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7.2 Inverse Functions

If f is any one-to-one function then equations of the form f (x) = k have
(at most) a single solution. Such functions can be uniquely “undone”: if
f is a one-to-one function, then there is another function g that “undoes”
the effect of f , so that g ( f (x)) = x. When g and f are composed in
this manner, g retrieves the original input of f (see margin). We call
this function g that “undoes” the effect of f the inverse function of f
or simply the inverse of f .

If f is a function that encodes a message, then the inverse of f is
the function that decodes an encoded message to retrieve the original
message. The functions ex and ln(x) “undo” the effects of each other:

ln (ex) = x and eln(x) = x (for x > 0)

so the functions ex and ln(x) are inverses of each other.
This section will examine some of the properties of inverse functions

and explain how to find the inverse of a function given by a table of
data, a graph or a formula.

Definition: If f and g are functions that satisfy both g ( f (x)) = x
and f (g(y)) = y for all x in the domain of f and all y in the
domain of g, then g is the inverse of f , f is the inverse of g, and
f and g are a pair of inverse functions.

We often write the inverse function of f as f−1 (pronounced “eff

inverse”) but you must be very careful: f−1 does not mean
1
f

.

x f (x)

0 3

1 2

2 0

3 1

x f−1(x)

0 2

1 3

2 1

3 0

Example 1. The values of a function f appear in the margin table.
Evaluate f−1(0) and f−1(1).

Solution. For every x, f−1 ( f (x)) = x so the value of f−1(0) is the
solution x of the equation f (x) = 0. The value we want is x = 2, and
we can check that f−1(0) = f−1 ( f (2)) = 2.

The value of f−1(1) is the solution x of the equation f (x) = 1, which
is x = 3, and we can check that f−1(1) = f−1 ( f (3)) = 3.

Similarly, f−1(2) = 1 and f−1(3) = 0. These results appear in the
second margin table. You should notice that if the ordered pair (a, b) is
in the table for f , then the reversed pair (b, a) is in the table for f−1. ◀

x g(x)

0 2

1 1

2 3

3 4

4 0

Practice 1. The values of the function g appear in the margin table.
Create a table of values for g−1.

The method of interchanging the coordinates of a point on the graph
(or in a table of values) of f to get a point on the graph (or in a table of
values) of f−1 provides an efficient way to graph f−1.
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Theorem: If the point (a, b) is on the graph of f , then the point
(b, a) is on the graph of f−1.

Proof. If (a, b) is on the graph of f , then b = f (a), so f−1(b) =

f−1 ( f (a)). By definition, f−1 ( f (a)) = a, so f−1(b) = a, which tells us
that (b, a) is on the graph of f−1.

Graphically, when you interchange the coordinates of a point (a, b)
to get a new point (b, a), the old point and the new point are symmetric
about the line y = x. If you put a spot of wet ink at the point (a, b) on
a piece of graph paper (see margin) and fold the paper along the line
y = x, a new spot of ink will appear at the point (b, a). The figures
below demonstrate another graphical method for finding the location
of the point (b, a):

Draw the line y = x along with a line of slope −1 that passes through
the given point P (above left), then measure the distance from P to the
line y = x and move that same distance on the other side of y = x
(above center), and plot the new point Q at that location.

Corollary: The graphs of f and f−1 are symmetric about the
line y = x.

Example 2. A graph of f appears below left; sketch a graph of f−1.

Solution. Imagine the graph of f is drawn with wet ink and fold the
xy-plane along the line y = x. When you unfold the plane, the new
graph is f−1 (see figure above right). ◀

You could also proceed point by point: Pick several points (a, b) on
the graph of f and plot the symmetric points (b, a), then use the new
(b, a) points as a guide for sketching the graph of f−1.

Practice 2. A graph of g appears in the margin. Sketch a graph of g−1.
What happens to points on the graph of g that lie on the line y = x?
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Finding a Formula for f−1(x)

When you have a table of values for f , you can create a table of values
for f−1 by interchanging the values of x and y in the table for f (as in
Example 1). When you have a graph of f , you can sketch a graph of
f−1 by reflecting the graph of f about the line y = x (as in Example 2).
When you have a formula for f , you can try to find a formula for f−1.

Example 3. The steps for wrapping a gift are (1) put the gift in a box,
(2) cover the box with paper and (3) attach a ribbon. What are the steps
for opening the gift — the inverse of the wrapping operation?

Solution. (i) Remove the ribbon (undo step 3), (ii) remove the paper
(undo step 2) and (iii) remove the gift from the box (undo step 1). ◀ Then show happiness and gratitude.

The reason for the preceding trivial example is to point out that
the first unwrapping step undoes the last wrapping step, the second
unwrapping step undoes the second-to-last wrapping step . . . and the
last unwrapping step undoes the first wrapping step. This pattern
holds for functions and their inverses too.

Example 4. The steps to evaluate f (x) = 9x + 6 are (1) multiply the
input by 9 and (2) add 6 to the result. Write the steps, in words, for
the inverse of this function, and then translate the verbal steps for the
inverse into a formula for the inverse function.

Solution. (i) Subtract 6, undoing (2), and (ii) divide by 9, undoing (1):

x −→ x − 6 −→ x − 6
9

so f−1(x) =
x − 6

9
provides a formula for the inverse function. ◀

If (x, y) is a point on the graph of f , we know that (y, x) is on the
graph of f−1, so interchanging the roles of x and y in the formula for f
should lead us to a formula for f−1. Applying this idea to the function
f (x) = 9x + 6 from the previous Example, we swap x and y in the

formula y = 9x + 6 to get x = 9y + 6 ⇒ x − 6 = 9y ⇒ y =
x − 6

9
,

yielding the formula f−1(x) =
x − 6

9
as in Example 4.

The following algorithm provides a general “recipe” for finding a
formula for an inverse function:

• Start with a formula for f : y = f (x).

• Interchange the roles of x and y: x = f (y).

• Solve x = f (y) for y.

• The resulting formula for y is the inverse of f : y = f−1(x).
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The “interchange” and "solve" steps in the algorithm effectively undo
the original operations in reverse order.

Example 5. Find formulas for the inverses f−1(x) and g−1(x) of f (x) =
7x − 5

4
and g(x) = 2e5x.

Solution. Starting with y = f (x) =
7x − 5

4
and interchanging the roles

of x and y yields:

x =
7y − 5

4
⇒ 4x = 7y − 5 ⇒ 4x + 5 = 7y ⇒ y =

4x + 5
7

so f−1(x) =
4x + 5

7
. Starting with y = g(x) = 2e5x and interchanging

the roles of x and y yields:

x = 2e5y ⇒ x
2
= e5y ⇒ ln

( x
2

)
= 5y ⇒ y =

1
5

ln
( x

2

)
so g−1(x) =

1
5

ln
( x

2

)
. ◀

Practice 3. Find formulas for the inverses f−1(x), g−1(x) and h−1(x)

of f (x) = 2x − 5, g(x) =
2x − 1
x + 7

and h(x) = 2 + ln(3x).

Sometimes it is easy to “solve x = f (y) for y," but often it is not.
When we try to find a formula for the inverse of y = f (x) = x + ex, the
first step is easy: interchanging the roles of x and y yields x = y + ey.
At this point, unfortunately, there is no way to algebraically solve the
equation x = y + ey explicitly for y. The function y = x + ex has an
inverse function, but we cannot find an explicit formula for that inverse.

Which Functions Have Inverse Functions?

We have seen how to find the inverse function for some functions given
by tables of values, by graphs and by formulas, but there are functions
that do not have inverse functions. The only way a graph and its
reflection about the line y = x can both be function graphs (so that f
and f−1 are both functions) is if the graph of f passes both the Vertical
Line Test (so that f is a function) and the Horizontal Line Test (so that
the graph of f−1 passes the Vertical Line Test, verifying that f−1 is a
function). This idea leads to the next theorem (stated without proof).

Theorem: The function f has an inverse function if and only if
f is one-to-one.

Two useful corollaries follow from this theorem.

Corollary 1: If f is strictly increasing or strictly decreasing, then
f has an inverse function.
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Corollary 2: If f ′(x) > 0 for all x or f ′(x) < 0 for all x, then f
has an inverse function.

Applying this last Corollary to f (x) = x + ex, we know that f ′(x) =
1 + ex > 0 for all x, so f must have an inverse (even though we can’t
find an explicit formula for f−1).

Slopes of Inverse Functions

When a function f has an inverse, the symmetry of the graphs of f and
f−1 also provides us with information about slopes and derivatives.

Example 6. Suppose the points P = (1, 2) and Q = (3, 6) are on the
graph of a function f . (a) Sketch the line passing through P and Q.
(b) Compute the slope of that line. (c) Graph the reflected points P∗

and Q∗ on the graph of f−1. (d) Sketch the line passing through P∗

and Q∗. Find the slope of the line through P∗ and Q∗.

Solution. (a) See margin figure. (b) The slope through P and Q is

m =
6 − 2
3 − 1

=
4
2
= 2. (c) The reflected points, obtained by interchanging

the first and second coordinates of each point on the graph of f , are
P∗ = (2, 1) and Q∗ = (6, 3). (d) See margin figure. (e) The slope of the

line though P∗ and Q∗ is
3 − 1
6 − 2

=
1
2

◀

In the preceding Example, you may have noticed that:

slope of line through P∗ and Q∗ =
1

slope of line through P and Q

This was not a coincidence. In general, if P = (a, b) and Q = (x, y)
are points on the graph of f (see margin), then the reflected points
P∗ = (b, a) and Q∗ = (y, x) are on the graph of f−1 and:

slope of segment P∗Q∗ =
1

slope of segment PQ

Because the slope of a tangent line is the limit of slopes of secant lines,
a similar relationship holds between the slope of the tangent line to f
at the point (a, b) and slope of the tangent line to f−1 at the point (b, a).
If we let the point Q∗ approach the point P∗ along the graph of f−1 (as
in the margin figure) then:(

f−1
)′

(b) = lim
Q∗→P∗

[slope of segment P∗Q∗]

= lim
Q→P

1
slope of segment PQ

=
1

f ′(a)

This geometric idea leads to the following result:
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Derivative of an Inverse Function

If b = f (a), f is differentiable at the point (a, b) and f ′(a) ̸= 0

then a = f−1(b), f−1 is differentiable at the point (b, a) and:(
f−1

)′
(b) =

1
f ′(a)

Example 7. The point
(
e2, 2

)
is on the graph of f (x) = ln(x) and

f ′(x) =
1
x
⇒ f ′

(
e2
)
=

1
e2 . Let g be the inverse function of f . Give one

point on the graph of g and evaluate g′ at that point.

Solution. The point (2, e2) is on the graph of g and:

g′(2) =
1

f ′(e2)
=

1
1
e2

= e2

In fact, the inverse of f (x) = ln(x) is the exponential function g(x) = ex

and we can check that g′(x) = ex ⇒ g′(2) = e2. ◀

Example 8. In the table below, fill in the values of f−1(x) and
(

f−1)′ (x)
for x = 0 and x = 1.

Solution. f (3) = 0, so f−1(0) = 3, while
(

f−1
)′

(0) =
1

f ′(3)
=

1
2

;

f (2) = 1, so f−1(1) = 2 while
(

f−1
)′

(1) =
1

f ′(2)
=

1
−1

= −1. ◀

x f (x) f ′(x) f−1(x)
(

f−1)′ (x)

0 2 3

1 3 -2
2 1 -1
3 0 2

Practice 4. Fill in the missing values for x = 2 and x = 3.

7.2 Problems

1. Given the values of f and f ′ in the table below,
compute the specified values of f−1 and

(
f−1)′.

x f (x) f ′(x) f−1(x)
(

f−1)′ (x)

1 3 -3
2 1 2

3 2 3

2. Given the values of g and g′ in the table below,
compute the specified values of g−1 and

(
g−1)′.

x g(x) g′(x) g−1(x)
(

g−1)′ (x)

1 2 -2
2 1 4

3 3 2
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3. Given the values of h and h′ in the table below,
compute the specified values of h−1 and

(
h−1)′.

x h(x) h′(x) h−1(x)
(
h−1)′ (x)

1 2 2

2 3 -2
3 1 0

4. Given the values of w and w′ in the table below,
compute the specified values of w−1 and

(
w−1)′.

x w(x) w′(x) w−1(x)
(
w−1)′ (x)

1 1 2

2 3 0

3 2 5

5. The figure below left shows a graph of f . Sketch
a graph of f−1.

6. The figure above right shows a graph of g. Sketch
a graph of g−1.

7. If the graphs of f and f−1 intersect at the point
(a, b), how are a and b related?

8. If the graph of f intersects the line y = x at x = a,
does the graph of f−1 intersect the line y = x? If
so, where?

9. The steps to evaluate the function f (x) =
7x − 5

4
are (1) multiply by 7, (2) subtract 5 and (3) divide
by 4. Write the steps, in words, for the inverse
of this function, and then translate these verbal
steps into a formula for the inverse function.

10. Find a formula for the inverse function of
f (x) = 3x − 2. Verify that f−1 ( f (5)) = 5 and
f
(

f−1(2)
)
= 2.

11. Find a formula for the inverse function of
g(x) = 2x + 1. Verify that g−1 (g(1)) = 1 and
g
(

g−1(7)
)
= 7.

12. Find a formula for the inverse of h(x) = 2e3x.
Verify that h−1 (h(0)) = 0.

13. Find a formula for the inverse of w(x) = 5 +

ln(x). Verify that w−1 (w(1)) = 1.

14. If the graph of f goes through the point (2, 5) and
f ′(2) = 3, then the graph of f−1 goes through
the point ( , ) and

(
f−1)′ (5) = .

15. If the graph of f goes through the point (1, 3) and
f ′(1) > 0, then the graph of f−1 goes through
the point ( , ). What can you say about
the value of

(
f−1)′ (3)?

16. If f (6) = 2 and f ′(6) < 0, then the graph of f−1

goes through the point ( , ). What can
you say about

(
f−1)′ (2)?

17. If f ′(x) > 0 for all values of x, what can you say
about

(
f−1)′ (x)? What does this tell you about

the graphs of f and f−1?

18. If f ′(x) < 0 for all values of x, what can you say
about

(
f−1)′ (x)? What does this tell you about

the graphs of f and f−1?

19. Find a linear function f (x) = ax+ b so the graphs
of f and f−1 are parallel and do not intersect.

20. Does f (x) = 3 + sin(x) have an inverse function?
Justify your answer.

21. Does f (x) = 3x + sin(x) have an inverse func-
tion? Justify your answer.

22. For which positive integers n is f (x) = xn one-to-
one? Justify your answer.

23. Some functions are their own inverses. For which
four of these functions does f−1(x) = f (x)?

(a) f (x) =
1
x

(b) f (x) =
x + 1
x − 1

(c) f (x) =
3x − 5
7x − 3

(d) f (x) =
ax + b
cx − a

(e) f (x) = x + a (a ̸= 0)
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Reflections on Folding

The symmetry of the graphs of a function and its inverse about the line
y = x make sketching a graph of the inverse function relatively easy
if you have a graph of f : fold your graph paper along the line y = x
so the graph of f−1 is the “folded” image of f . This simple idea of
obtaining a new image of something by folding along a line can enable
us to quickly “see” solutions to some otherwise difficult problems.

The minimization problem of finding the shortest path from town A
to town B with an intermediate stop at a (straight) river, as depicted in
the margin figure, is moderately difficult to solve using derivatives (see
Problem 11 in Section 3.5). Geometry allows us to solve the problem
much more easily (see second margin figure):

• obtain the point B∗ by folding the image of B across the river line

• connect A and B∗ with a line segment (the shortest path connecting
A and B∗)

• fold the C-to-B∗ segment back across the river to obtain the A-to-C-
to-B solution.

As an almost-free bonus, we see that — for the minimum path — the
angle of incidence at the river equals the angle of reflection.

24. Devise an algorithm using “folding” to locate the
point at the bottom edge of the billiards table
you should aim ball A in the figure below left so
that ball A will hit ball B after bouncing off the
bottom edge of the table. (Assume that the angle
of incidence equals the angle of reflection.)

25. Devise an algorithm using “folding” to sketch the
shortest path in the figure above right from town
A to town B that includes a stop at the river and
at the road. (One fold may not be enough.)

26. Devise an algorithm using “folding” to find
where you should aim ball A at the bottom edge
of the billiards table in the figure below so that
ball A will hit ball B after bouncing off the bottom
edge and the right edge of the table. (Assume that
the angle of incidence equals the angle of reflec-
tion. Unfortunately, in a real-life game of billiards,
the ball picks up a spin, called “English,” when it
bounces off the first bank, so at the second bounce
the angle of incidence does not equal the angle of
reflection.)
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The “folding” idea can even be useful if the path is
not a straight line.

27. The first figure below shows the parabolic path
of a thrown ball. If the ball bounces off the tall
vertical wall in the second margin figure, where
will it hit the ground? (Assume that the angle of
incidence equals the angle of reflection and that
the ball does not lose energy during the bounce.)

Sometimes “unfolding” a problem is useful too.

28. A spider and a fly are located at opposite corners
of the cube as shown below. Sketch the shortest
path the spider can travel along the surface of the
cube to reach the fly.

7.2 Practice Answers

1. See table below left.

x g−1(x)

0 4

1 1

2 0

3 2

4 3

2. See figure above right. If a point lies on the line y = x, it must have
the form (a, a) so that g(a) = a ⇒ a = g−1(a): the point (a, a) is also
on the graph of g−1.

3. (a) Swapping x and y in y = 2x − 5 yields x = 2y − 5 ⇒ x + 5 =

2y ⇒ y =
x + 5

2
so f−1(x) =

x + 5
2

.

(b) Swapping x and y in y =
2x − 1
x + 7

: x =
2y − 1
y + 7

⇒ xy + 7x =

2y − 1 ⇒ 7x + 1 = 2y − xy ⇒ y =
7x + 1
2 − x

so g−1(x) =
7x + 1
2 − x

.

(c) Interchanging x and y in y = 2 + ln(3x) yields x = 2 + ln(3y) ⇒
x − 2 = ln(3y) ⇒ ex−2 = 3y ⇒ y =

1
3

ex−2 so h−1(x) =
1
3

ex−2.

4. f−1(2) = 0 and f−1(3) = 1 while
(

f−1
)′

(2) =
1

f ′(0)
=

1
3

and(
f−1

)′
(3) =

1
f ′(1)

=
1
−2

.
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