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8.4 Trigonometric Substitution

In the previous section, you learned how to decompose rational ex-
pressions into simpler forms that were easier to integrate. This section
investigates a method for transforming integrands involving radical
expressions of the form

√
a2 − x2,

√
a2 + x2 and

√
x2 − a2 using a spe-

cialized change of variable.
While we know that

∫ 1√
1−x2 dx = arcsin(x) + C, and while we can

compute
∫ x√

1−x2 dx and
∫

x
√

1 − x2 dx without much difficulty using

the substitution u = 1 − x2, the simpler-looking integral
∫ √

1 − x2 dx
poses a greater challenge. It does, however, have a geometric interpre-
tation that allows us to find an antiderivative.

Consider
∫ b

0

√
1 − x2 dx for any b with 0 < b < 1. This definite

integral represents the area of the region under the curve y =
√

1 − x2

between the y-axis (where x = 0) and the vertical line x = b (see
margin). We can split this region into two pieces (as in the margin
figure): a sector of a circle and a triangle.

If b = 1, the integral should give the area
of a quarter-circle of radius 1, and we can
then verify that:∫ 1

0

√
1 − x2 dx =

1
2
· 1 · 0 +

1
2

arcsin(1)

= 0 +
1
2
· π

2
=

π

4

Ordinarily we would write:√
cos2(θ) = |cos(θ)|

but θ = arcsin(x) and the range of arc-
sine is

[
− π

2 , π
2

]
, so cos(θ) ≥ 0.

The triangle has base b and height
√

1 − b2, so its area is 1
2 b ·

√
1 − b2.

The area of a sector of a circle with radius r and central angle θ is
θ

2π · πr2 = 1
2 r2θ. But r = 1 and θ is also the angle of the upper vertex

of the triangle, so:

sin(θ) =
opposite
adjacent

=
b
1
= b ⇒ θ = arcsin(b)

which tells us:∫ b

0

√
1 − x2 dx =

1
2

b ·
√

1 − b2 +
1
2

arcsin(b)

and we can easily deduce that:∫ √
1 − x2 dx =

1
2

x ·
√

1 − x2 +
1
2

arcsin(x) + C

The appearance of arcsin(x) in the antiderivative of
√

1 − x2 suggests a
somewhat unusual substitution. Because arcsin(x) represents an angle,
we can call it θ and write:

arcsin(x) = θ ⇒ x = sin(θ) ⇒ dx = cos(θ) dθ

If we make the substitution x = sin(θ), the integral becomes:∫ √
1 − x2 dx =

∫ √
1 − sin2(θ) · cos(θ) dθ =

∫ √
cos2(θ) · cos(θ) dθ

=
∫

cos(θ) · cos(θ) dθ =
∫

cos2(θ) dθ

This is an integral we already know how to work out:∫
cos2(θ) dθ =

∫ [1
2
+

1
2

cos(2θ)

]
dθ =

1
2

θ +
1
4

sin(2θ) + C

=
1
2

θ +
1
4
· 2 sin(θ) cos(θ) + C =

1
2

θ +
1
2

sin(θ) cos(θ) + C
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Now we must convert the variable θ back to x. We started out with
θ = arcsin(x) ⇒ x = sin(θ) so we just need to rewrite cos(θ) in terms
of x. The Pythagorean identity tells us that:

cos2(θ) + sin2(θ) = 1 ⇒ cos2(θ) = 1 − sin2(θ) = 1 − x2

so cos(θ) =
√

1 − x2. Therefore:

1
2

θ +
1
2

sin(θ) cos(θ) + C =
1
2

arcsin(x) +
1
2
· x ·

√
1 − x2 + C

which agrees with our original geometric result.

Ordinarily we would write:

cos(θ) = ±
√

1 − x2

but from the discussion in the preceding
margin note we know that cos(θ) ≥ 0.

Another Change of Variable

The preceding discussion suggests a new type of substitution: instead
of setting u = function of x, replace x with a (trigonometric) function
of θ. Each trigonometric substitution will involve four major steps:

1. Choose a substitution to make x = a trigonometric function of θ.

2. Rewrite the original integral in terms of θ and dθ.

3. Find an antiderivative of the new integrand.

4. Rewrite this antiderivative in terms of the original variable x.

The discussion that follows examines how these steps play out in three
situations. The first step requires you to make a decision. The other
steps follow from that decision. For most students, the key to success
with the Trigonometric Substitution technique is to think triangles.

Step 1: Choosing the substitution
The Pythagorean identity cos2(θ) + sin2(θ) = 1 played an important

role in our first application of the trigonometric substitution technique.
The familiar Pythagorean Theorem can help guide you to a correct
choice of substitution so that a trigonometric identity will always come
to the rescue when converting from θ back to x in Step 4. Thinking of a
right triangle, we can state the Pythagorean Theorem as:

(side)2 + (other side)2 = (hypotenuse)2

⇒ (other side)2 = (hypotenuse)2 − (side)2

A right triangle representing our initial substitution x = sin(θ) appears
in the margin. Here x is the length of the side opposite θ and 1 is the
length of the hypotenuse, so that the “other side” has length

√
1 − x2,

the radical expression that appeared in the original integral.

There is nothing special about the num-
ber 3 in these examples: we would have
used 5 or π or

√
17.

We now investigate the trigonometric substitutions for three repre-
sentative patterns: 32 + x2, 32 − x2 and x2 − 32.
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• The pattern 32 + x2 matches the Pythagorean pattern if 3 and x are
sides of a right triangle (see margin). Then:

tan(θ) =
opposite
adjacent

=
x
3

⇒ x = 3 tan(θ)

• The pattern 32 − x2 matches the Pythagorean pattern if 3 is the
hypotenuse and x is a side of a right triangle (see margin). Then:

sin(θ) =
opposite

hypotenuse
=

x
3

⇒ x = 3 sin(θ)

• The pattern x2 − 32 matches the Pythagorean pattern if x is the
hypotenuse and 3 is a side of a right triangle (see margin). Then:

sec(θ) =
hypotenuse

adjacent
=

x
3

⇒ x = 3 sec(θ)

Step 2: Rewrite the original integral in terms of θ and dθ

Once you have made the choice for the substitution, several things
follow automatically: you can easily calculate dx, you can solve for θ,
and you can rewrite the original pattern of interest as a function of θ.

Here − π
2 < θ < π

2 because that is the
range of the arctangent function. This
means that sec(θ) > 0 always holds, so
that

√
sec2(θ) = sec(θ).

Here − π
2 ≤ θ ≤ π

2 because that is the
range of the arcsine function. This means
that cos(θ) ≥ 0 always holds, so that√

cos2(θ) = cos(θ).

Here 0 ≤ θ < π
2 or π

2 < θ < π because
that is the range of the arcsecant function.
We will want tan(θ) ≥ 0 to avoid abso-
lute values when simplifying

√
tan2(θ);

to do so, we will need to assume that
x ≥ 3 so that 0 ≤ θ < π

2 .

• With the pattern 32 + x2, differentiation yields:

x = 3 tan(θ) ⇒ dx = 3 sec2(θ) dθ

while solving the substitution equation for θ yields:

x = 3 tan(θ) ⇒ tan(θ) =
x
3

⇒ θ = arctan
( x

3

)
and the original pattern becomes:

32 + x2 = 32 + 32 tan2(θ) = 32
[
1 + tan2(θ)

]
= 32 sec2(θ)

• With the pattern 32 − x2, differentiation yields:

x = 3 sin(θ) ⇒ dx = 3 cos(θ) dθ

x = 3 sin(θ) ⇒ sin(θ) =
x
3

⇒ θ = arcsin
( x

3

)
32 − x2 = 32 − 32 sin2(θ) = 32

[
1 − sin2(θ)

]
= 32 cos2(θ)

• With the pattern x2 − 32, differentiation yields:

x = 3 sec(θ) ⇒ dx = 3 sec(θ) tan(θ) dθ

x = 3 sec(θ) ⇒ sec(θ) =
x
3

⇒ θ = arcsec
( x

3

)
x2 − 32 = 32 sec2(θ)− 32 = 32

[
sec2(θ)− 1

]
= 32 tan2(θ)
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Example 1. For the patterns 16 − x2 and 5 + x2, select an appropriate
substitution for x, calculate dx and θ, and use the substitution to
simplify the pattern.

Solution. The pattern 16 − x2 matches the Pythagorean pattern if 4 is
a hypotenuse and x is the side of a right triangle. Then:

sin(θ) =
opposite

hypotenuse
=

x
4

⇒ x = 4 sin(θ) ⇒ dx = 4 cos(θ) dθ

while θ = arcsin
( x

4

)
and 16 − x2 becomes:

16 − [4 sin(θ)]2 = 16 − 16 sin2(θ) = 16
[
1 − sin2(θ)

]
= 16 cos2(θ)

The pattern 5 + x2 matches the Pythagorean pattern if x and
√

5 are
the sides of a right triangle. Then:

tan(θ) =
opposite
adjacent

=
x√
5

⇒ x =
√

5 tan(θ) ⇒ dx =
√

5 sec2(θ) dθ

while θ = arctan
(

x√
5

)
and 5 + x2 becomes:

5 +
[√

5 tan(θ)
]2

= 5 + 5 tan2(θ) = 5
[
1 + tan2(θ)

]
= 5 sec2(θ)

Drawing a right triangle for each pattern (as in the margin) will help
you visualize the appropriate substitution. ◀

Practice 1. For the patterns 25 + x2 and x2 − 13, decide on the appro-
priate substitution for x, calculate dx and θ, and use the substitution to
simplify the pattern.

Example 2. Use x = 5 tan(θ) to rewrite the integral
∫ 1√

25 + x2
dx.

Solution. Differentiating x = 5 tan(θ) yields dx = 5 sec2(θ) dθ and:

25 + x2 = 25 + 25 tan2(θ) = 25
[
1 + tan2(θ)

]
= 25 sec2(θ)

so that
√

25 + x2 =
√

25 sec2(θ) = 5 sec(θ) and the integral becomes:∫ 1√
25 + x2

dx =
∫ 1

5 sec(θ)
· 5 sec2(θ) dθ =

∫
sec(θ) dθ

which is an integral we already know how to evaluate. ◀

Practice 2. Use x = 5 sin(θ) to rewrite the integral
∫ 1√

25 − x2
dx.

Step 3: Find an antiderivative of the new integrand
After changing the variable, the new integrand typically involves

products of powers of trigonometric functions and we can use any of
our previous methods (another change of variable, integration by parts,
a trigonometric identity or integral tables) to find an antiderivative.
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Step 4: Rewrite this antiderivative in terms of the original variable
Once we have found an antiderivative, usually involving a trigono-

metric function of θ, we can replace θ with the appropriate inverse
trigonometric function of x and simplify. Because the antiderivatives
commonly contain trigonometric functions, we frequently need to sim-
plify a trigonometric function of an inverse trigonometric function, and
at this stage it is often very helpful to refer back to the right triangle we
used at the beginning of the substitution process.

Example 3. Evaluate
∫ 1√

25 + x2
dx.

Solution. In Example 2 we used the substitution x = 5 tan(θ) to con-
vert this integral to:∫ 1√

25 + x2
dx =

∫
sec(θ) dθ = ln (|sec(θ) + tan(θ)|) + C

We now need to rewrite sec(θ) and tan(θ) in this antiderivative in terms
of x using the fact that θ = arctan

( x
5

)
:

ln
(∣∣∣sec

(
arctan

( x
5

))
+ tan

(
arctan

( x
5

))∣∣∣)+ C

Referring to the right triangle for this substitution (see margin):

sec
(

arctan
( x

5

))
=

√
25 + x2

5
and tan

(
arctan

( x
5

))
=

x
5

so, putting all of these pieces together:

∫ 1√
25 + x2

dx = ln

(√
25 + x2

5
+

x
5

)
+ C

As always, we can check that this is indeed an antiderivative of the
original integrand by differentiating. ◀

Where did the absolute value signs go?
Because:

− x
5
≤
∣∣∣ x

5

∣∣∣ = √
x2

5
<

√
x2 + 25

5

we know that:
√

x2 + 25
5

+
x
5
> 0

Practice 3. Evaluate
∫ 1

x2
√

9 − x2
dx.

Variations on a Theme

While we will typically apply trigonometric substitution to integrands
involving radicals of the form

√
a2 + x2,

√
a2 − x2 or

√
x2 − a2, we can

adapt this technique for more general integrands by incorporating other
methods, such as u-substitution and completing the square.

Example 4. Evaluate
∫ 1√

x2 + 2x + 26
dx.
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Solution. The polynomial inside the radical in this integrand is an
irreducible quadratic so — just as we did with rational functions — we
can complete the square:

x2 + 2x + 26 = (x + 1)2 + 25

and next use the substitution u = x + 1 ⇒ du = dx:∫ 1√
x2 + 2x + 26

dx =
∫ 1√

(x + 1)2 + 52
dx =

∫ 1√
u2 + 52

du

The integrand is now ready for a trigonometric substitution. In fact,
this resembles the integral in Example 3, so:

∫ 1√
u2 + 52

du = ln

(√
25 + u2

5
+

u
5

)
+ C

= ln
(√

25 + u2 + u
)
+ C − ln(5)

= ln
(√

25 + (x + 1)2 + (x + 1)
)
+ K

or ln
(

x + 1 +
√

x2 + 2x + 26
)
+ K. ◀

Here we employ the logarithmic identity:

ln
(

A
B

)
= ln(A)− ln(B)

We could have made a similar simplifica-
tion in Example 3.

Wrap-up

When using trig substitution, remember to think triangles. The first
and last steps (choosing the substitution and writing the answer in
terms of x) are much easier if you have drawn the appropriate triangle
for the problem. Of course, you also need to practice the method.

8.4 Problems

In Problems 1–8, determine the appropriate substi-
tution for the given integrand.

1.
√

49 − x2
2.
√

x2 − 36

3.
(

81 + x2
) 5

2 4.
√

8 + x2

5.
√

x2 − 7 6.
√

99 − x2

7.
1

x
√

100 − x2
8.

1

x2
√

x2 − 100

In Problems 9–14, make the given substitution and
simplify the result, then calculate dx.

9. x = 3 · sin(θ) in
1√

9 − x2

10. x = 3 · tan(θ) in
1√

x2 + 9

11. x = 3 · sec(θ) in
1√

x2 − 9

12. x = 6 · sin(θ) in
1

36 − x2
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13. x =
√

2 · tan(θ) in
1√

2 + x2

14. x = sec(θ) in
1√

x2 − 1
In Problems 13–18, (a) solve for θ as a function of x,
(b) replace θ in f (θ) with you result from part (a),
and (c) simplify.

15. x = 3 · sin(θ), f (θ) = cos(θ) · tan(θ)

16. x = 3 · tan(θ), f (θ) = sin(θ) · tan(θ)

17. x = 3 · sec(θ), f (θ) =
√

1 + sin2(θ)

18. x = 5 · sin(θ), f (θ) =
cos(θ)

1 + sec(θ)

19. x = 5 · tan(θ), f (θ) =
cos2(θ)

1 + cot(θ)

20. x = 5 · sec(θ), f (θ) = cos(θ) + 7 · tan2(θ)

In Problems 21–44, evaluate the integral. (More than
one method works for some of the integrals.)

21.
∫ 1

x
√

9 − x2
dx 22.

∫ x2
√

9 − x2
dx

23.
∫ 1√

x2 + 49
dx 24.

∫ 1√
x2 + 1

dx

25.
∫ √

36 − x2 dx 26.
∫ √

1 − 36x2 dx

27.
∫ 1√

36 + x2
dx 28.

∫ 1

x
√

25 − x2
dx

29.
∫ x2

√
49 − x2

dx 30.
∫ √

25 − x2

x2 dx

31.
∫ x√

25 − x2
dx 32.

∫ 1
x2 + 49

dx

33.
∫ x

x2 + 49
dx 34.

∫ 1
49x2 + 25

dx

35.
∫ 1

(x2 − 9)
3
2

dx 36.
∫ 1

(4x2 − 1)
3
2

dx

37.
∫ 5

2x
√

x2 − 25
dx 38.

∫ 1

x
√

3 − x2
dx

39.
∫ 1

25 − x2 dx 40.
∫ 1

a2 + x2 dx

41.
∫ 1√

a2 + x2
dx 42.

∫ 1

x
√

a2 + x2
dx

43.
∫ 1

x2
√

a2 + x2
dx 44.

∫ 1

(a2 + x2)
3
2

dx

In Problems 45–50, complete the square and make
an appropriate substitution (as necessary), then eval-
uate the integral.

45.
∫ 1√

(x + 1)2 + 9
dx 46.

∫ 1√
(x + 3)2 + 1

dx

47.
∫ 1

x2 + 10x + 29
dx 48.

∫ 1
x2 − 4x + 13

dx

49.
∫ 1√

x2 + 4x + 3
dx 50.

∫ 1√
x2 − 6x − 16

dx

51. The integral
∫ 1

(x2 + 1)2 dx arises when finding

antiderivatives using partial fractions.

(a) Evaluate this integral using an appropriate
trigonometric substitution.

(b) Now evaluate it using integration by parts.

(c) Which method is easier?

52. Evaluate
∫ 1

(x2 − 8x + 25)2 dx.

53. Evaluate
∫ 8x

(x2 + 25)2 dx.
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8.4 Practice Answers

1. For the pattern 25 + x2, use x = 5 · tan(θ) ⇒ dx = 5 · sec2(θ) dθ,

while θ = arctan
( x

5

)
and:

25 + x2 = 25 + 25 tan2(θ) = 25
[
1 + tan2(θ)

]
= 25 sec2(θ)

For x2 − 13, use x =
√

13 sec(θ) ⇒ dx =
√

13 sec(θ) · tan(θ) dθ,

while θ = arcsec
(

x√
13

)
and:

x2 − 13 = 13 sec2(θ)− 13 = 13
[
sec2(θ)− 1

]
= 13 tan2(θ)

2. x = 5 sin(θ) ⇒ dx = 5 cos(θ) dθ, while θ = arcsin
( x

5

)
so:

25 − x2 = 25
[
1 − sin2(θ)

]
= 25 cos2(θ)

and the integral becomes:∫ 1√
25 − x2

dx =
∫ 1√

25 cos2(θ)
· 5 cos(θ) dθ =

5
5

∫ cos(θ)
cos(θ)

dθ

=
∫

1 dθ = θ + C = arcsin
( x

5

)
+ C

3. Use x = 3 sin(θ) ⇒ dx = 3 cos(θ) dθ while θ = arcsin
( x

2

)
and:

9 − x2 = 9
[
1 − sin2(θ)

]
= 9 cos2(θ)

Then the integral becomes:∫ 1

x2
√

9 − x2
dx =

∫ 1
9 sin2(θ)

√
9 cos2(θ)

· 3 cos(θ) dθ

=
∫ 3 cos(θ)

27 sin2(θ) cos(θ)
dθ =

1
9

∫
csc2(θ) dθ

= −1
9

cot(θ) + C = −1
9

cot
(

arcsin
( x

2

))
+ C

= −1
9
·
√

9 − x2

x
+ C
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