define:

y(x) = y0 +
∫ x

x0

f (t) dt

The Fundamental Theorem of Calculus tells us that y′(x) = f (x), so
this y(x) solves the ODE, and:

y(x0) = y0 +
∫ x0

x0

f (t) dt = y0 + 0 = y0

so it also satisfies the initial value condition. If ỹ(x) is any other solution
to the IVP, then ỹ′(x) = f (x) = y′(x) so ỹ(x) = y(x) + C, but we also
know that ỹ(x0) = y0 = y(x0):

ỹ(x0) = y(x0) + C ⇒ y0 = y0 + C ⇒ C = 0 ⇒ ỹ(x) = y(x)

which tells us that y(x) is the only solution. Finally, f (x) is continuous
on (a, b), hence integrable on (a, b), so the integral definition of y(x) is
defined (and solves the IVP) on (a, b).

6.2 Problems

In Problems 1–6, use the given direction field to sketch the solutions of the underlying ODE that satisfy the
given initial conditions.

1. See figure below; y(0) = 1,
y(1) = −2 and y(1) = 3.

2. See figure above; y(0) = 2,
y(1) = −1 and y(1) = −2.

3. See figure below; y(−2) = 1,
y(0) = 1 and y(2) = 1.

4. See figure above; y(−2) = −1,
y(0) = −1, y(2) = −1.

5. See figure below; y(0) = −2,
y(0) = 0 and y(0) = 2.

6. See figure above; y(2) = −2,
y(2) = 0 and y(2) = 2.
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7. How do the three solutions in Problem 5 behave
for large values of x?

8. How do the three solutions in Problem 6 behave
for large values of x?

In Problems 9–14, (a) sketch a direction field for the
given ODE and (b) without solving the ODE, sketch
solutions that go through the points (0, 1) and (2, 0).

9. y′ = 2x 10. y′ = 2 − x

11. y′ = 2 + sin(x) 12. y′ = ex

13. y′ = 2x + y 14. y′ = 2x − y

In Problems 15–20, (a) find the family of functions
that solve the given ODE, (b) find the member of the
family that satisfies the given IVP and (c) report the
interval on which the solution to the IVP is valid.

15. y′ = 2x − 3, y(1) = 4

16. y′ = 1 − 2x, y(2) = −3

17. y′ = ex + cos(x), y(0) = 7

18. y′ = sin(2x)− cos(x), y(0) = −5

19. y′ =
6

2x + 1
+
√

x, y(1) = 4

20. y′ =
ex

1 + ex , y(0) = 0

Problems 21–22 concern a direction field (shown
below) that comes from an ODE called the logistic
equation, y′ = y(1 − y), used to model the growth
of a population in an environment with renewable
but limited resources. (It is also used to describe the
spread of a rumor or disease through a population.)

21. Sketch the solution that satisfies the initial condi-
tion y(0) = 0.1. What letter of the alphabet does
this solution resemble?

22. Sketch several solutions that have different initial
values for y(0). What appears to happen to all
of these solutions after a “long time” (for large
values of x)?

In Problems 23–24, the given figures show the di-
rection of surface flow at different locations along
a river. Sketch the paths small corks will follow if
they are put into the river at the dots in each figure.
(Because they indicate both the magnitude and the
direction of flow, each diagram is called a vector
field.) Notice that corks that start close to each other
can drift far apart, and corks that start far apart can
drift close together.

23. See figure below.

24. See figure below.
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6.2 Practice Answers

1. y′ = x +
3

x + 2
⇒ y =

∫ [
x +

3
x + 2

]
dx =

1
2

x2 + 3 ln (|x + 2|) + C

y′ =
6

x2 + 1
⇒ y =

∫ 6
x2 + 1

dx = 6 arctan(x) + C

2. (a) If y′ = x + 1 then the table below lists values of y′ for integer
values of x and y from −3 to 3 (notice that y′ does not depend
on the value of y); the margin figure shows the direction field.

x = −3 −2 −1 0 1 2 3

y = 3 −2 −1 0 1 2 3 4
2 −2 −1 0 1 2 3 4
1 −2 −1 0 1 2 3 4
0 −2 −1 0 1 2 3 4

−1 −2 −1 0 1 2 3 4
−2 −2 −1 0 1 2 3 4
−3 −2 −1 0 1 2 3 4

(b) If y′ = x + y then the table below lists values of y′ for integer
values of x and y from −3 to 3 (notice that y′ here does depend
on both x and y); the margin figure shows the direction field.

x = −3 −2 −1 0 1 2 3

y = 3 0 1 2 3 4 5 6
2 −1 0 1 2 3 4 5
1 −2 −1 0 1 2 3 4
0 −3 −2 −1 0 1 2 3

−1 −4 −3 −2 −1 0 1 2
−2 −5 −4 −3 −2 −1 0 1
−3 −6 −5 −4 −3 −2 −1 0

3. An approximate direction field for the ODE y′ = f (x) appears in the
margin. (The function shown is f (x), not a solution to the ODE.)

4. y =
∫ [

9x2 − 6 sin (2x) + ex
]

dx = 3x3 + 3 cos (2x) + ex + C so:

6 = y(0) = 3 · 03 + 3 cos(2 · 0) + e0 + C = 0 + 3 + 1 + C ⇒ C = 2

and therefore y = 3x3 + 3 cos (2x) + ex + 2.
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