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6.4 Exponential Growth and Decay

The separable differential equation y′ = ky is relatively simple to solve,
but it can model a wealth of important situations, including population
growth, radioactive decay and drug absorption in the bloodstream. In
this section we will solve this ODE and explore some related applica-
tions.

The Differential Equation y′ = ky

The differential equation y′ = ky says that the rate of change of a
quantity y is proportional to the value of y. The margin figures show
direction fields for y′ = 1y (growth) and y′ = −2y (decay). The ODE
y′ = ky can model the behavior of populations (the rate at which
babies are born is proportional to the number of people currently in
the population), radioactive decay (the rate at which atoms decay is
proportional to the number of atoms present), the absorption of some
medicines by our bodies, and many other situations. The solutions of
y′ = ky will help us determine how long it takes a population to double
in size, the age of some prehistoric artifacts, and even how often some
medicines should be taken in order to maintain a safe and effective
concentration of that medicine in a patient’s body.

If y′ = ky (for y > 0), then y(t) = y(0) · ekt.

Proof. The ODE y′ = ky is separable, so we can employ the method of
Section 6.3 to solve it:

dy
dt

= k · y ⇒ 1
y
· dy

dt
= k ⇒ 1

y
dy = k dt ⇒

∫ 1
y

dy =
∫

k dt

⇒ ln (|y|) = kt + C ⇒ eln(|y|) = ekt+C

⇒ |y| = ekt · eC ⇒ y = ±eCekt

Because we assumed that y > 0, we didn’t need to worry about dividing
by y, and we didn’t really need the absolute values (or the ±) in the
solution above. But y = 0 is also a solution to y′ = ky, so y = Aekt

solves y′ = ky for any value of A.
We’ve found an infinite family of solutions for y′ = ky, but how do

we know that we’ve found all solutions to that ODE? Let f (t) be any
solution to y′ = ky so that f ′(t) = k · f (t). Then define another function
g(t) = f (t) · e−kt so that:

g(t) =
f (t)
ekt ⇒ g′(t) =

ekt · f ′(t)− f (t) · ekt[
ekt

]2 =
ekt [ f ′(t)− k · f (t)]

e2kt

The last expression in brackets is 0 (because f ′(t) = k · f (t)), so:

g′(t) = 0 ⇒ g(t) = C ⇒ f (t)
ekt = C ⇒ f (t) = Cekt
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We now know that any function of the form y = Aekt solves y′ = ky
and that any solution of y′ = ky must have the form y = Aekt.

Finally, putting t = 0 into the general solution:

y(0) = Aek·0 = A ⇒ A = y(0) ⇒ y(t) = y(0) · ekt

which holds for any value of y(0), but in particular for any y(0) > 0.

Exponential Growth

A population of people, a chunk of radioactive material and the amount
of money in a bank account can all share a common trait. In each
situation, the rate at which an amount changes at a particular time
is often proportional to the value of that amount at that time. For
example:

• the number of births per year is proportional to the number of people
in the population

• the number of atoms per hour that release a particle is proportional
to the number of atoms present

• the number of dollars of interest per year added to a bank account is
proportional to the amount of money in that bank account

These situations can all be modeled with the separable ODE solved
above. Our focus in this section will be on using those equations
and their solutions to answer questions about applied problems. The
applications here all involve the rate of change of some quantity with
respect to time, so the input variable will generally be time t (instead of
x). We might also write the output quantity as f (t) (instead of y). The
ODE y′ = ky then becomes f ′(t) = k · f (t) and the solution y = y0 · ekx

becomes f (t) = f (0) · ekt.
When k > 0, f (t) = f (0) · ekt represents exponential growth and we

call k the growth constant. When k < 0, f (t) = f (0) · ekt represents
exponential decay and we call k the decay constant. The margin figure
shows the graphs of f (t) = ekt for several values of k.

When you know the initial population
f (0) and the growth constant k, you can
write an equation for f (t), the popula-
tion at any time t, and use it to answer
questions about the population.

Example 1. The number of bacteria on a Petri plate t hours after an
experiment starts is 2000 · e0.0488t.

(a) How many bacteria are on the plate after one hour? Two hours?

(b) What is the percentage growth of the population from t = 0 to
t = 1? From t = 1 to t = 2?

(c) How long does it take for the population to reach 3000? To double?

Solution. See margin figure for a graph of f (t) = 2000 · e0.0488t.
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(a) f (1) = 2000 · e0.0488 ≈ 2100; f (2) = 2000 · e0.0976 ≈ 2205

(b) The percentage growth from t = 0 to t = 1 is:

f (1)− f (0)
f (0)

=
2100 − 2000

2000
=

100
2000

= 0.05 = 5%

The percentage growth from t = 1 to t = 2 is:

f (2)− f (1)
f (1)

=
2205 − 2100

2100
=

105
2100

= 0.05 = 5%

During the first hour, the population grows by 100 and during the
second hour it grows by 105, but the percentage growth during each
hour remains constant at 5%.

(c) We need the value of T so that 3000 = f (T) = 2000 · e0.0488T :

1.5 = e0.0488T ⇒ ln(1.5) = ln
(

e0.0488T
)
= 0.0488T

⇒ T =
ln(1.5)
0.0488

≈ 8.31 hours

The original population is 2000, so the doubled population is 4000

and the doubling time is ln(2)
0.0488 ≈ 14.2 hours. ◀

When we know the growth constant k, the doubling time is simple
to find (as in the preceding Example). If f (t) = f (0) · ekt then the
doubling time is the time td so that:

2 f (0) = f (0) · ektd ⇒ 2 = ektd ⇒ ln(2) = ktd ⇒ td =
ln(2)

k

An important aspect of exponential growth is that the doubling time
depends only on the growth constant k.

Practice 1. Use the information from the previous Example to:

(a) determine the population at t = 5.

(b) find how long it takes for the population to reach 5,000. To triple.

If you do not know the value of the growth constant k, your first
step will typically be to use other information to find it.

Example 2. The population of a community was 22,000 in 2000 and
26,800 in 2010. Assuming that the community maintains the same rate
of exponential growth (see margin figure):

(a) Find a formula for the population t years after 2000.

(b) Find the annual percentage rate of growth of the community.
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Solution. Let t represent the number of years since 2000, so the year
2000 corresponds to t = 0 and the year 2010 corresponds to t = 10.
Then f (0) = 22000, f (10) = 26800 and f (t) = 22000 · ekt.

(a) To find the value for k:

26800 = f (10) = 22000 · ek(10) ⇒ 1.218 = e10k ⇒ ln(1.218) = 10k

⇒ k = 0.1 ln(1.218) ≈ 0.0197

so f (t) ≈ 22000 · e0.0197t.

(b) f (0) = 22000 and f (1) ≈ 22000 · e(0.0197)1 ≈ 22438 so the annual
percentage increase was

f (1)− f (0)
f (0)

=
438

22000
≈ 0.0199 = 1.99%

during the first year. ◀

Practice 2. A scientist released 12,000 free neutrons into a material.
Two seconds later, the material contained 18,000 free neutrons. If the
number of free neutrons grows exponentially:

(a) Find a formula for the number of neutrons present t seconds after
the beginning of the experiment.

(b) Find the doubling time for the number of free neutrons.

Compound interest provides another example of exponential growth.

Example 3. How long does it take $1,000 to double when invested in a
savings account with interest compounded continuously at an annual
rate of 5%? At an effective annual rate of return of 5% (compounded
continuously)?

Solution. If the interest is compounded continuously at an annual rate
of 5% and A(t) is the amount of money in the account t years after the
initial deposit of $1,000, then:

A′(t) = 0.05A(t), A(0) = 1000 ⇒ A(t) = 1000e0.05t

and the doubling time is td = ln(2)
0.05 ≈ 13.86 years.

If the effective annual rate of return is 5%, then A(1) = 1000 +

0.05(1000) = 1.05(1000) = 1050 so:

1050 = 1000ek·1 ⇒ 1.05 = ek ⇒ k = ln(1.05) ≈ 0.0488

hence the doubling time is td = ln(2)
ln(1.05) ≈ 14.21 years. (An effective

annual return of 5% corresponds to a continuously compounded annual
interest rate of 4.88%.) ◀

Practice 3. How long does it take an investment to double if the effective
annual rate of return is 2%?
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Exponential Decay

Exponential decay occurs when the rate of loss of something is pro-
portional to the amount present. One example of exponential decay is
radioactive decay: the number of atoms of a radioactive substance that
“decay” (split into nonradioactive atoms and release particles) during a
short time interval is proportional to the number of radioactive atoms
present at that time. Exponential decay (see margin) also models how
quickly some medicines are absorbed from the bloodstream — and even
how quickly you forget calculus concepts.

Exponential decay calculations are similar to those for growth, but
the value of k is negative and we talk about “half-life,” the time for
half of the material to decay or be absorbed, instead of the doubling
time. The margin table shows the half-lives of some isotopes.

element half-life

iodine-131 8.07 days
strontium-90 29 years
argon-39 265 years
carbon-14 5700 years
plutonium-239 24400 years
uranium-238 4.51 × 105 years
uranium-234 2.47 × 109 years

Example 4. You started an experiment with 10 g of a radioactive
substance, but after 6 days of decay only 3 g remained.

(a) Find a formula for the amount of radioactive material present t days
after beginning the experiment.

(b) Find the half-life for the radioactive substance.

Solution. Let f (t) represent the amount of the radioactive substance
present after t days. Then f (t) = 10ekt (see margin figure).

(a) 3 = f (6) = 10e6k ⇒ 0.3 = e6k ⇒ ln(0.3) = 6k so k = 1
6 ln(0.3) ≈

−0.2007 and f (t) = 10e−0.2007t.

(b) The half-life th is the time required for half of the material to decay,
so we need to solve 5 = 10e−0.2007th for th:

0.5 = e−0.2007th ⇒ ln(0.5) = −0.2007th ⇒ th =
ln(0.5)
−0.2007

≈ 3.5 days

Note that th =
ln(0.5)

k
, which will hold true generally. ◀

When you know the decay constant k, the half-life th is simple to
find, as in the preceding Example:

th =
ln(0.5)

k
=

ln
(

1
2

)
k

=
− ln(2)

k

The half-life depends only on the decay constant k (see margin figure).
If you know the half-life of a substance and you know how much

of the substance is present in a sample now, you can determine how
much was present at some past time or determine how long ago the
sample contained a particular amount of the substance.
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Scientists use radioactive carbon-14, with a half-life of about 5,700

years, in this way to estimate how long ago plants and animals lived. A
living plant continually exchanges carbon-14 and ordinary carbon with
the atmosphere so that the ratio of carbon-14 to non-radioactive carbon
remains relatively constant. But once the plant dies, this exchange stops.
The ordinary carbon remains in the material, but the carbon-14 decays,
so the ratio of carbon-14 to ordinary carbon decreases at a known rate.
By measuring the ratio of carbon-14 to ordinary carbon in a sample of
plant tissue, scientists can determine how long ago the plant died and
obtain an estimate for the age of the sample.

Example 5. The amount of carbon-14 in plant fiber of a woven basket
is 20% of the amount present in a living plant (see margin figure).
Estimate the age of the basket.

Solution. Let f (t) represent the relative amount of carbon-14 in a
sample with age t years. Because the half-life of carbon-14 is 5,700

years:

th =
− ln(2)

k
⇒ 5700 =

− ln(2)
k

⇒ k =
− ln(2)

5700
≈ −0.0001216

so that f (t) = f (0) · e−0.0001216t. Because 20% of the carbon-14 remains
in our sample, we want the value of T so that:

0.20 f (0) = f (T) ⇒ 0.20 f (0) = f (0) · e−0.0001216T

⇒ 0.20 = e−0.0001216T ⇒ ln(0.20) = −0.0001216T

⇒ T =
ln(0.2)

−0.0001216
≈ 13235

We can conclude that the basket was made from a plant that died about
13,200 years ago. (Does that mean the basket was made then?) ◀

This dating method is very sensitive to
small changes in the measured amount
of carbon-14.

Practice 4. The half-life of an isotope is 8 days. Write a formula for the
amount of the isotope present t days after you begin an experiment
with 10 mg of the isotope.

The rate at which many medicines are absorbed from the blood is
proportional to the concentration of the medicine in the blood: the
higher the concentration in the blood, the faster it is absorbed.

Example 6. Suppose a certain medicine has an absorption (decay)
constant of −0.17 (determined experimentally) and that the lowest
“effective”concentration of the medicine is 0.3 mg/l (milligrams of
medicine per liter of blood). If a patient who has 5 liters of blood is
injected with 20 mg of the medicine, how long will the medicine be
effective?
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Solution. because the patient is starting with 20 mg of the medicine
in 5 liters of blood, the initial concentration is 20 mg

5 L = 4 mg/L. The
amount of medicine in the blood t hours later is thus f (t) = 4e−0.17t

and we want to find T so that f (T) = 0.3 mg/L

0.3 = 4e−0.17T ⇒ 0.3
4

= e−0.17T ⇒ ln
(

0.3
4

)
= −0.17T ⇒ T ≈ 15.2

so a patient should receive a new does of the medicine about 15 hours
after the first dose. ◀

Practice 5. Should the amount of the second dose in the preceding
Example be the same as the initial dose?

Many medicines have a “safe and effective” interval of concentrations
(see figure below), so the goal of a schedule for taking the medicine is
to keep the concentration near the middle of that range. Taking doses
too close together in time can result in an overdose, while taking them
too far apart is eventually ineffective.

6.4 Problems

1. How long did it take the population of a city (see
below) to double from 10,000 to 20,000? From
15,000 to 30,000? Approximate the doubling time.

2. How long did it take the counts for a radioactive
material to decay from 80 per minute to 40? From
60 to 30? From 40 to 20? What is the half-life?
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3. The population of a community in 1990 was
48,000 people and in 2010 it was 64,000 people.

(a) Write a formula for the population of the com-
munity t years after 1990.

(b) Estimate the population in the year 2020.

(c) When will the population be 100,000?

(d) What is the doubling time of the population?

4. Repeat Problem 3 if the population of another
community was was 40,000 people in 1990 and
60,000 people in 2010.

5. A terrific investment pays interest at an effective
annual rate of 15%. How long will it take for a
$5,000 investment to double? To triple?

6. You have invested $3,000 for 10 years at an effec-
tive annual rate of 7.5% and a friend has invested
the same amount invested at an effective annual
interest rate of 7.75%. Your friend will get back
how much more money than you at the end of 10

years? At the end of 20 years?

7. Find a formula for the population in Problem 1.

8. Each bacterium of a certain species splits into two
bacteria at the end of each minute. If we start
with a few bacteria in a bowl at 3:00 p.m. and the
bowl is full of bacteria at 4:30 p.m., when was the
bowl half full? (Calculus is not required.)

9. A newscaster reports that the world’s population
is now doubling every 50 years. What annual rate
of growth results in a 50-year doubling time?

10. Group A has a population of 150,000 and an an-
nual growth rate of 4%; group B has a population
of 100,000 and an annual growth rate of 7% (see
figure below). After how many years will the two
groups be the same size?

11. Group A has a population of 600,000 and an an-
nual growth rate of 3%; group B has a population
of 400,000 and an annual growth rate of 6%. After
how many years will the two groups be the same
size?

12. The unregulated population of fish in a certain
lake grows by 30% per year under optimum con-
ditions. A fish census reveals there are approx-
imately 20,000 fish in the lake. How many fish
can be harvested (see figure below) at the end of
each year in order to maintain a stable popula-
tion? (This is an example of calculating the yield
for a “renewable resource.” In practice, more so-
phisticated calculations also take into account the
distribution of species, ages and genders.)

13. The annual exponential growth constant for a
population of snails is k = 0.14. Currently you
have 8,000 snails.

(a) Determine the size of the population over the
next 20 months if you harvest 2,000 snails ev-
ery 2 months.

(b) What happens if you harvest 3,000 snails every
2 months?

(c) How many can we harvest every 2 months in
order to maintain a stable population?

14. An exponential function f (t) = Aekt has constant
doubling time, but some non-exponential func-
tions also have constant doubling times.

(a) Show that the exponential function f (t) =

2t = eln(2)t has a constant doubling time of 1.
(Show that f (t + 1) = 2 f (t).)

(b) Graph g(t) = 2t [1 + A sin(2πt)] for A = 0.5
and A = 1.5. Show that g has a constant
doubling time 1 for any choice of A.



504 contemporary calculus

15. An experiment starts with 10 grams of a radioac-
tive material and 14 days later 2 grams remain.

(a) Find a formula for the amount of material
remaining t days after the experiment starts.

(b) Find the half-life of the material.

(c) When will 0.7 grams of the material remain?

16. You start with 8 mg of a radioactive substance
and 10 days later determine that 6.3 mg remains.

(a) Find a formula for the amount left t days later.

(b) Find the half-life of the substance.

(c) When will 1 mg of the substance remain?

17. A Geiger counter initially recorded 187 counts
per minute from a radioactive material, but 2

days later the count was down to 143 counts per
minute. (The count per minute is proportional to
the amount of radioactive material present.)

(a) What is the half-life of the material?

(b) When will the count be down to 20 counts per
minute?

18. The initial Geiger counter measurement from a
radioactive substance was 540 counts per minute,
and a week later it was 500 counts per minute.

(a) What is the half-life of the substance?

(b) When will the count be down to 100 counts
per minute?

19. Find a formula for the counts per minute for the
radioactive material A in the figure below.

20. Find a formula for the counts per minute for the
radioactive material B in the figure above.

21. Your friend plans to purchase a letter reputedly
written by Isaac Newton (1642–1727), but an anal-
ysis of the paper shows that it contains 97.5% of
the proportion of carbon-14 present in new paper
of the same type. Can you be certain the letter
is a forgery? If the age of the paper is consistent
with time frame during which Newton lived, can
you be certain the letter is genuine?

22. For several centuries, the Shroud of Turin was
widely believed to be the shroud of Jesus. Three
independent laboratories in England, Switzerland
and the United States used carbon-14 dating on a
few square centimeters of the cloth, and in 1988

they reported (Science, October 21, 1988) that the
Shroud of Turin was probably made during the
early 1300s and certainly after 1200 A.D.

(a) If the Shroud was made in 1300 A.D., what
percentage of the original carbon-14 was still
present in 1988?

(b) If the Shroud was made in 30 A.D., what
percentage of the original carbon-14 was still
present in 1988?

23. Half of a particular medicine is used up by the
body every 6 hours, and the medicine is not effec-
tive if the concentration in the blood is less than
10 mg/l. If an ill person is given an initial dose
of medicine to raise the concentration to 30 mg/l,
for how long will the medicine be effective?

24. A particular controlled substance has a half-life of
12 hours, and it can be detected in concentrations
as low as 0.002 mg/l in the blood.

(a) If a person has an initial concentration of the
substance of 15 mg/l in the blood, for how
long can it be detected?

(b) If the detection test is improved by a factor of
100, so it can detect a concentration of 0.00002

mg/l, for how long can an initial concentra-
tion of 15 mg/l be detected?

25. A doctor gave a patient 9 mg of a medicine that
has half-life of 15 hours in the body. How much of
the medicine does the patient need to take every
8 hours in order to maintain between 6 and 9 mg
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of the medicine in the body all of the time? (See
figure below.)

26. Each layer of a dark film transmits 40% of the
light that strikes it.

(a) How many layers are needed for an eye shield
to transmit only 10% of the light?

(b) How many layers are needed to transmit only
2% of the light?

27. A region has been contaminated with radioactive
iodine-131 to a level five times the safe level. How
long will it be until the area is safe?

28. A region has been contaminated with radioactive
strontium-90 to a level five times the safe level.
How long will it take until the area is safe?

29. The population of a country is 4 million and is
growing at 5% per year. Currently the country
has 10 million acres of forests that are being cut
down (and not replanted) at a rate of 300,000

acres per year.

(a) Find a formula for the number of acres of
forest per person.

(b) At what rate is the number of acres of forest
per person changing?

(c) If the population and harvest rates remain
constant, in approximately how many years
will there be one acre of forest per person?

6.4 Practice Answers

1. (a) f (5) = 2000e0.0488(5) ≈ 2552

(b) f (T) = 5000 ⇒ 5000 = 2000e0.0488T ⇒ 2.5 = e0.0488T ⇒ ln(2.5) = 0.0488T

⇒ T =
ln(2.5)
0.0488

≈ 18.78 hours; tripling time is
ln(3)

0.0488
≈ 22.51 hours.

2. (a) f (0) = 12000 so f (t) = 12000ekt and f (2) = 18000 so:

18000 = 12000e2k ⇒ 1.5 = e2k ⇒ ln(1.5) = 2k ⇒ k =
1
2

ln(1.5) ≈ 0.2027

and thus f (t) ≈ 12000e0.2027t.

(b) Doubling time is td =
ln(2)

k
≈ ln(2)

0.2027
≈ 3.42 seconds.

3. After 1 year, each $1 invested will become $1 + (0.02)($1) = $1.02
so:

f (1) = 1.02 = 1 · ek·1 ⇒ ln(1.02) = k ⇒ k ≈ 0.0198

The doubling time is therefore: td =
ln(2)

0.0198
≈ 35 years.

4. 8 = th = − ln(2)
k

⇒ k = − ln(2)
8

≈ −0.0866 so f (t) = 10e−0.0866t.

5. No. After 15.2 hours, the patient still has 0.3 mg/l of medicine in
his blood, or 5(0.3) = 1.5 mg. A dose of 20 − 1.5 = 18.5 mg would
return the medicine in his blood to the original level of 20 mg.
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