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8.2 Integration by Parts

Integration by parts is an integration method that enables us to find
antiderivatives of certain functions for which our previous antidifferen-
tiation methods fail, such as ln(x) and arctan(x), as well as antideriva-
tives of certain products of functions, such as x2 ln(x) and ex sin(x).
It leads to many of the general integral formulas in Appendix I and
(next to u-substitution) it is one most powerful and frequently used of
antidifferentiation techniques.

The Integration by Parts formula for integrals arises from the Product
Rule for derivatives. Recall that for functions u = u(x) and v = v(x),
the Product Rule says:

d
dx

[u · v] = u · dv
dx

+ v · du
dx

If we integrate both sides of this equation with respect to x we get:

u · v =
∫

u · dv
dx

dx +
∫

v · du
dx

dx

Solving for the first of the two integrals on the right side, yields:∫
u · dv

dx
dx = u · v −

∫
v · du

dx
dx

At first, this formula may not appear very promising, as it merely
exchanges one integration problem for another. But in certain situations,
if we choose u(x) and v(x) carefully, this formula exchanges a difficult
integral for an easier one. We can restate the formula in slightly more
compact form using differentials.

Integration by Parts Formula

If u, v, u′ and v′ are continuous functions,

then
∫

u dv = u · v −
∫

v du

For definite integrals, the Integration By Parts Formula says:

Integration by Parts Formula (Definite Integrals)

If u, v, u′ and v′ are continuous functions,

then
∫ b

a
u dv =

[
u · v

]b

a
−
∫ b

a
v du

Example 1. Use integration by parts to evaluate
∫

x cos(x) dx and∫ π

0
x cos(x) dx (see margin for a graphical interpretation).



integration techniques 565

Solution. Our first step is to write this integral in the form required by
the Integration by Parts formula,

∫
u dv. If we let u = x, then we must

have dv = cos(x) dx so that u dv completely represents the integrand
x cos(x). We also need to calculate du and v:

u = x ⇒ du = dx and dv = cos(x) dx ⇒ v = sin(x)

Putting these pieces into the Integration by Parts formula, we have:∫
x · cos(x) dx = x · sin(x)−

∫
sin(x) dx = x · sin(x) + cos(x) + C

Now use this result to evaluate the definite integral:∫ π

0
x · cos(x) dx =

[
x · sin(x) + cos(x)

]π

0

= [π sin(π) + cos(π)]− [0 · sin(0) + cos(0)] = −1 − 1

or −2, which appears reasonable based on the area interpretation of
this integral in the margin graph on the previous page. ◀

To check this result, differentiate the an-
swer to verify that:

[x sin(x) + cos(x)]′ = x cos(x)

Integration by parts allowed us to exchange the problem of evaluat-

ing
∫

x cos(x) dx for the much easier problem of evaluating
∫

sin(x) dx.

Practice 1. Use the Integration by Parts formula on
∫

x cos(x) dx with

u = cos(x) and dv = x dx. Why does this lead to a poor exchange?

Example 2. Evaluate
∫

xe3x dx and
∫ 1

0
xe3x dx.

Solution. The integrand is a product of two functions, so it is rea-
sonable to use integration by parts to search for an antiderivative. If
u = x ⇒ du = dx, then dv = e3x dx ⇒ v = 1

3 e3x. Inserting these
expressions into the Integration by Parts formula, we get:∫

xe3x dx = x · 1
3

e3x −
∫ 1

3
e3x dx =

x
3

e3x − 1
9

e3x + C

⇒
∫ 1

0
xe3x dx =

[
x
3

e3x − 1
9

e3x
]1

0
=

[
1
3

e3 − 1
9

e3
]
−
[

0 − 1
9

]
=

2
9

e3 +
1
9

or about 4.57. ◀

In practice, when you need to use inte-
gration by parts to evaluate a definite
integral, it is often safest to first evalu-
ate the corresponding indefinite integral
and then use that antiderivative pattern
to evaluate the definite integral, as we
have done here.In the previous Example another valid choice would have been

u = e3x and dv = x dx, but that choice results in an integral that is
more difficult than the original one: du = 3e3x dx and v = 1

2 x2, so the
Integration by Parts formula yields:∫

xe3x dx = e3x · 1
2

x2 −
∫ 1

2
x2 · 3e3x dx

which exchanges
∫

xe3x dx for the more difficult integral
∫ 3

2 x2e3x dx.
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Practice 2. Evaluate
∫

x sin(x) dx and
∫

xe5x dx.

Once you have chosen u and dv to represent the integrand as u dv,
you need to calculate du and v. The du calculation is usually easy, but
finding v from dv can be difficult for some choices of dv. In practice,
you need to select u so that the remaining dv is simple enough that you
can find v, the antiderivative of dv.

Example 3. Evaluate
∫

2x ln(x) dx.

Solution. The choice u = 2x seems fine until we get a little further into
the process. If u = 2x, then dv = ln(x) dx. We now need to find du
and v. Computing du = 2 dx is simple, but then we face the difficult
problem of finding an antiderivative v for our choice dv = ln(x) dx.

The choice u = ln(x) results in easier calculations. Let u = ln(x).
Then dv = 2x dx, so du = 1

x dx and v = x2. Then the Integration by
Parts formula gives:∫

2x ln(x) dx = ln(x) · x2 −
∫

x2 · 1
x

dx = x2 ln(x)−
∫

x dx

so the final result is x2 ln(x)− 1
2

x2 + C. ◀

If you cannot find a v for your original
choice of dv, try a different u and dv.

Antiderivatives of Inverse Functions

So far we have applied the Integration by Parts method to products
of simple functions, but it also enables us — perhaps surprisingly — to
find antiderivatives of the inverse trigonometric functions and of the
logarithm (the inverse exponential function).

Why are absolute value signs not needed
in the last term?

We can now include the antiderivative of
arctan(x) in our list of antiderivatives in
Appendix I.

Example 4. Evaluate
∫

arctan(x) dx.

Solution. Let u = arctan(x). Then dv = dx, so du =
1

1 + x2 dx and

v = x. Putting these expressions into the Integration by Parts formula:∫
arctan(x) dx = x arctan(x)−

∫
x · 1

1 + x2 dx

We can evaluate the new integral using the substitution w = 1 + x2 ⇒
dw = 2x dx ⇒ 1

2 dw = x dx:∫
x · 1

1 + x2 dx =
∫ 1

2
· 1

w
dw =

1
2

ln (|w|) + K =
1
2

ln
(

1 + x2
)
+ K

Combining these results:∫
arctan(x) dx = x arctan(x)− 1

2
ln
(

1 + x2
)
+ C

or x arctan(x)− ln
(√

1 + x2
)
+ C. ◀
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Practice 3. Evaluate
∫

ln(x) dx and
∫ e

1
ln(x) dx.

dv = rest of the integrand

Note the following about the Integration by Parts formula:

• Once you choose u, then dv is completely determined.

• Because you need to find an antiderivative of dv to get v, pick u and
dv with this in mind.

• Integration by parts allows you to trade one integral for another. If
the new integral is more difficult than the original integral, then you
have made a poor choice of u and dv. Try a different choice for u
and dv (or try a different technique).

• To evaluate the new integral
∫

v du you may need to use substitution,
integration by parts again, or some other technique (such as the ones
discussed later in this chapter).

General Patterns

Sometimes a single application of integration by parts yields a formula
that allows us to integrate an entire family of functions.

Example 5. Evaluate
∫

xp ln(x) dx for any number p ̸= −1.

Solution. Set u = ln(x) so dv = xp dx, du = 1
x dx and v = 1

p+1 xp+1.
Putting all of this into the Integration by Parts formula:∫

xp ln(x) dx =
1

p + 1
xp+1 · ln(x)−

∫ 1
p + 1

xp+1 · 1
x

dx

This new integral becomes:

1
p + 1

∫
xp dx =

1
p + 1

· 1
p + 1

xp+1 + K =
xp+1

(p + 1)2 + K

Combining these results yields:
xp+1

p + 1
ln(x)− xp+1

(p + 1)2 + C =
xp+1

p + 1

[
ln(x)− 1

p + 1

]
+ C

for any number p as long as p ̸= −1. ◀ What happens when p = −1? Can you
evaluate that integral?

Practice 4. Use Example 5 to evaluate
∫

x2 ln(x) dx and
∫

ln(x) dx.

Reduction Formulas

Sometimes the result of an integration-by-parts procedure still contains
an integral, but a simpler one with a smaller exponent. In these situa-
tions we can reuse the resulting reduction formula until the remaining
integral is simple enough to integrate completely.
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Example 6. Evaluate
∫

xnex dx and use the result to evaluate
∫

x2ex dx.

Solution. Set u = xn so dv = ex dx, du = nxn−1 dx and v = ex. The
Integration by Parts formula gives∫

xnex dx = xnex − n
∫

xn−1ex dx

which is a reduction formula because we have reduced the power of x

by 1, trading
∫

xnex dx for the “reduced” integral
∫

xn−1ex dx.

Because
∫

x2ex dx matches the general pattern of
∫

xnex dx with

n = 2, we know that:∫
x2ex dx = x2ex − 2

∫
x1ex dx

The new integral also matches the pattern in the reduction formula
(with n = 1 this time) so we know that:∫

x1ex dx = x1ex − 1 ·
∫

x0ex dx

This last integral is just
∫

ex dx = ex + K, so combining our results:

∫
x2ex dx = x2ex − 2

∫
x1ex dx = x2ex − 2

[
xex −

∫
ex dx

]
= x2ex − 2xex + 2ex + C

We can also write the answer as ex [x2 − 2x + 2
]
+ C. ◀

Practice 5. Develop the reduction formula:∫
xn sin(x) dx = −xn cos(x) + n

∫
xn−1 cos(x) dx

using integration by parts.

The Reappearing Integral

Sometimes the integral we are trying to evaluate shows up on both
sides of the equation during our calculations in such a way that we can
solve for the desired integral algebraically.

Example 7. Evaluate
∫

ex cos(x) dx.

Solution. Let u = ex, so dv = cos(x) dx, du = ex dx and v = sin(x):∫
ex cos(x) dx = ex sin(x)−

∫
ex sin(x) dx

The new integral does not look any easier than the original one, but it
doesn’t look any worse, so let’s try to evaluate the new integral using
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integration by parts again. To evaluate
∫

ex sin(x) dx, let u = ex and
dv = sin(x) dx so that du = ex dx and v = − cos(x), giving us:∫

ex sin(x) dx = −ex cos(x) +
∫

ex cos(x) dx

Putting this result back into the original problem, we get:∫
ex cos(x) dx = ex sin(x)−

∫
ex sin(x) dx

= ex sin(x)−
[
−ex cos(x) +

∫
ex cos(x) dx

]
= ex sin(x) + ex cos(x)−

∫
ex cos(x) dx

Note that
∫

ex cos(x) dx appears on both sides of this last equation, so

we can solve for that expression algebraically:

2
∫

ex cos(x) dx = ex sin(x) + ex cos(x) + K

and, finally, divide both sides by 2 to get:∫
ex cos(x) dx =

1
2
[ex sin(x) + ex cos(x)] + C

which we can also write as 1
2 ex [sin(x) + cos(x)] + C. ◀

We need an arbitrary constant on the
right side of this equation because the
left side is an indefinite integral.

C =
K
2

Practice 6. Evaluate
∫

ex sin(x) dx.

A Useful Shortcut

Repeated application of integration by parts, as in Example 6, can
quickly become tedious, even with the aid of a reduction formula. For

integrals of the form
∫

xn · f (x) dx where n is an integer, it is often

possible to arrange the integration-by-parts ingredients in a table to
allow much speedier computation.

e3x = v′

u = x2 1
3 e3x (+)

2x 1
9 e3x (−)

2 1
27 e3x (+)

0 1
81 e3x (−)

Example 8. Evaluate
∫

x2e3x dx.

Solution. Make a table (see margin) with two columns. In the second
entry of the left column, start with u = x2 and below it list the suc-
cessive derivatives of x2: 2x, 2 and 0 (you can stop when you get to
0). In the right column start with v′ = e3x and below it list successive
antiderivatives of e3x: 1

3 e3x, 1
9 e3x and 1

27 e3x. Now multiply the functions
in each row and add the results, alternating signs:

x2 · 1
3

e3x − 2x · 1
9

e3x + 2 · 1
27

e3x − 0 · 1
81

e3x

We can stop here, because all of the remaining terms will be 0. Now
add a constant and you have the result: 1

3 x2e3x − 2
9 xe3x + 2

27 e3x +C. ◀
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This shortcut method only works when the chosen u in the initial
integration-by-parts setup is xn (so that taking several derivatives results
in 0) and when the chosen dv is a function like eax or sin(bx) so that
repeated antidifferentiation is fairly easy. But when this shortcut does
apply, it can save you a great deal of time.

Apply this new technique to the second
integral in Example 6 to verify that you
get the same result with the new method.
Which method is faster?

Practice 7. Evaluate
∫

x5 cos(x) dx and
∫

x3e−2x dx.

8.2 Problems

Problems 1–6 list one part (u or dv) needed for in-
tegration by parts. Find the other part (dv or u),
calculate du and v, and apply the Integration by
Parts formula to evaluate the integral.

1.
∫

12x ln(x) dx, u = ln(x)

2.
∫

xe−x dx, u = x

3.
∫

x4 ln(x) dx, dv = x4 dx

4.
∫

x sec2(3x) dx, u = x

5.
∫

x arctan(x) dx, dv = x dx

6.
∫

x(5x + 1)19 dx, u = x

In Problems 7–24, evaluate the integral.

7.
∫ 1

0

x
e3x dx 8.

∫ 1

0
10xe3x dx

9.
∫

x sec(x) tan(x) dx 10.
∫ π

0
5x sin(2x) dx

11.
∫ π

2

π
3

7x cos(3x) dx 12.
∫

6x sin(x2 + 1) dx

13.
∫

12x cos(3x2) dx 14.
∫

x2 cos(x) dx

15.
∫ 3

1
ln(2x + 5) dx 16.

∫
x3 ln(5x) dx

17.
∫ e

1
(ln(x))2 dx 18.

∫ e

1

√
x ln(x) dx

19.
∫

arcsin(x) dx 20.
∫

x2e5x dx

21.
∫

x arctan(3x) dx 22.
∫

x ln(x + 1) dx

23.
∫ 2

1

ln(x)
x

dx 24.
∫ 2

1

ln(x)
x2 dx

25. Write sinn(x) = sinn−1(x) · sin(x) and use inte-
gration by parts to obtain the following reduction

formula for
∫

sinn(x) dx:

1
n

[
− sinn−1(x) cos(x) + (n − 1)

∫
sinn−2(x) dx

]

26. Write cosn(x) = cosn−1(x) · cos(x) and use inte-
gration by parts to obtain the following reduction

formula for
∫

cosn(x) dx:

1
n

[
cosn−1(x) sin(x) + (n − 1)

∫
cosn−2(x) dx

]
27. Use integration by parts to obtain a reduction

formula for
∫

secn(x) dx.

28. Use integration by parts to obtain a reduction

formula for
∫

tann(x) dx.

In Problems 29–40, use a result from Problems 25–28

to evaluate the integral.

29.
∫

sin3(x) dx 30.
∫

sin4(x) dx

31.
∫

sin5(x) dx 32.
∫

cos3(x) dx

33.
∫

cos4(x) dx 34.
∫

cos5(x) dx

35.
∫

sec3(x) dx 36.
∫

sec4(x) dx

37.
∫

sec5(x) dx 38.
∫

sin3(5x − 2) dx

39.
∫

cos3(2x + 3) dx 40.
∫

sec3(7x − 1) dx
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In Problems 41–44, obtain a reduction formula using
integration by parts.

41.
∫

xneax dx 42.
∫

xn sin(ax) dx

43.
∫

x (ln(x))n dx 44.
∫

xn cos(ax) dx

45. The integral
∫

x(2x + 5)19 dx can be evaluated

with integration by parts or by substitution.

(a) Evaluate the integral using integration by parts
with u = x and dv = (2x + 5)19 dx.

(b) Evaluate the integral using a change of variable
with w = 2x + 5.

(c) Which method is easier?

46. The integral
∫ x√

1 + x
dx can be evaluated with

integration by parts or by substitution.

(a) Evaluate the integral using integration by parts
with u = x and dv = 1√

1+x
dx.

(b) Evaluate the integral using a change of variable
with w = 1 + x.

(c) Which method is easier?

In Problems 47–68, evaluate the integral using any
appropriate method.

47.
∫

x (ln(x))2 dx 48.
∫

x2 arctan(x) dx

49.
∫ 1

0
e−x sin(x) dx 50.

∫ 1

0

cos(x)
ex dx

51.
∫

sin (ln(x)) dx 52.
∫

cos (ln(x)) dx

53.
∫

cos
(√

x
)

dx 54.
∫

sin
(√

x
)

dx

55.
∫

e3x sin(x) dx 56.
∫

ex cos(3x) dx

57.
∫ ∞

0
xe−x dx 58.

∫ ∞

0
x2e−3x dx

59.
∫ ∞

0
e−x sin(x) dx 60.

∫ ∞

0
e−2x cos(3x) dx

61.
∫

x
√

x + 1 dx 62.
∫

x
√

x2 + 1 dx

63.
∫

x cos(x2) dx 64.
∫

x2
√

x3 + 1 dx

65.
∫

x2 cos(x) dx 66.
∫

x3
√

x2 + 1 dx

67.
∫

x3 3
√

x2 + 1 dx 68.
∫

x2 sin(x) dx

In Problems 69–72, solve the initial value problem.

69. y′ = x sin(x), y(0) = 0

70. y′ = xe7x, y(0) = 1

71. y′ =
x

ex+y , y(0) = 1

72. y′ = x sin(x) cos2(y), y(0) = π
4

73. Consider
∫ 1

0
x sin(x) dx and

∫ 1

0
sin(x) dx.

(a) Before evaluating the integrals, which do you
think is larger? Why?

(b) Evaluate both integrals. Was your prediction
in part (a) correct?

74. Consider
∫ π

0
x sin(x) dx and

∫ π

0
sin(x) dx.

(a) Before evaluating the integrals, which do you
think is larger? Why?

(b) Evaluate both integrals. Was your prediction
in part (a) correct?

75. The figure below shows two regions, A and B.
The volume swept out when region A is revolved
about the x-axis is (using the disk method):∫ x=e

x=1
π (ln(x))2 dx

and the volume swept out when region B is re-
volved about the x-xis is (using the tube method):∫ y=1

y=0
2πyey dy

(a) Before evaluating the integrals, which volume
do you think is larger? Why?

(b) Evaluate the integrals. Was your prediction in
part (a) correct?
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76. Refer to regions A and B from Problem 75.

(a) Compute the volume of the solid generated
when A is revolved around the y-axis.

(b) Compute the volume of the solid generated
when B is revolved around the y-axis.

77. Calculate the volume swept out when the region
between the x-axis and the graph of y = sin(x)
for 0 ≤ x ≤ π is rotated about the y-axis.

78. Calculate the volume swept out when the region
between the x-axis and the graph of y = cos(x)
for 0 ≤ x ≤ π

2 is rotated about the y-axis.

79. Calculate the volume swept out when the region
between the x-axis and the graph of y = x sin(x)
for 0 ≤ x ≤ π is rotated about the y-axis.

80. Calculate the volume swept out when the region
between the x-axis and the graph of y = x cos(x)
for 0 ≤ x ≤ π

2 is rotated about the y-axis.

81. Determine if the area of the region between the
graph of y = xe−x and the positive x-axis is finite.
(If so, compute the area.)

82. Determine if the area of the region between the
graph of y = x2e−x and the positive x-axis is
finite. (If so, compute the area.)

83. Determine if the volume of the solid obtained
by revolving the region between the graph of
y = xe−x and the positive x-axis about the x-axis
is finite. (If so, compute the volume.)

84. Determine if the volume of the solid obtained
by revolving the region between the graph of
y = x2e−x and the positive x-axis about the x-
axis is finite. (If so, compute the volume.)

85. Determine if the volume of the solid obtained
by revolving the region between the graph of
y = xe−x and the positive x-axis about the y-axis
is finite. (If so, compute the volume.)

86. Determine if the volume of the solid obtained
by revolving the region between the graph of
y = x2e−x and the positive x-axis about the y-axis
is finite. (If so, compute the volume.)

87. We obtained the Integration by Parts formula
analytically, starting with the Product Rule, but
the formula also has a geometric interpretation.
In the figure below, let D be the large rectangle
formed by the regions A, B and C so that:

(area of C) = (area of D)− (area of A)− (area of B)

(a) Represent the area of the large rectangle D as
a function of u2 and v2.

(b) Represent the area of the small rectangle A as
a function of u1 and v1.

(c) Represent the area of region C as an integral
with respect to the variable u.

(d) Represent the area of region B as an integral
with respect to the variable v.

(e) Rewrite the area equation using the results of
parts (a)–(d). This should look familiar.

88. Suppose f and f ′ are continuous and bounded
on the interval [0, 2π], meaning that | f (x)| < M
and | f ′(x)| < M when 0 ≤ x ≤ 2π. The n-th
Fourier Sine Coefficient of f is defined as:

Sn =
∫ 2π

0
f (x) sin(nx) dx

(a) Use the Integration By Parts Formula with
u = f (x) and dv = sin(nx) dx to represent
the formula for Sn in a different way.

(b) Use the new representation of Sn from part
(a) to determine what happens to the values
of Sn when n is very large (n → ∞). (Hint:
| f ′(x) cos(nx)| = | f ′(x)| · |cos(nx)| < M · 1.)

(c) What happens to the n-th Fourier Cosine Coef-

ficients Cn =
∫ 2π

0
f (x) cos(nx) dx as n → ∞?
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8.2 Practice Answers

1. u = cos(x) ⇒ du = − sin(x) dx and dv = x dx ⇒ v = 1
2 x2, so:∫

x cos(x) dx =
∫

cos(x) · x dx =
∫

u dv = u · v −
∫

v du

= cos(x) · 1
2

x2 −
∫ 1

2
x2 [− sin(x)] dx

=
1
2

x2 cos(x) +
∫ 1

2
x2 sin(x) dx

resulting in a new integral worse than the original integral.

2. (a) With u = x, dv = sin(x) dx so du = dx and v = − cos(x):∫
x sin(x) dx =

∫
u dv = u · v −

∫
v du

= x · (− cos(x))−
∫

[− cos(x)] dx

= −x cos(x) +
∫

cos(x) dx = −x cos(x) + sin(x) + C

(b) With u = x, dv = e5x dx so du = dx and v = 1
5 e5x:∫

xe5x dx =
∫

u dv = u · v −
∫

v du

= x · 1
5

e5x −
∫ 1

5
e5x dx =

1
5

xe5x − 1
25

e5x + C

3. Let u = ln(x) and dv = dx so that du = 1
x dx and v = x:∫

ln x dx =
∫

u dv = u · v −
∫

v du

= ln(x) · x −
∫

x · 1
x

dx = x ln(x)−
∫

1 dx = x ln(x)− x + C

Using this result:∫ e

1
ln x dx = [x ln(x)− x]e1 = [e ln(e)− e]− [1 ln(1)− 1] = 1

4. With n = 2:
∫

x2 ln(x) dx =
x3

3

[
ln(x)− 1

3

]
+ C

With n = 0:
∫

ln(x) dx =
x1

1

[
ln(x)− 1

1

]
+ C = x ln(x)− x + C

5. Set u = xn and dv = sin(x) dx so du = nxn−1 dx and v = − cos(x):∫
xn sin(x) dx =

∫
u dv = uv −

∫
v du

= −xn cos(x)−
∫

[− cos(x)] · nxn−1 dx

= −xn cos(x) + n
∫

xn−1 cos(x) dx
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6. Proceeding as in Example 7, set u = ex so that dv = sin(x) dx. Then
du = ex dx and v = − cos(x) dx, yielding:∫

ex sin(x) dx =
∫

u dv = uv −
∫

v du

= ex · (− cos(x))−
∫

(− cos(x)) · ex dx

= −ex cos(x) +
∫

ex cos(x) dx

For this new integral, set u = ex so that dv = cos(x) dx. Then
du = ex dx and v = sin(x) dx, yielding:∫

ex cos(x) dx =
∫

u dv = uv −
∫

v du = ex sin(x)−
∫

ex sin(x) dx

Combining these results we get:∫
ex sin(x) dx = −ex cos(x) +

∫
ex cos(x) dx

= −ex cos(x) + ex sin(x)−
∫

ex sin(x) dx

and solving for the integral we started with yields:

2
∫

ex sin(x) dx = −ex cos(x) + ex sin(x) + K

so that: ∫
ex sin(x) dx =

1
2
[−ex cos(x) + ex sin(x)] + C

cos(x) = v′

u = x5 sin(x) (+)

5x4 − cos(x) (−)

20x3 − sin(x) (+)

60x2 cos(x) (−)

120x sin(x) (+)

120 − cos(x) (−)

0 − sin(x) (+)

7. For the first integral, let u = x5 and take derivatives until you get 0:

x5 −→ 5x4 −→ 20x3 −→ 60x2 −→ 120x −→ 120 −→ 0

Put these in the left column of the margin table. Then set v′ = cos(x)
and start taking antiderivatives:

cos(x) −→ sin(x) −→ − cos(x) −→ − sin(x) −→ cos(x)

and put these in the right column of the margin table. Now multiply
the entries in each and add, using alternating signs:∫

x5 cos(x) dx =x5 sin(x)− 5x4 [− cos(x)] + 20x3 [− sin(x)]

− 60x2 cos(x) + 120x sin(x)− 120 [− cos(x)] + C

which we can rewrite as:[
x5 − 20x3 + 120x

]
sin(x) +

[
5x4 − 60x2 + 120

]
cos(x) + C

Using the same method with the second integral yields:

x3
[
−1

2
e−2x

]
− 3x2

[
1
4

e−2x
]
+ 6x

[
−1

8
e−2x

]
− 6

[
1
16

e−2x
]
+ C

so
∫

x3e−2x dx = −e−2x
[

1
2

x3 +
3
4

x2 +
3
4

x +
3
8

]
+ C.
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