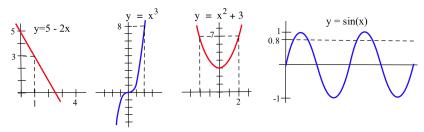
7.1 One-to-One Functions

You've seen that some equations have only one solution (for example, 5-2x=3 and $x^3=8$), while some have two solutions ($x^2+3=7$) and some even have an infinite number of solutions ($\sin(x)=0.8$). The graphs of y=5-2x, $y=x^3$, $y=x^2+3$ and $y=\sin(x)$ and the solutions of the equations mentioned above appear below:



Functions f for which equations of the form f(x) = k have at most one solution for each value of k (that is, each outcome k comes from only one input x) arise often in applications and possess a number of useful mathematical properties. This brief section focuses on those functions and examines some of their properties.

Example 1. How many solutions does each equation have?

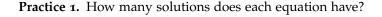
(a)
$$f(x) = 0$$
 for $f(x) = x(x-4)$

(b)
$$g(x) = 3$$
 for g given in the margin table

(c)
$$h(x) = 4$$
 for h given by the graph in the margin

(d)
$$f(x) = k \text{ for } f(x) = e^x$$
.

Solution. (a) Two: $x(4-x)=0 \Rightarrow x=0$ or x=4. (b) One: g(x)=3 only if x=2. (c) Two: h(x)=4 if $x\approx 1.2$ or if $x\approx 4$. (d) If k>0, it has one solution: $x=\ln(k)$. If $k\leq 0$, it has no solutions.



(a)
$$f(x) = 4$$
 for $f(x) = x(4-x)$

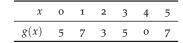
(b)
$$g(x) = 7$$
 for g given by the margin table

(c)
$$H(x) = 3$$
 for H given by the graph in margin

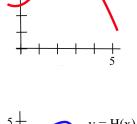
(d)
$$f(x) = 5 \text{ for } f(x) = \ln(x)$$

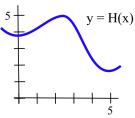
Horizontal Line Test

You should be familiar with the Vertical Line Test, a graphical tool you can use to help determine whether or not a curve in the *xy*-plane is the



y = h(x)





If not, review Section 0.3.

graph of a function. A similar geometrical test leads to the definition of a one-to-one function and provides a tool for helping to determine when a function is one-to-one.

Horizontal Line Test (Definition of One-to-One):

A function is one-to-one if each horizontal line intersects the graph of the function at most once.

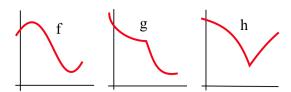
Equivalently, a function y = f(x) is one-to-one if two distinct x-values always produce two *distinct y*-values: that is, $a \neq b \Rightarrow f(a) \neq f(b)$. This immediately tells us that every strictly increasing function is one-to-one, and that every strictly decreasing function is one-to-one. (Why?)

For any function, if we know an input value we can calculate the output, but an output may arise from any of several different inputs. With a one-to-one function, each output comes from only one input.

Example 2. (a) Which functions in the first margin figure are oneto-one? (b) Which functions in the first margin table are one-to-one?

Solution. (a) In the figure, *f* and *h* are one-to-one; *g* fails the Horizontal Line Test, so g is not one-to-one. (b) In the table, h is one-to-one, while f and g are not one-to-one because f(0) = f(3) and g(1) = g(5).

Practice 2. (a) Which functions graphed below are one-to-one? (b) Which functions in the second margin table are one-to-one?

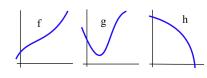


Example 3. Let f(x) = 2x + 1 (see margin). Find the values of x so that (a) f(x) = 9 and (b) f(x) = a and then (c) solve f(y) = x for y.

Solution. (a) $9 = f(x) = 2x + 1 \Rightarrow 8 = 2x \Rightarrow x = \frac{8}{2} = 4$ (b) a = 2x + 1 $\Rightarrow 2x = a - 1 \Rightarrow x = \frac{a - 1}{2}$ (c) $x = f(y) = 2y + 1 \Rightarrow 2y = x - 1$ so $y = \frac{x-1}{2}$. Notice that this new function reverses the operations of f(x), applied in reverse order: f(x) multiplies x by 2, then adds 1; the new function subtracts 1, then divides by 2.

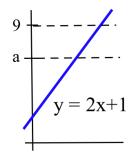
Practice 3. Let g(x) = 3x - 5. Find the values of x so that (a) g(x) = 7and (b) g(x) = b and then (c) solve g(y) = x for y.

Practice 4. Show that exponential growth, for example $f(x) = e^{3x}$, and exponential decay, for example $g(x) = e^{-2x}$, are both one-to-one.



x	f(x)	g(x)	h(x)
0	5	7	2
1	2	3	-1
2	3	O	5
3	5	1	4
4	О	6	3
5	1	3	О

х	f(x)	g(x)	h(x)
О	4	2	-2
1	2	3	5
2	-2	О	1
3	5	4	14
4	3	6	3
5	1	7	1

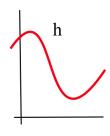


7.1 Problems

In Problems 1–4, explain why each given function is (or is not) one-to-one.

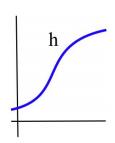
1. f(x) = 3x - 5, y = 3 - x, g(x) given by the table below, and h(x) given by the graph below.

х	g(x)
О	3
1	4
2	5
3	2
4	4



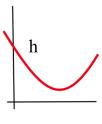
2. $f(x) = \frac{x}{4}$, $y = x^2 + 3$, g(x) given by the table below, and h(x) given by the graph below.

x	g(x)
О	3
1	2
2	О
3	-2
4	1



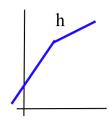
3. $f(x) = \sin(x)$, $y = e^x - 2$, g(x) given by the table below, and h(x) given by the graph below.

x	g(x)
О	-1
1	5
2	3
3	1
4	О



4. f(x) = 17, $y = x^3 - 1$, g(x) given by the table below, and h(x) given by the graph below.

x	g(x)
О	2
1	5
2	4
3	1
4	2



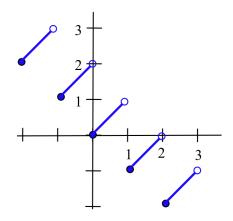
- 5. Is the relation between people and Social Security numbers a function? A one-to-one function?
- 6. Is the relation between people and phone numbers a function? If so, is it one-to-one?
- 7. What would it mean if the scores on a calculus test were one-to-one?
- 8. The relation given below represents "*y* is married to *x*." (a) Is this relation a function? (b) Is it one-to-one? (c) Is P breaking the law? (d) Is A breaking the law?

x	A	В	С	D
y	P	Q	P	R

- 9. In how many places can a one-to-one function touch the *x*-axis?
- 10. Can a continuous one-to-one function have the values given below? Explain.

х	1	3	5
f(x)	2	7	3

11. The graph of $f(x) = x - 2 \cdot \lfloor x \rfloor$ for $-2 \le x \le 3$ appears below.

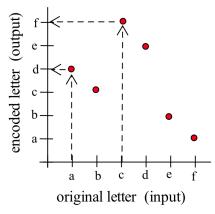


- (a) Is *f* a one-to-one function?
- (b) Is f an increasing function?
- (c) Is *f* a decreasing function?
- 12. Is every linear function L(x) = ax + b one-to-one? If not, which linear functions *are* one-to-one?

- 13. Show that $f(x) = \ln(x)$ is one-to-one for x > 0.
- 14. Show that $g(x) = e^x$ is one-to-one.
- 15. The table below gives an encoding rule for a sixletter alphabet:

a	b	с	d	e	f
d	С	f	e	b	a

- (a) Is the encoding rule a function?
- (b) Is the encoding rule one-to-one?
- (c) Encode the word "bad."
- (d) Create a table for decoding the encoded letters and use it to decode your answer to part (c).
- (e) A graph of the encoding rule appears below. Create a graph of the decoding rule.



- (f) Compare the encoding and decoding graphs.
- 16. The table below gives an encoding rule for a sixletter alphabet:

a	b	С	d	e	f
b	d	b	b	a	С

- (a) Is the encoding rule a function?
- (b) Is the encoding rule one-to-one?
- (c) Encode the word "bad."
- (d) Create a table for decoding the encoded letters and use it to decode your answer to part (c).

- (e) Create a graph of the encoding rule.
- (f) Create a graph of the decoding rule.
- (g) Compare the encoding and decoding graphs.
- 17. The table below gives an encoding rule for a sixletter alphabet:

a	b	С	d	e	f
d	f	e	a	С	b

- (a) Is the encoding rule a function?
- (b) Is the encoding rule one-to-one?
- (c) Encode the word "bad."
- (d) Create a table for decoding the encoded letters and use it to decode your answer to part (c).
- (e) Create a graph of the encoding rule.
- (f) Create a graph of the decoding rule.
- (g) Compare the encoding and decoding graphs.
- (h) What happens if you encode a word, then encode the encoded word? For example, encode (encode ("bad")) = ?
- 18. The table below gives an encoding rule for a sixletter alphabet:

a	b	С	d	e	f
e	a	f	c	b	d

- (a) Is the encoding rule a function?
- (b) Is the encoding rule one-to-one?
- (c) Encode the word "bad."
- (d) Create a table for decoding the encoded letters and use it to decode your answer to part (c).
- (e) Create a graph of the encoding rule.
- (f) Create a graph of the decoding rule.
- (g) Compare the encoding and decoding graphs.
- (h) What happens if you apply this encoding rule three times in succession? For example, encode (encode (encode ("bad"))) = ?

7.1 Practice Answers

- 1. (a) One: solve x(4-x) = 4 to get x = 2.
 - (b) Two: x = 1 and x = 5.
 - (c) One: $x \approx 3.5$.
 - (d) One: solve $5 = \ln(x)$ to get $x = e^5 \approx 148.4$.
- 2. (a) Only g is one-to-one; f and h fail the Horizontal Line Test.
 - (b) Both f and g are one-to-one; h is not, because h(2) = h(5).

3. (a)
$$3x - 5 = 7 \Rightarrow 3x = 12 \Rightarrow x = 4$$

(b)
$$3x - 5 = a \Rightarrow 3x = a + 5 \Rightarrow x = \frac{a+5}{3}$$

(c)
$$f(x) = 3x - 5 \Rightarrow f(y) = 3y - 5 \text{ so } f(y) = x \Rightarrow 3y - 5 = x \Rightarrow 3y = x + 5 \Rightarrow y = \frac{x + 5}{3}$$

4. If $f(x) = e^{kx}$ where k > 0 then $f'(x) = k \cdot e^{kx} > 0$ so f(x) is strictly increasing, hence one-to-one. If $g(x) = e^{rx}$ where r < 0 then $g'(x) = r \cdot e^{rx} < 0$ so g(x) is strictly decreasing, hence one-to-one.