
8
Integration Techniques

In our journey through integral calculus, we have: developed the con-
cept of a Riemann sum that converges to a definite integral; learned
how to use the Fundamental Theorem of Calculus to evaluate a definite
integral — as long as we can find an antiderivative for the integrand;
examined numerical methods to approximate values of definite inte-
grals; applied the concept of a Riemann sum to a variety of geometric
and physical situations to compute lengths, areas, volumes, work and
more; and employed integration to solve differential equations.

Finding an approximate value for a definite integral is often “good
enough,” but exact values are sometimes necessary — and this requires
us to find antiderivatives of integrand functions. We have already
learned how to find antiderivatives of many basic functions, and repeat-
edly employed substitution to turn complicated integrands into ones
that are easier to integrate. This chapter begins with a review of these
integration techniques you already know, then develops several new
techniques that will allow you to integrate even more functions. It con-
cludes by presenting a way to find “approximate antiderivatives” that
will allow you to compute approximate numerical values for certain
definite integrals much more efficiently than the techniques introduced
in Section 4.9.

8.1 Finding Antiderivatives: A Review

Success at integration is primarily a matter of recognizing standard
patterns and being able to manipulate functions into a form that corre-
sponds to one of these patterns. Integral tables — such as the brief one
on the next page and the longer one in Appendix I — list antideriva-
tives for many basic patterns of functions. Often a change of variable
(employing the u-substitution method introduced in Section 4.6) will
allow you to see a pattern more easily. For most people, developing the
skill of recognizing these patterns comes with practice, and this section
provides a variety of problems to review and hone your skills.
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Constant Functions:
∫

k du = ku + C

Powers of u:
∫

up du =
up+1

p + 1
+ C if p ̸= −1,

∫ 1
u

du = ln |u|+ C

Exponential Functions:
∫

eu du = eu + C,
∫

au du =
au

ln(a)
+ C

Trig Functions:
∫

cos(u) du = sin(u) + C,
∫

sin(u) du = − cos(u) + C∫
tan(u) du = ln (|sec(u)|) + C,

∫
cot(u) du = ln (|sin(u)|) + C∫

sec(u) du = ln (|sec(u) + tan(u)|) + C∫
csc(u) du = − ln (|csc(u) + cot(u)|) + C∫
sec2(u) du = tan(u) + C,

∫
csc2(u) du = − cot(u) + C∫

sec(u) · tan(u) du = sec(u) + C,
∫

csc(u) · cot(u) du = − csc(u) + C

Inverse-Trig–Related Functions:
∫ 1

1 + u2 du = arctan(u) + C∫ 1√
1 − u2

du = arcsin(u) + C,
∫ 1

|u| ·
√

u2 − 1
du = arcsec(u) + C

This is an extended version of the table
listed in Section 4.6.

These two patterns may be new to you.
See the discussion below.

The most generally useful and powerful integration technique re-
mains Changing the Variable. The first Problems in this section provide
additional practice changing variables to calculate integrals. As we
develop more complicated and more specialized techniques for finding
antiderivatives, your first thought should still be whether the integral
can be simplified by changing the variable. Sometimes the appropriate
change of variable is not obvious, and we may need to manipulate the
integrand using algebra, trigonometric identities or some clever “tricks”
before employing a u-substitution.

Antiderivatives of sec(θ) and csc(θ)

In the list of basic antiderivatives at the top of this page, you may have

noticed two unfamiliar patterns: those for
∫

sec(θ) dθ and
∫

csc(θ) dθ.

Antiderivatves for cos(θ) and sin(θ) essentially came “free” from the
derivative patterns we discovered in Chapter 2. Antiderivatives for
tan(θ) and cot(θ) were among the first applications of u-substitution:

for example, we can write tan(θ) =
sin(θ)
cos(θ)

and put u = cos(θ) so that

du = − sin(θ) dθ and the integral in question becomes:

∫
tan(θ) dθ =

∫ sin(θ)
cos(θ)

dθ =
∫ −1

u
du = − ln (|u|) + C

= − ln (|cos(θ)|) + C = ln (|sec(θ)|) + C

Finding an antiderivative of sec(θ), however, requires a special “trick.”
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Before attempting a substitution, write:

sec(θ) =
sec(θ)

1
· (sec(θ) + tan(θ))
(sec(θ) + tan(θ))

=
sec2(θ) + sec(θ) tan(θ)

sec(θ) + tan(θ)

Why would we want to take the nice, simple function sec(θ) and rewrite
it as this monstrosity? Look at the denominator and notice that the
derivative of sec(θ) is sec(θ) · tan(θ), while the derivative of tan(θ) is
sec2(θ). Both of these derivatives appear in the numerator. So if we use
the substitution:

u = sec(θ) + tan(θ) ⇒ du =
[
sec(θ) tan(θ) + sec2(θ)

]
dθ

the integral of sec(θ) becomes:∫
sec(θ) dθ =

∫ sec2(θ) + sec(θ) tan(θ)
sec(θ) + tan(θ)

dθ

=
∫ 1

u
du = ln(|u|) + C = ln (|sec(θ) + tan(θ)|) + C

proving the result listed on the previous page.

This is an example of “multiplying by 1,”
a tactic often employed in mathematics
where we multiply the top and bottom of
a fraction by the same expression.

Practice 1. Prove that
∫

csc(θ) dθ = − ln (|csc(θ) + cot(θ)|) + C.

The trick used to integrate sec(θ) and csc(θ) only applies in these
special situations, so rather than remembering the trick, you might
want to simply memorize the result if you find yourself needing to
integrate sec(θ) on a regular basis.

See Problems 41–42 in Section 8.3 (and
the related discussion on page 575) for
a more intuitive — albeit more tedious —
method to obtain antiderivatives for
sec(θ) and csc(θ).

An Irreducible Quadratic Denominator

The following examples review and extend techniques (introduced in
Section 7.5) involving variations on the arctangent derivative pattern.

Example 1. Evaluate
∫ 18

1 + (x − 3)2 dx and
∫ 18

x2 − 6x + 10
dx.

Solution. The form of the first integrand reminds us of the derivative
of the arctangent function:

D (arctan(u)) =
1

1 + u2

If we make the substitution u = x − 3 ⇒ du = dx the integral becomes:∫ 18
1 + (x − 3)2 dx = 18

∫ 1
1 + u2 du = 18 arctan(u) + C

Replacing u with x − 3, we get 18 arctan(x − 3) + C. The second inte-
grand appears much more complicated, until you notice that:

1 + (x − 3)2 = 1 + x2 − 6x + 9 = x2 − 6x + 10

These integrands are in fact equal, so the second integral also equals
18 arctan(x − 3) + C. ◀
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In the preceding Example, we showed that the two integrands were
equal by expanding the denominator of the first integrand to get the
denominator of the second integrand. If we had started with the second
integral in Example 1, we could have rewritten the second denominator
employing the method of completing the square:

x2 − 6x + 10 =
(

x2 − 6x + 9
)
+ (10 − 9) = (x − 3)2 + 1

so that we would make the substitution u = x − 3. For any irreducible
quadratic polynomial of the form ax2 + bx + c, we can write:

ax2 + bx + c = a
[

x2 +
b
a

]
+ c = a

[
x2 +

b
a
+

b2

4a2

]
+ c − a · b2

4a2

= a
(

x − b
2a

)2
+

[
c − b2

4a

]
Rather than memorizing this formula, you should remember the process
of completing the square.

Recall from algebra that to complete the
square with a polynomial, you need to
take half of the x coefficient:

−6
2

= −3 or
1
2
· b

a

and then square it:

(−3)2 = 9 or
(

b
2a

)2

=
b2

4a2

to get the number that must be added
and subtracted to create a perfect square
(plus a leftover constant term). A
quadratic polynomial is irreducible if it
can’t be factored into two linear terms
using real coefficients; for ax2 + bx + c
this occurs when b2 − 4ac < 0.

Practice 2. Evaluate
∫ 5

x2 + 8x + 25
dx by completing the square and

making a substitution.

This is an example of “adding 0,” an-
other tactic often employed in mathemat-
ics in which we add and subtract the
same quantity from an expression.

Why can we omit the absolute values in
the last step?

Example 2. Evaluate
∫ 2x

x2 − 6x + 10
dx.

Solution. This would be an easy problem if the numerator were 2x − 6:
the numerator would then be the derivative of the denominator and the
pattern of the integral would be

∫ 1
u du with u = x2 − 6x + 10. Using a

bit of cleverness, we can rewrite the numerator as 2x − 6 + 6. Then the
integral becomes:∫ 2x − 6 + 6

x2 − 6x + 10
dx =

∫ 2x − 6
x2 − 6x + 10

dx +
∫ 6

x2 − 6x + 10
dx

For the first integral, substitute u = x2 − 6x + 10 ⇒ du = (2x − 6) dx:∫ 2x − 6
x2 − 6x + 10

dx =
∫ 1

u
du = ln (|u|) + C1 = ln

(
x2 − 6x + 10

)
+ C1

For the second integral, complete the square in the denominator:

x2 − 6x + 10 = x2 − 6x + 9 + 1 = (x − 3)2 + 1

and use the substitution w = x − 3 ⇒ dw = dx to get:∫ 6
x2 − 6x + 10

dx =
∫ 6

(x − 3)2 + 1
dx = 6

∫ 1
w2 + 1

dw

= 6 arctan(w) + C2 = 6 arctan(x − 3) + C2

so that the final answer is ln
(
x2 − 6x + 10

)
+ 6 arctan(x − 3) + C. ◀
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This “logarithm plus an arctangent” pattern that arose in the pre-
vious Example turns up quite often with integrals of linear functions
divided by irreducible quadratic polynomials. If the quadratic de-
nominator can be factored into a product of two linear factors, we
will instead use a technique discussed in Section 8.3 (Partial Fraction
Decomposition).

Practice 3. Evaluate
∫ 4x + 21

x2 + 8x + 25
dx.

8.1 Problems

In Problems 1–54, evaluate the integral. A well-chosen substitution will often turn a complicated-looking
integral into a much simpler one.

1.
∫

6x
(

x2 + 7
)2

dx 2.
∫

6x
(

x2 − 1
)3

dx 3.
∫ 4

2

6t√
t2 − 3

dt

4.
∫ π

0
12 cos(θ) [2 + sin(θ)]2 dθ 5.

∫ 12x
x2 + 3

dx 6.
∫ cos (φ)

2 + sin(φ)
dφ

7.
∫

sin(3y + 2) dy 8.
∫

cos
( x

5

)
dx 9.

∫ 0

−1
ex · sec2 (ex + 3) dx

10.
∫ π

2

0
cos(θ)

√
1 + sin(θ) dθ 11.

∫ ln(x)
x

dx 12.
∫ cos

(√
x
)

√
x

dx

13.
∫

cos(θ) · esin(θ) dθ 14.
∫

ez sin(ez) dz 15.
∫ 3

1

5
1 + 9x2 dx

16.
∫ 1

0

7

1 + (x + 5)2 dx 17.
∫ 2

1

1
x2 · cos

(
1
x

)
dx 18.

∫ e

1

sec (2 + ln(x))
x

dx

19.
∫ 6 sin(θ) cos(θ)

5 + sin2(θ)
dθ 20.

∫ 6 cos(α)
5 + sin2(α)

dα 21.
∫ 10

2x + 5
dx

22.
∫ 3

8y + 1
dy 23.

∫ 3

1

20x
5x2 + 3

dx 24.
∫ 5

1

4x
x2 + 9

dx

25.
∫ 1

0

7
(x + 3)2 + 4

dx 26.
∫ −2

−2.3

1√
1 − (x + 2)2

dx 27.
∫ et

1 + e2t dt

28.
∫ 4x + 10

x2 + 5x + 9
dx 29.

∫ 3

1

3
x [1 + ln(x)]

dx 30.
∫ 1

0

et

1 + et dt

31.
∫ 1

0
2x
√

1 − x2 dx 32.
∫ 3

0

2x√
5 + x2

dx 33.
∫

cos(θ) [1 + sin(θ)]3 dθ
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34.
∫

cos(φ) sin4(φ) dφ
35.

∫ e

1

√
ln(x)
x

dx 36.
∫ 2

1
ex√2 + ex dx

37.
∫ sec2(θ)

5 + tan(θ)
dθ 38.

∫ 6x
(x2 − 1)3 dx 39.

∫
tan(y − 5) dy

40.
∫ (

x3 + 3
)2

dx 41.
∫ 1

0
e5u du 42.

∫
sec(2 + 3t) dt

43.
∫

t · sec(2 + 3t2) dt 44.
∫ 1

1
arctan

(√
5 − x3

)
dx 45.

∫ e

e
ln
(√

5 + x3
)

dx

46.
∫ ∞

1

1
1 + 9x2 dx 47.

∫ ∞

1

x
1 + 9x4 dx 48.

∫ ∞

1

e−x

1 + e−2x dx

In 49–54, complete the square in the denominator, make an appropriate substitution, then integrate.

49.
∫ 7

x2 + 4x + 5
dx 50.

∫ 3
x2 + 4x + 29

dx 51.
∫ 2

x2 − 6x + 58
dx

52.
∫ 11

x2 − 2x + 10
dx 53.

∫ 3
x2 + 10x + 29

dx 54.
∫ 5

x2 + 2x + 5
dx

In 55–60, first split the integral into two integrals. (Hint: In Problem 55, 2x + 11 = (2x + 4) + 7.)

55.
∫ 2x + 11

x2 + 4x + 5
dx 56.

∫ 4x + 11
x2 + 4x + 5

dx 57.
∫ 4x + 7

x2 − 6x + 10
dx

58.
∫ 6x + 28

x2 + 10x + 34
dx 59.

∫ 6x + 5
x2 − 4x + 13

dx 60.
∫ 4x + 9

x2 + 6x + 13
dx

In 61–66, remember that completing the square only helps with irreducible quadratic denominators.

61.
∫ 1

x2 + 4x + 4
dx 62.

∫ x + 2
x2 + 4x + 4

dx 63.
∫ x + 3

x2 − 6x + 9
dx

64.
∫ ∞

4

1
x2 − 6x + 9

dx 65.
∫ ∞

3

1
x2 − 6x + 9

dx 66.
∫ ∞

4

8x − 24
x2 − 6x + 9

dx
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8.1 Practice Answers

1. First use the “multiply by 1” trick to write:

csc(θ) =
csc(θ)

1
· csc(θ) + cot(θ)

csc(θ) + cot(θ)
=

csc2(θ) + csc(θ) cot(θ)
csc(θ) + cot(θ)

and then make the substitution u = csc(θ) + cot(θ) so that du =(
− csc(θ) cot(θ)− csc2(θ)

)
dθ and:

∫
csc(θ) dθ =

∫ csc2(θ) + csc(θ) cot(θ)
csc(θ) + cot(θ)

dθ =
∫ −1

u
du

= − ln (|u|) + C = − ln (|csc(θ) + cot(θ)|) + C

2. First complete the square in the denominator:

x2 + 8x + 25 =
(

x2 + 8x + 16
)
+ (25 − 16) = (x + 4)2 + 9

so the integral becomes:∫ 5
x2 + 8x + 25

dx =
∫ 5

(x + 4)2 + 9
dx

Now make the substitution u = x + 4 ⇒ du = dx to get:

5
∫ 1

u2 + 32 du = 5 · 1
3

arctan
(u

3

)
+ C =

5
3

arctan
(

x + 4
3

)
+ C

3. If we substitute u = x2 + 8x + 25 then du = (2x + 8) dx. We would
be in good shape if the numerator of the integrand were 4x + 16 =

2(2x + 8), so split the numerator into 4x + 21 = (4x + 16) + 5 to get:∫ 4x + 21
x2 + 8x + 25

dx =
∫

(4x + 16) + 5
x2 + 8x + 25

dx =
∫ 4x + 16

x2 + 8x + 25
dx+

∫ 5
x2 + 8x + 25

dx

The first integral (with u = x2 + 8x + 25) now becomes:∫ 4x + 16
x2 + 8x + 25

dx =
∫ 2

u
du = 2 ln (|u|)+C1 = 2 ln

(
x2 + 8x + 25

)
+C1

The second integral is just the integral from Practice 2:∫ 5
x2 + 8x + 25

dx =
5
3

arctan
(

x + 4
3

)
+ C2

Combining these results yields:∫ 4x + 21
x2 + 8x + 25

dx = ln
(

x2 + 8x + 25
)2

+
5
3

arctan
(

x + 4
3

)
+ C
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