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8.3 Partial Fraction Decomposition

Rational functions (polynomials divided by polynomials) and their
integrals play important roles in mathematics and applications, but
if you look through an integral table (such as Appendix I) you will
find very few formulas for antiderivatives of rational functions. Partly
this is because the general formulas are rather complicated and have
many special cases, and partly it is because they can all be reduced to
just a few cases using the algebraic technique discussed in this section:
Partial Fraction Decomposition.

In algebra you learned to add rational functions to get a single
rational function (just as in arithmetic you learned how to add many
fractions to get a single fraction). Partial Fraction Decomposition is a
technique for reversing that procedure to “decompose” a single rational
function into a sum of simpler rational functions. This allows us to
turn the integral of a single rational function into the sum of integrals
of simpler functions.

Example 1. Verify that the algebraic decomposition:

17x− 35
2x2 − 5x

=
7
x
+

3
2x− 5

is true and use this fact to evaluate
∫ 17x− 35

2x2 − 5x
dx.

Solution. Working from the right side of the above equality, combine
the two rational expressions by converting to a common denominator:

7
x
+

3
2x− 5

=
7
x
· (2x− 5)
(2x− 5)

+
3

(2x− 5)
· x

x
=

14x− 35 + 3x
2x2 − 5x

=
17x− 35
2x2 − 5x

which is the expression on the left side. This decomposition allows us
to exchange the original integral for two much easier ones:∫ 17x− 35

2x2 − 5x
dx =

∫ 7
x

dx+
∫ 3

2x− 5
dx = 7 ln (|x|)+ 3

2
ln (|2x− 5|)+C

which can also be written as ln
(
|x|7 · |2x− 5|

3
2
)
+ C. J

Practice 1. Verify that the algebraic decomposition:

7x− 11
3x2 − 8x− 3

=
4

3x + 1
+

1
x− 3

is true and use this fact to evaluate
∫ 7x− 11

3x2 − 8x− 3
dx.

Example 1 illustrates how to use a “decomposed” fraction to find
an antiderivative of a rational function, but it does not show how to
achieve this decomposition. The algebraic basis for the Partial Frac-
tion Decomposition technique relies on the Fundamental Theorem of
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Algebra, which guarantees that every polynomial with integer coef-
ficients can be factored into a product of linear factors of the form
ax + b and irreducible quadratic factors of the form ax2 + bx + c (with
b2 − 4ac < 0). Unfortunately, the Fundamental Theorem of Algebra
does not tell us how to find these factors, which typically will be more
complicated than the examples in this section, but every polynomial
has such factors. Before we apply the Partial Fraction Decomposition
technique, the fraction must have the following form:

• (degree of the numerator) < (degree of the denominator)

• The denominator has been factored into a product of linear factors
and irreducible quadratic factors.

If the first assumption is not true, we can use polynomial division until
we get a remainder with a smaller degree than the denominator. If
the second assumption is not true, we simply cannot use the Partial
Fraction Decomposition technique.

You might think that the Fundamental of
Algebra would be easier to prove than
the Fundamental Theorem of Calculus,
because you studied algebra before cal-
culus. Although we have already proved
the Fundamental Theorem of Calculus
in Chapter 4, a proof of the Fundamen-
tal Theorem of Algebra requires some
higher-powered math.

Now might be a good time to review
polynomial division if you have not used
it recently.

Example 2. Put each fraction into a form ready for Partial Fraction
Decomposition:

(a)
2x2 + 4x− 6

x2 − 2x
(b)

3x3 − 3x2 − 9x + 8
x2 − x− 6

(c)
7x2 + 12x− 12

x3 − 4x

Solution. (a) The degree of the numerator is not lower than the degree
of the denominator, so we need to use polynomial division to rewrite
the rational function:

2x2 + 4x− 6
x2 − 2x

= 2 +
8x− 6
x2 − 2x

= 2 +
8x− 6

x(x− 2)

and conclude by factoring the denominator.

(b) The degree of the numerator is bigger than the degree of the de-
nominator, so we need to use polynomial division to rewrite the
rational function:

3x3 − 3x2 − 9x + 8
x2 − x− 6

= 3x +
9x + 8

x2 − x− 6
= 3x +

9x + 8
(x + 2)(x− 3)

and conclude by factoring the denominator.

(c) Here the degree of the numerator is smaller than the degree of the
denominator so we need only factor the denominator:

7x2 + 12x− 12
x3 − 4x

=
7x2 + 12x− 12
x(x + 2)(x− 2)

and no polynomial division is required. J
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Distinct Linear Factors

If you can factor the denominator into a product of distinct linear
factors, then it turns out you can write the original fraction as the sum

of fractions of the form
number

linear factor
. Your job is to find the numbers

in the numerators, and that requires solving a system of equations.

We won’t prove you can always do this,
but you should be able to understand
why this technique works by examining
the solutions of Examples 3 and 4.

Example 3. Find values for A and B so that:

17x− 35
x(2x− 5)

=
A
x
+

B
2x− 5

Solution. Multiply both sides of this equation by the common denom-
inator x(2x− 5) to get:

17x− 35 = A(2x− 5) + Bx = 2Ax− 5A + Bx = (2A + B)x− 5A

The leftmost and rightmost expressions in this equality are both linear
functions, and we want them to be equal for all values of x, so the
coefficients of x must be the same: 17 = 2A + B. Similarly, the constant
terms must be the same: −5A = −35 ⇒ A = 7. Putting this into the
previous equation:

17 = 2A + B⇒ 17 = 2(7) + B⇒ B = 3

so we now know that:

17x− 35
x(2x− 5)

=
7
x
+

3
2x− 5

which agrees with what we saw in Example 1. J

Practice 2. Find values of A and B so that:

6x− 7
(x + 3)(x− 2)

=
A

x + 3
+

B
x− 2

In general, there will be one unknown coefficient for each distinct
linear factor of the denominator. If the number of distinct linear factors
is large, we would need to solve a large system of equations for the
unknowns. For any situation involving only distinct linear factors,
however, a useful shortcut exists.

Example 4. Find values for A, B and C so that:

2x2 + 7x + 9
x(x + 1)(x + 3)

=
A
x
+

B
x + 1

+
C

x + 3

Solution. Multiplying both sides of the above equation by the common
denominator x(x + 1)(x + 3) yields:

2x2 + 7x + 9 = A(x + 1)(x + 3) + Bx(x + 3) + Cx(x + 1)
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At this point, you could combine the expressions on the right side
of this new equation into one big quadratic polynomial and compare
its coefficients to those of the quadratic polynomial on the left side,
resulting in three equations in three unknowns. Or you could plug in
some well-chosen values of x to avoid much of that algebra. If x = 0:

2 · 02 + 7 · 0 + 9 = A(0 + 1)(0 + 3) + B · 0 · (0 + 3) + C · 0 · (0 + 1)

so 9 = 3A⇒ A = 3. Similarly, if x = −1:

2(−1)2 + 7(−1) + 9 = A(0)(2) + B(−1)(2) + C(−1)(0)⇒ 4 = −2B

so B = −2. And if x = −3:

2(−3)2 + 7(−3) + 9 = A(−2)(0) + B(−3)(0) + C(−3)(−2)⇒ 6 = 6C

so C = 1. We now know that:

2x2 + 7x + 9
x(x + 1)(x + 3)

=
3
x
− 2

x + 1
+

1
x + 3

and can easily integrate each of these three simpler fractions. J

Practice 3. Evaluate the integral
∫ 2x2 + 7x + 9

x(x + 1)(x + 3)
dx.

Practice 4. Apply the method of Example 4 to the Partial Fraction
Decomposition in Example 3.

For fractions whose denominators contain irreducible quadratic
factors or repeated factors, the form of the decomposition becomes
more complicated — and with it, the algebra required to find the values
of the constants. We will not discuss why the following suggestions
work to decompose more general rational functions, except to note that
they provide enough (but not too many) unknown coefficients.

Distinct Irreducible Quadratic Factors

If the factored denominator includes a distinct irreducible quadratic
factor, then the Partial Fraction Decomposition sum contains a fraction
of the form:

linear polynomial
irreducible quadratic factor

or
Ax + B

x2 + px + q

where we typically need to solve a system of equations to find the values
of the unknown coefficients A and B, given p and q with p2 − 4q < 0.

Example 5. Find values for A, B and C so that:

x2 + 3x− 15
(x2 + 2x + 5)x

=
Ax + B

x2 + 2x + 5
+

C
x
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Solution. Multiply the equation on both sides by the common denom-
inator (x2 + 2x + 5)x to get:

x2 + 3x− 15 = (Ax + B)x + C(x2 + 2x + 5)

Put x = 0 into the equation to get:

−15 = (B)(0) + C(5)⇒ C = −3

Unfortunately, there no other numbers we can use for x to make terms
on the right side vanish, but we can plug in any other “nice” number
we want. The “nicest” numbers after 0 are 1 and −1:

x = 1 : − 11 = (A + B)− 3(8) ⇒ A + B = 13

x = −1 : − 17 = (−A + B)(−1)− 3(4) ⇒ A− B = −5

We now have two equations in two unknowns. Adding these equations
yields 2A = 8⇒ A = 4 and subtracting the second equation from the
first yields 2B = 18⇒ B = 9. This tells us that:

x2 + 3x− 15
(x2 + 2x + 5)x

=
4x + 9

x2 + 2x + 5
− 3

x

The original function is now in a form that is ready for integration. J

Practice 5. Evaluate the integral
∫ x2 + 3x− 15

(x2 + 2x + 5)x
dx.

In general, there are two unknown coefficients for each distinct
irreducible quadratic factor in the denominator.

The denominator in unfactored form is:

x4 + 4x3 + 9x2 + 16x + 20

Would you be able to factor this into two
irreducible quadratic factors if it had not
already been factored for you?

To simplify the algebra, note that:

C = 6− A and D =
1
4
(53− 5B)

then substitute these expressions into the
second and third equations to reduce
a system of four equations in four un-
knowns to a system of two equations in
two unknowns.

Example 6. Decompose the rational function
6x3 + 36x2 + 50x + 53
(x2 + 4)(x2 + 4x + 5)

.

Solution. The degree of the denominator (4) is bigger than the degree
of the numerator (3) and fortunately the denominator has already been
factored into two irreducible quadratics. We can write:

6x3 + 36x2 + 50x + 53
(x2 + 4)(x2 + 4x + 5)

=
Ax + B
x2 + 4

+
Cx + D

x2 + 4x + 5

Multiplying by the common denominator (x2 + 4)(x2 + 4x + 5) yields:

6x3 + 36x2 + 50x + 53 = (Ax + B)(x2 + 4x + 5) + (Cx + D)(x2 + 4)

= Ax3 + 4Ax2 + 5Ax + Bx2 + 4Bx + 5B + Cx3 + 4Cx + Dx2 + 4D

= (A + C)x3 + (4A + B + D)x2 + (5A + 4B + 4C)x + (5B + 4D)

Compare coefficients between the first and last polynomials to see that
A + C = 6, 4A + B + D = 36, 5A + 4B + 4C = 50 and 5B + 4D = 53.
After much algebra (see margin note), this system of four equations in
four unknowns reduces to A = 6, B = 5, C = 0 and D = 7. J
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Repeated Factors

If the factored denominator contains a linear factor raised to a power
(greater than one), the decomposition requires one unknown coefficient
for each power of the linear factor. For example:

something
(x + 1)(x− 2)3 =

A
x + 1

+
B

x− 2
+

C
(x− 2)2 +

D
(x− 2)3

Similarly, if the factored denominator contains an irreducible quadratic
factor raised to a power (greater than one), then the decomposition re-
quires one linear term (with two unknown coefficients) for each power
of the irreducible quadratic. For example:

something
x2(x2 + 9)3 =

A
x
+

B
x2 +

Cx + D
x2 + 9

+
Ex + F
(x2 + 9)2 +

Gx + H
(x2 + 9)3

This leads to a system of 8 equations with 8 unknowns.

Example 7. Evaluate
∫ −4x2 + 5x + 3

x3 − 2x2 + x
dx.

Solution. Before we can integrate, we need to decompose the integrand
into simpler rational functions. The degree of the denominator (3) is
bigger than the degree of the numerator (2) but we do need to factor:

x3 − 2x2 + x = x(x2 − 2x + 1) = x(x− 1)2

so that we can write:

−4x2 + 5x + 3
x(x− 1)2 =

A
x
+

B
x− 1

+
C

(x− 1)2

Multiply this equation by the common denominator x(x− 1)2 to get:

−4x2 + 5x + 3 = A(x− 1)2 + Bx(x− 1) + Cx

Inserting the values x = 0 or x = 1 yields:

x = 0 : 3 = (A)(−1)2 + B(0)(−1) + C(0) ⇒ A = 3

x = 1 : 4 = A(0) + B(1)(0) + C(1) ⇒ C = 4

Using A = 3 and C = 4 with x = −1 results in:

−6 = 3(−2)2 + B(−1)(−2)− 4 ⇒ 2B = −14 ⇒ B = −7

We can now integrate:∫ −4x2 + 5x + 3
x3 − 2x2 + x

dx =
∫ [ 3

x
− 7

x− 1
+

4
(x− 1)2

]
dx

= 3 ln (|x|)− 7 ln (|x− 1|)− 4
x− 1

+ C

which can also be written ln

(
|x|3

|x− 1|7

)
− 4

x− 1
+ C. J



8.3 partial fraction decomposition 581

Practice 6. Evaluate
∫ 2x2 + 27x + 85

(x + 5)2 dx.

Be careful: Partial Fraction Decomposition only works with rational
functions, although you may be able to turn another type of integrand
into a rational function using substitution. For example, we can write:∫

sec(θ) dθ =
∫ 1

cos(θ)
dθ =

∫ cos(θ)
cos2(θ)

dθ =
∫ cos(θ)

1− sin2(θ)
dθ

and substitute u = sin(θ)⇒ du = cos(θ) dθ to convert this to:∫
sec(θ) dθ =

∫ cos(θ)
1− sin2(θ)

dθ =
∫ 1

1− u2 du

which is now a job for partial fractions.

Problem 41 asks you to complete this in-
tegration and resubstitute to obtain the
antiderivative pattern for sec(θ).

Additional Applications

The primary use of the partial fraction technique in this course is
to convert rational functions into a form that makes them easier to
integrate, but this algebraic technique can also be used to simplify the
differentiation of certain rational functions. (In a later math course, you
will also use partial fractions when computing certain inverse Laplace
transforms.) The next Example illustrates the use of partial fractions to
make a differentiation problem easier.

Example 8. For f (x) =
2x + 13

x2 + x− 2
, calculate f ′(x), f ′′(x) and f ′′′(x).

Solution. You already know how to calculate these derivatives using
the Quotient Rule, but that process becomes rather tedious for the
second and third derivatives of this function. Instead, we can use the
partial fraction technique to rewrite f as:

f (x) =
5

x− 1
− 3

x + 2
= 5(x− 1)−1 − 3(x + 2)−1

Computing the derivatives is now quite straightforward:

f ′(x) = −5(x− 1)−2 + 3(x + 2)−2

f ′′(x) = 10(x− 1)−3 − 6(x + 2)−3

f ′′′(x) = −30(x− 1)−4 + 18(x + 2)−4

You will appreciate the value of this shortcut if you attempt to compute
f ′′′(x) using the Quotient Rule. J

Practice 7. Use a partial fraction decomposition of g(x) =
9x + 1

x2 − 2x− 3
to calculate g′(x), g′′(x) and g(4)(x).
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The rational functions in the Examples and Problems in this section
have been carefully constructed to allow you to easily factor denom-
inators and to decompose fractions with a minimum of effort. In
practice, factoring higher-order polynomials can require numerical
methods (like Newton’s Method) to approximate roots and decom-
posing rational functions whose denominators include repeated linear
irreducible quadratic factors can lead to systems of many equations in
many unknowns that benefit from the tools available in linear algebra.
As a result, computers are best suited to handle the partial fraction
decomposition of more complicated rational functions.

8.3 Problems

In Problems 1–32, decompose the integrand and
then evaluate the integral.

1.
∫ 7x + 2

x(x + 1)
dx 2.

∫ 7x + 9
(x + 3)(x− 1)

dx

3.
∫ 11x + 25

x2 + 9x + 8
dx 4.

∫ 3x + 7
x2 − 1

dx

5.
∫ 2x2 + 15x + 25

x2 + 5x
dx 6.

∫ 3x3 + 3x2

x2 + x− 2
dx

7.
∫ 6x2 + 9x− 15

x(x + 5)(x− 1)
dx 8.

∫ 6x2 − x− 1
x3 − x

dx

9.
∫ 8x2 − x + 3

x3 + x
dx 10.

∫ 9x2 + 13x + 15
x3 + 2x2 − 3x

dx

11.
∫ 11x2 + 23x + 6

x2(x + 2)
dx 12.

∫ 6x2 + 14x− 9
x(x + 3)2 dx

13.
∫ 3x + 13

(x + 2)(x− 5)
dx 14.

∫ 2x + 11
(x− 7)(x− 2)

dx

15.
∫ 5

2

2
x2 − 1

dx 16.
∫ 3

1

5x2 + 5x + 3
x3 + x

dx

17.
∫ 2x2 + 5x− 3

x2 − 1
dx 18.

∫ 2x2 + 19x + 22
x2 + x− 12

dx

19.
∫ 3x2 + 19x + 24

x2 + 6x + 5
dx 20.

∫ 7x2 + 8x− 2
x2 + 2x

dx

21.
∫ 3x2 − 1

x3 + x
dx 22.

∫ x4 + 5x3 + x− 15
x2 + 5x

dx

23.
∫ x3 + 3x2 − 4x + 30

x2 + 3x− 10
dx

24.
∫ 7x3 + x2 + 7x + 10

x4 + 2x3 dx

25.
∫ 12x2 + 19x− 6

x3 + 3x2 dx 26.
∫ 2x + 5

(x + 1)2 dx

27.
∫ 7x2 + 3x + 7

x3 + x
dx 28.

∫ 7x2 − 4x + 4
x3 + 1

dx

29.
∫ ∞

2

2
x2 − 1

dx 30.
∫ ∞

2

7x + 2
6x2 − 13x + 16

dx

31.
∫ 6x2 + 5x + 61

(x− 1)(x2 + 4x + 13)
dx

32.
∫ x− 84

(x + 5)(x2 − 6x + 34)
dx

Integrals can be very sensitive to small changes in
the integrand. In 33–34, notice how similar functions
require vastly different integration methods.

33. (a)
∫ 1

x2 + 2x + 2
dx

(b)
∫ 1

x2 + 2x + 1
dx

(c)
∫ 1

x2 + 2x + 0
dx

34. (a)
∫ 1

x2 − 6x + 8
dx

(b)
∫ 1

x2 − 6x + 9
dx

(c)
∫ 1

x2 − 6x + 10
dx

In Problems 35–40, use a partial fraction decomposi-
tion to compute the first and second derivatives of
the given function.

35. f (x) =
7x + 2

x(x + 1)
36. F(x) =

7x + 9
(x + 3)(x− 1)

37. g(x) =
11x + 25

x2 + 9x + 8
38. G(x) =

3x + 7
x2 − 1

39. h(x) =
2x2 + 15x + 25

x2 + 5x
40. H(x) =

9x2 + 13x + 15
x3 + 2x2 − 3x



8.3 partial fraction decomposition 583

41. Obtain a formula for
∫

sec(θ) dθ by writing:

∫ 1
cos(θ)

dθ =
∫ cos(θ)

cos2(θ)
dθ =

∫ cos(θ)
1− sin2(θ)

dθ

and using the substitution u = sin(θ) to turn this
integrand into a rational function.

42. Obtain a formula for
∫

csc(θ) dθ by writing:

∫ 1
sin(θ)

dθ =
∫ sin(θ)

sin2(θ)
dθ =

∫ sin(θ)
1− cos2(θ)

dθ

and using the substitution u = cos(θ) to turn this
integrand into a rational function.

Logistic Growth

The following two applications involve a type of differential equation
that can be solved by separating variables and then using a partial
fraction decomposition to calculate the antiderivatives. The same type
of differential equation is also used to model the spread of rumors
and diseases, as well as the growth of some populations and chemical
reactions.

The growth rate of many different types of populations depends
not only on the number of individuals currently in the population
(leading to exponential growth) but also on a “carrying capacity” of the
environment. (As a population grows, it might deplete a food source,
slowing the growth of the population.) If x is the size of a population
at time t and the growth rate of x is proportional only to the size of the
population, we get the differential equation:

dx
dt

= kx

which we investigated in Section 6.4. If we want to create a model in
which the growth slows as the size of the population nears the carrying

capacity M, we can multiply this model for
dx
dt

by factor
(

1− x
M

)
:

dx
dt

= kx
(

1− x
M

)
When x is small (relative to M), this new factor is close to 1 so that:

dx
dt

= kx
(

1− x
M

)
≈ kx

leading to growth that is “almost exponential.” When x gets close to
M, this new factor is close to 0:

dx
dt

= kx
(

1− x
M

)
≈ kx

(
1− M

M

)
= 0

so that the growth of x slows down and x is (roughly) constant. We
call this differential equation the logistic equation and its solution a
logistic function.
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43. Let k = 1 and M = 100, and assume the initial
population is x(0) = 5.

(a) Create a direction field for the ODE.

(b) Solve the corresponding logistic IVP.

(c) Graph the population x(t) for 0 ≤ t ≤ 20.

(d) When will the population be 20? 50? 90? 100?

(e) What is the population after a “long” time?
(Find the limit of x, as t→ ∞.)

(f) Explain the shape of the graph in (c) in the
context of a population of bacteria.

(g) When is the growth rate largest?

(h) What is the population when the growth rate
is largest?

(i) What would happen if x(0) > 100?

44. Let k = 1 and M = 100, and assume the initial
population is x(0) = 150.

(a) Solve the corresponding logistic IVP.

(b) Graph the population x(t) for 0 ≤ t ≤ 20.

(c) When will the population be 120? 110? 100?

(d) What is the population after a “long” time?

(e) Explain the shape of the graph in (b).

45. Let k and M be positive constants, and assume
the initial population is x(0) = x0.

(a) Solve the corresponding logistic IVP.

(b) What is the population after a “long” time?

(c) When is the growth rate largest?

(d) What is the population at that time?

Chemical Reactions

In certain chemical reactions, a new material X is formed from materials
A and B, and the rate at which X forms is proportional to the product
of the amount of A and the amount of B remaining. Let x represent the
amount of material X present at time t, and assume that the reaction
begins with a grams of A, b grams of B and no material X (so that
x(0) = 0). Then the rate of formation of material X can be described by
the differential equation:

dx
dt

= k(a− x)(b− x)

46. Solve the IVP given above for x if k = 1 and the
reaction begins with

(a) 7 grams of A and 5 grams of B.

(b) 6 grams of A and 6 grams of B.

47. Solve the IVP given above for x if k = 1 and the
reaction begins with

(a) a grams of A and b grams of B with a 6= b.

(b) c grams of A and c grams of B (for c > 0).
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8.3 Practice Answers

1. To verify the identity:

4
(3x + 1)

· (x− 3)
(x− 3)

+
1

(x− 3)
· (3x + 1)
(3x + 1)

=
(4x− 12) + (3x + 1)

(3x + 1)(x− 3)
=

7x− 11
3x2 − 8x− 3

To evaluate the integral:∫ 7x− 11
3x2 − 8x− 3

dx =
∫ [ 4

(3x + 1)
+

1
(x− 3)

]
dx =

4
3

ln (|3x + 1|)+ ln (|x− 3|)+C

2. Multiply both sides of the equality by the common denominator
(x + 3)(x− 2) to get:

6x− 7 = A(x− 2)+ B(x+ 3) = Ax− 2A+ Bx+ 3B = (A+ B)x+(−2A+ 3B)

so A + B = 6 and −2A + 3B = −7. Solving this system of equations
yields A = 5 and B = 1.

3. Using the result of Example 4:∫ [ 3
x
− 2

x + 1
+

1
x + 3

]
dx = 3 ln (|x|)− 2 ln (|x + 1|)+ ln (|x + 3|)+C

4. Multiply each side of the equation by the common denominator
x(2x− 5) to get:

17x− 35
x(2x− 5)

=
A
x
+

B
2x− 5

⇒ 17x− 35 = A(2x− 5) + Bx

Now put x = 0 and x = 5
2 into this new equation to get:

x = 0 : − 35 = −5A + 0 ⇒ A = 7

x =
5
2

:
15
2

= A(0) + B
(

5
2

)
⇒ B = 3

5. Using the result of Example 5:∫ [ 4x + 9
x2 + 2x + 5

− 3
x

]
dx =

∫ [ 4x + 8 + 1
(x + 1)2 + 1

− 3
x

]
dx

=
∫ [ 2(2x + 2)

x2 + 2x + 5
+

5
(x + 1)2 + 4

− 3
x

]
dx

= 2 ln
(

x2 + 2x + 5
)
+

1
2

arctan
(

x + 1
2

)
− 3 ln (|x|) + C

6. Because the degree of the numerator equals the degree of the denomi-
nator, we must use polynomial division to rewrite the integrand as:

2x2 + 27x + 85
x2 + 10x + 25

= 2 +
7x + 35

x2 + 10x + 25
= 2 +

7(x + 5)
(x + 5)2 = 2 +

7
x + 5

This integrand does not require partial fraction decomposition:∫ 2x2 + 27x + 85
(x + 5)2 dx =

∫ [
2 +

7
x + 5

]
dx = 2x + 5 ln (|x + 5|) + C
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7. First write:

g(x) =
9x + 1

x2 − 2x− 3
=

9x + 1
(x− 3)(x + 1)

=
A

x− 3
+

B
x + 1

and then multiply through the last equality by the common denomi-
nator (x− 3)(x + 1) to get:

9x + 1 = A(x + 1) + B(x− 3)

Now put x = 3 and x = −1 into this new equation to get:

x = 3 : 28 = 4A + B(0) ⇒ A = 7

x = −1 : − 8 = A(0) + B(−4) ⇒ B = 2

We can now rewrite g(x) as g(x) = 7(x− 3)−1 + 2(x + 1)−1 so that:

g′(x) = −7(x− 3)−2 − 2(x + 1)−2

g′′(x) = 14(x− 3)−3 + 4(x + 1)−3

g′′′(x) = −42(x− 3)−4 − 12(x + 1)−4

g(4)(x) = 168(x− 3)−5 + 48(x + 1)−5
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