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9.4 Geometric and Harmonic Series

This section investigates three special types of series. Geometric series
appear throughout mathematics and arise in a variety of applications.
Much of the early work in the 17th century with series focused on
geometric series and generalized them. And many of the ideas used
later in this chapter (and into the next) originated with geometric series.
It is very easy to determine whether a geometric series converges or
diverges — and when one does converge, we can easily find its sum.

The harmonic series is important as an example of a divergent series
whose terms approach 0.

The last part of this section briefly discusses a third type of series,
called “telescoping”: these are relatively uncommon, but their partial
sums exhibit a particularly nice pattern.

Geometric Series

Example 1. Your friend throws a “super ball" 10 feet straight up into
the air. On each bounce, it rebounds to 80% of its previous height (see
margin) so the sequence of heights the ball attains is 10 feet, 8 feet, 6.4
feet, 5.12 feet, and so on.

(a) How far does the ball travel (up and down) during its n-th bounce?

(b) Use a sum to represent the total distance traveled by the ball.

Solution. (a) Because the ball travels up and down on each bounce,
the distance traveled during each bounce is twice the height the
ball attains on that bounce. So the distance the ball travels prior to
its first bound is d1 = 2 (10 feet) = 20 feet, the distance it travels
between the first and second bounces is d2 = (0.8)(20) = 16 feet,
d3 = (0.8)(16) = 12.8 feet and, in general, dn = 0.8dn−1 . Looking
at these values in another way:

d1 = 20, d2 = 0.8(20), d3 = (0.8)d2 = (0.8)2(20), d4 = (0.8)3(20)

and, in general, dn = (0.8)n−1(20).

(b) In theory, the ball bounces up and down forever, and the total
distance traveled by the ball is the sum of the distances traveled
during each bounce (an up-and-down flight):

20 + (0.8)(20) + (0.8)2(20) + (0.8)3(20) + (0.8)4(20) + · · ·

= 20
[
1 + 0.8 + (0.8)2 + (0.8)3 + (0.8)4 + · · ·

]
= 20 ·

∞

∑
k=0

(0.8)k

(In practice, the ball will eventually top bouncing.) ◀
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Practice 1. Three calculus students want to share a small square cake
equally, but they go about it in a rather strange way. First they cut the
cake into four equal square pieces, then each person takes one square,
leaving one square (see margin). Then they cut the leftover square piece
into four equal square pieces, each person takes one square, leaving
one square. And they keep repeating this process.

(a) What fraction of the total cake does each student “eventually” eat?

(b) Represent the amount of cake each person gets as an infinite series.

The infinite series in the previous Example and Practice problems
are both geometric series, a type of series in which each term is a fixed
multiple of the previous term. Geometric series have the form:

∞

∑
k=0

C · rk = C + C · r + C · r2 + C · r3 + · · ·

= C
[
1 + r + r2 + r3 + · · ·

]
= C ·

∞

∑
k=0

rk

with C ̸= 0 and r ̸= 0 representing fixed numbers. Each term in the
series is r times the previous term. Geometric series are among the
most common series we will encounter, and among the easiest to work
with. A simple test determines whether a geometric series converges,
and we can even determine the sum of any convergent geometric series.

Geometric Series Theorem

The geometric series
∞

∑
k=0

rk = 1 + r + r2 + r3 + · · ·

• converges to
1

1 − r
if |r| < 1

• diverges if |r| ≥ 1

If |r| < 1, then lim
k→∞

rk = 0, so the Test for

Divergence says that
∞

∑
k=0

rk may or may

not converge.

Proof. If |r| = 1, then lim
k→∞

∣∣rk∣∣ = 1; if |r| > 1, then lim
k→∞

∣∣rk∣∣ = ∞. Either

way, lim
k→∞

rk ̸= 0, so
∞

∑
k=0

rk diverges by the Test for Divergence.

Examining the partial sums sn = 1 + r + r2 + r3 + · · · + rn of the
geometric series when |r| < 1, a clever insight allows us to find a simple
formula for those partial sums:

(1 − r) · sn = (1 − r) ·
(

1 + r + r2 + r3 + · · ·+ rn
)

=
(

1 + r + r2 + r3 + · · ·+ rn
)
− r ·

(
1 + r + r2 + r3 + · · ·+ rn

)
=
(

1 + r + r2 + r3 + · · ·+ rn
)
−
(

r + r2 + r3 + · · ·+ rn + rn+1
)

= 1 − rn+1
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Because |r| < 1, we know that r ̸= 1 so that 1 − r ̸= 0, meaning we can
divide the preceding equality by 1 − r to get:

sn = 1 + r + r2 + r3 + · · ·+ rn =
1 − rn+1

1 − r

Because |r| < 1, lim
n→∞

rn+1 = 0, so we can conclude that:

∞

∑
k=0

rk = lim
n→∞

n

∑
k=0

rk = lim
n→∞

sn = lim
n→∞

1 − rn+1

1 − r
=

1
1 − r

giving a formula for the sum of any (convergent) geometric series.

This formula for the n-th partial sum of
a geometric series is sometimes useful; at
the moment, we are interested in lim

n→∞
sn.

More generally, for any C ̸= 0 and any r with |r| < 1 we can write:
∞

∑
k=0

C · rk =
C

1 − r

allowing us to quickly find the sum of any convergent geometric series.

Example 2. How far did the ball in Example 1 travel?

Solution. In Example 1, we expressed the total distance the ball travels
as a geometric series, so:

20 ·
∞

∑
k=0

(0.8)k = 20 · 1
1 − 0.8

=
20
0.2

= 100

so the ball (theoretically) travels a total distance of 100 feet. ◀

Repeating decimal numbers are really geometric series in disguise,
so we can now represent their exact values as fractions.

Example 3. Represent the repeating decimals 0.4 and 0.13 as geometric
series and find their sums.

Solution. We can rewrite 0.4 = 0.444 . . . as:

0.444 . . . =
4

10
+

4
100

+
4

1000
+ · · · = 4

10
+

4
102 +

4
103 + · · ·

=
4

10

[
1 +

1
10

+
1

102 + · · ·
]
=

4
10

·
∞

∑
k=0

(
1

10

)k

=
4

10
· 1

1 − 1
10

=
4

10
· 1

9
10

=
4

10
· 10

9
=

4
9

so 0.4 = 4
9 . Proceeding similarly with 0.13 = 0.131313 . . .:

0.131313 . . . =
13

100
+

13
10000

+
13

1000000
+ · · · = 13

100
+

13
1002 +

13
1003 + · · ·

=
13

100

[
1 +

1
100

+
1

1002 + · · ·
]
=

13
100

·
∞

∑
k=0

(
1

100

)k

=
13

100
· 1

1 − 1
100

=
13
100

· 1
99

100
=

13
100

· 100
99

=
13
99

so we can express 0.13 as 13
99 . ◀
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Practice 2. Represent the repeating decimals 0.3 and 0.432 as geometric
series and find their sums.

Replacing the number r with an expression involving x allows us to
create a function defined as an infinite series.

Example 4. Given the functions f (x) =
∞

∑
k=0

3xk = 3 + 3x + 3x2 + · · ·

and g(x) =
∞

∑
k=0

(2x − 5)k = 1 + (2x − 5) + (2x − 5)2 + · · · , find the

domains of each function (that is, determine the values of x for which
each infinite series converges).

Solution. We know that a geometric series converges if and only if
|r| < 1, and the series defining f (x) has ratio r = x, so it converges if
and only if |x| < 1. The sum of this first series is:

f (x) =
∞

∑
k=0

3xk = 3 ·
∞

∑
k=0

xk = 3 · 1
1 − x

=
3

1 − x

provided that |x| < 1, or, equivalently, that −1 < x < 1. Notice that the

domain of the function
3

1 − x
consists of all real numbers except x = 1,

but that
∞

∑
k=0

3xk converges only when −1 < x < 1, so f (x) =
3

1 − x
holds only on the interval (−1, 1).

In the series defining g(x), the ratio is r = 2x − 5 so the series
converges if and only if |2x − 5| < 1. Removing the absolute values
and solving for x, we get:

|2x − 5| < 1 ⇒ −1 < 2x − 5 < 1 ⇒ 2 < x < 3

so this second series converges precisely on the interval (2, 3). The sum
of the second series is:

g(x) =
∞

∑
k=0

(2x − 5)k =
1

1 − (2x − 5)
=

1
6 − 2x

as long as 2 < x < 3. ◀

Practice 3. Given F(x) =
∞

∑
k=0

(2x)k and G(x) =
∞

∑
k=0

(3x − 4)k, deter-

mine the values of x for which these series converge.

We call the type of series in the previous Example and Practice
problems “power series” because they involve powers of the variable
x. In the next chapter, we will embark on an extensive investigation of
other power series, including many non-geometric series, such as:

1 + x +
1
2

x2 +
1
3

x3 + · · ·

For each power series we will attempt to determine the values of x for
which the series is guaranteed to converge.

These series are extensions of the
MacLaurin polynomials from Section 8.7
to “infinite polynomials” with an unlim-
ited number of terms.
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The Harmonic Series:
∞

∑
k=1

1
k

The series
∞

∑
k=1

1
k

ranks among the best-known and most important

divergent series. We call it the harmonic series because of its ties to
music (see the discussion following the Practice Answers for additional

background). Because lim
k→∞

1
k

= 0, the Test for Divergence tells us

nothing about the convergence or divergence of this series. Calculating
partial sums of the harmonic series (see margin table) reveals that the
partial sums sn increase very, very slowly. By taking n ≈ 2, 000, 000,
we can make sn > 15, but does it ever exceed 16? The answer to that
question turns out to be “yes,” but in our examination of the divergence
of the harmonic series, brain power will prove to be much more effective
than lots and lots of computing power.

n sn

31 4.0224519544
83 5.00206827268

227 6.00436670835
1, 674 8.00048557200

12, 367 10.00004300827
1, 835, 421 15.00000378267

Theorem:

The harmonic series
∞

∑
k=1

1
k
= 1 +

1
2
+

1
3
+

1
4
+ · · · diverges.

This proof is essentially due to Oresme
in 1360 (more than three centuries be-
fore Newton’s birth). In 1821, Cauchy
included Oresme’s proof in his Course in
Analysis, after which it became known as
“Cauchy’s argument.”

Proof. Assume the harmonic series converges, and let S be its sum:

S =
∞

∑
k=1

1
k
= 1 +

1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
+ · · ·

Next, group the terms of the series as indicated by the brackets:

S = 1 +
1
2
+

[
1
3
+

1
4

]
+

[
1
5
+

1
6
+

1
7
+

1
8

]
+

[
1
9
+

1
10

+
1
11

+
1

12
+

1
13

+
1

14
+

1
15

+
1
16

]
+ · · ·

so each set of brackets includes twice as many terms as the previous
set. Notice that:

1
3
+

1
4
>

1
4
+

1
4
=

2
4
=

1
2

Looking at the next set of terms:

1
5
+

1
6
+

1
7
+

1
8
>

1
8
+

1
8
+

1
8
+

1
8
=

4
8
=

1
2

The sum of the terms in the next set of brackets exceeds 8
16 = 1

2 , the
sum after that exceeds 16

32 = 1
2 , and so on. We can therefore write:

S > 1 +
1
2
+

1
2
+

1
2
+

1
2
+ · · ·

By adding enough sets of terms, you can make this lower bound for S
arbitrarily large: S cannot be finite, so the harmonic series diverges.
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The harmonic series provides an example of a divergent series whose

terms, ak =
1
k

, approach 0. Any geometric series with |r| < 1 pro-
vides an example of a convergent series whose terms approach 0. This
illustrates why the Test for Divergence says that a series with terms
approaching 0 may or may not converge.

The Test for Divergence is typically a
good first step when investigating the
converge or divergence of an infinite se-
ries, but merely works as a “screening
test” to identify certain series that defi-
nitely diverge.

Telescoping Series

During the 17th and 18th centuries, sailors used telescopes (see margin)
that could be extended for viewing and collapsed for storage. Telescop-
ing series get their name because they exhibit a similar “collapsing”
property. Telescoping series arise infrequently, but they are easy to
analyze and it can be useful to recognize them.

Example 5. Determine a formula for the partial sum sn of the series
∞

∑
k=1

[
1
k
− 1

k + 1

]
and then compute lim

n→∞
sn.

Solution. It is tempting to rewrite the formula for ak as a single fraction,
but the pattern becomes clearer if you begin writing out all of the terms:

s1 =

[
1 − 1

2

]
= 1 − 1

2

s2 =

[
1 − 1

2

]
+

[
1
2
− 1

3

]
= 1 − 1

3

s3 =

[
1 − 1

2

]
+

[
1
2
− 1

3

]
+

[
1
3
− 1

4

]
= 1 − 1

4

In these partial sums, all terms cancel except the first and last terms, so
we can write:

sn =

[
1 − 1

2

]
+

[
1
2
− 1

3

]
+

[
1
3
− 1

4

]
+ · · ·+

[
1
n
− 1

n + 1

]
= 1 − 1

n + 1

It should now be obvious that lim
n→∞

sn = 1 so that the original series

converges and equals 1. ◀

Practice 4. Find the sum of the series
∞

∑
k=3

[
sin
(

1
k

)
− sin

(
1

k + 1

)]
.

9.4 Problems

In Problems 1–12, calculate the value of the sum or
explain why the series diverges.

1.
∞

∑
k=0

(
2
7

)k
2.

∞

∑
k=0

(
4
7

)k
3.

∞

∑
k=0

(
−4

7

)k

4.
∞

∑
k=0

(
−2

7

)k
5.

∞

∑
k=1

(
2
7

)k
6.

∞

∑
k=2

(
4
7

)k

7.
∞

∑
k=3

(
−7

4

)k
8.

∞

∑
k=4

(
−7

2

)k
9.

∞

∑
k=5

(
−2

7

)k
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10.
∞

∑
k=0

( e
3

)k
11.

∞

∑
k=0

(π

3

)k
12.

∞

∑
k=0

( e
π

)k

In Problems 13–18, rewrite each geometric series
using sigma notation, then compute the sum.

13. 1 +
1
3
+

1
9
+

1
27

+ · · · 14. 1 +
2
3
+

4
9
+

8
27

+ · · ·

15.
1
8
+

1
16

+
1
32

+
1

64
+ · · ·

16. 1 − 1
2
+

1
4
− 1

8
+ · · ·

17. −2
3
+

4
9
− 8

27
+

16
81

− · · ·

18. 1 +
1
e
+

1
e2 +

1
e3 + · · ·

19. Show that:

(a)
1
2
+

1
4
+

1
8
+ · · · = 1

(b)
1
3
+

1
9
+

1
27

+ · · · = 1
2

(c)
1
a
+

1
a2 +

1
a3 + · · · = 1

a − 1
(for a > 1)

20. You throw a ball 10 feet straight up into the air,
and on each bounce it rebounds to 60% of its
previous height.

(a) How far does the ball travel (up and down)
during its n-th bounce?

(b) Use an infinite sum to represent the total dis-
tance traveled by the ball.

(c) Find the total distance traveled by the ball.

21. Your friend throws an old tennis ball 20 feet
straight up into the air, and on each bounce it
rebounds to 40% of its previous height.

(a) How far does the ball travel (up and down)
during its n-th bounce?

(b) Use an infinite sum to represent the total dis-
tance traveled by the ball.

(c) Find the total distance traveled by the ball.

22. Eighty people embark on an expedition by horse-
back through desolate country. The people and
their gear require 90 horses, with additional
horses needed to carry food for the original 90

horses. Each additional horse can carry enough
food to feed three horses for the trip. How many
total horses are needed for the trip?

23. Your friend follows a mathematical diet that says
he can eat “half of whatever is on the plate,” so
he bites off half of a cake and puts the other half
back on the plate. Then he picks up the remain-
ing half from the plate (it’s “on the plate”), bites
off half of that and returns the rest to the plate.
He continues this silly process of picking up the
remaining piece from the plate, biting off half,
and returning the rest to the plate.

(a) Use an infinite sum to represent the total
amount of cake he eats.

(b) How much cake is left after one bite? Two
bites? n bites?

(c) “Eventually,” how much does he eat?

24. As indicated in the figure below left, begin with
a square with sides of length 1 (so its area is 1).
Construct another square inside the first one by
connecting the midpoints of the sides of the first
square, so the new square has area 1

2 . Continue
this process of constructing each new square by
connecting the midpoints of the sides of the pre-
vious square to get a sequence of squares, each
of which has half the area of the previous square.
Find the total area of all of the squares.

25. As indicated in the figure above right, begin with
a triangle with area 1. Construct another triangle
inside the first triangle by connecting the mid-
points of the sides of the first triangle, so this
new triangle will have area 1

4 . Imagine that you
continue this construction process “forever” and
find the total area of all of the triangles.

26. Begin with a circle of radius 1. Construct two
more circles inside the first one, each with radius
1
2 . Continue this process “forever,” constructing
two new circles inside each previous circle (see
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below left). Find the total area of all the circles.

27. Swedish mathematician Helge von Koch (1870-
1924) described one of the earliest examples of
a fractal, now known as the Koch snowflake.
Beginning with an equilateral triangle of area
1 (above right), subdivide each edge into three
equal lengths, then build three equilateral trian-
gles, each with area 1

9 , on the “middle thirds” of
sides of the original triangle, adding a total of
3 · 1

9 = 1
3 to the original area (below left). Now

repeat this process: at the next stage, build 3 · 4
equilateral triangles, each with area 1

81 on the new
“middle thirds,” adding 3 · 4 · 1

81 to the total area.

(a) Find the total area that results when you repeat
this process “forever.”

(b) Express the perimeter of the Koch Snowflake
as a geometric series and find its sum.

28. The base of a “harmonic tower” is a cube with
edges one foot long. Sitting on top of the bases
are cubes with edges of length 1

2 , 1
3 , 1

4 and so on.

(a) Represent the total height of the tower as a
series. Is the height finite?

(b) Represent the total surface area of the cubes as
an infinite series.

(c) Represent the total volume of the cubes as an
infinite series.

(See below left for a picture of the harmonic tower.
In the next section, we will be able to determine
whether its surface area and volume are finite or
infinite.)

29. The base of a tower is a sphere with radius one
foot. On top of each sphere sits another sphere
with a radius half the radius of the sphere imme-
diately beneath it (as in the figure above right).

(a) Represent the total height of the tower as a
series and evaluate the sum.

(b) Represent the total surface area of the spheres
as an infinite series and evaluate the sum.

(c) Represent the total volume of the spheres as
an infinite series and evaluate the sum.

30. Represent the repeating decimals 0.6 and 0.63 as
geometric series and express the value of each
series as a fraction in lowest terms.

31. Represent the repeating decimals 0.8, 0.9 and
0.285714 as geometric series and express the value
of each series as a fraction in lowest terms.

32. Represent the repeating decimals 0.a, 0.ab and
0.abc as geometric series and express the value
of each series as a fraction. What do you think a
fractional representation for 0.abcd would be?

In Problems 33–44, find all values of x for which the
geometric series converges.

33.
∞

∑
k=1

(2x + 1)k
34.

∞

∑
k=1

(3 − x)k
35.

∞

∑
k=1

(1 − 2x)k
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36.
∞

∑
k=1

5xk
37.

∞

∑
k=1

(7x)k
38.

∞

∑
k=1

( x
3

)k

39. 1 +
x
2
+

x2

4
+

x3

8
+ · · ·

40. 1 +
2
x
+

4
x2 +

8
x3 + · · ·

41. 1 + 2x + 4x2 + 8x3 + · · ·

42.
∞

∑
k=1

(
2x
3

)k
43.

∞

∑
k=1

sink(x) 44.
∞

∑
k=1

ekx

45. A student thought she remembered the formula
for a geometric series as:

1 + x + x2 + x3 + · · · = 1
1 − x

Her friend said, “That can’t be right. If we replace
x with 2, then the formula says the sum of the
positive numbers 1+ 2+ 4+ 8+ · · · is a negative
number: 1

1−2 = −1.” Who was right? Why?

46. If you have many identical 1-foot-long boards,
you can arrange them so that they hang over the
edge of a table. One board can extend 1

2 foot
beyond the edge, two boards can extend 1

2 + 1
4

feet and, in general, n boards can extend:

1
2
+

1
4
+

1
6
+ · · ·+ 1

2n
feet beyond the edge (see below).

(a) How many boards do you need for an arrange-
ment in which the entire top board sits beyond
the edge of the table?

(b) How many boards do you need for an arrange-
ment in which the entire top two boards sit
beyond the edge of the table?

(c) How far can any such arrangement extend be-
yond the edge of the table?

In Problems 47–52, compute the value of the partial
sums s4 and s5 for the given series, then find a for-
mula for sn. (The patterns may be more obvious if
you do not simplify each term.)

47.
∞

∑
k=3

[
1
k
− 1

k + 1

]

48.
∞

∑
k=1

[
cos

(
1
k

)
− cos

(
1

k + 2

)]

49.
∞

∑
k=1

[
k3 − (k + 1)3

]
50.

∞

∑
k=1

[
ln
(

k
k + 1

)]

51.
∞

∑
k=1

[ f (k)− f (k + 1)] 52.
∞

∑
k=1

[g(k)− g(k + 1)]

In 53–56, compute s4 and s5 for each series and then
lim

n→∞
sn. (If the limit is a finite value, it represents

the value of the corresponding infinite series.)

53.
∞

∑
k=1

[
sin
(

1
k

)
− sin

(
1

k + 1

)]

54.
∞

∑
k=2

[
cos

(
1
k

)
− cos

(
1

k + 1

)]

55.
∞

∑
k=2

[
1
k2 − 1

(k + 1)2

]
56.

∞

∑
k=3

ln
(

1 − 1
k2

)

Problems 57–58 outline two “proofs by contradic-
tion” that the harmonic series diverges. Each proof
begins with the assumption that the “sum” of the
harmonic series is a finite number and then obtains
an obviously false conclusion based on this assump-
tion. Verify that each step follows from the assump-
tion and the previous steps, then explain why the
conclusion is false.
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57. Assume that H = 1 + 1
2 + 1

3 + 1
4 + 1

5 + · · · is a fi-
nite number. Let O = 1 + 1

3 +
1
5 + · · · be the sum

of the “odd reciprocals” and E = 1
2 +

1
4 +

1
6 + · · ·

be the sum of the “even reciprocals.” Then:

• H = O + E

• each O term > the corresponding E term

• O > E

• E = 1
2

[
1 + 1

2 + 1
3 + 1

4 + 1
5 + · · ·

]
= 1

2 H

• H = O + E > 2E > 2 · H > H

58. Assume that H = 1 + 1
2 + 1

3 + 1
4 + 1

5 + · · · is a
finite number. Starting with the second term,
group the terms into groups of three. Using:

1
n − 1

+
1
n
+

1
n + 1

>
3
n

(show this inequality is true) conclude that:

H = 1 +
[

1
2
+

1
3
+

1
4

]
+

[
1
5
+

1
6
+

1
7

]
+ · · ·

> 1 + [1] +
[

1
2

]
+

[
1
3

]
+ · · ·

= 1 +
[

1 +
1
2
+

1
3
+ · · ·

]
= 1 + H

so that H > 1 + H.

59. Jacob Bernoulli (1654–1705) was a master of un-
derstanding and manipulating series by breaking
a difficult series into easier pieces. In his 1713

book Ars Conjectandi, he used such a technique to
find the sum of the non-geometric series:

∞

∑
k=1

k
2k =

1
2
+

2
4
+

3
8
+

4
16

+
5
32

+ · · ·

Show that you can write:

1
2
+

1
4
+

1
8
+

1
16

+
1

32
+ · · ·+ 1

2n + · · · = b1

1
4
+

1
8
+

1
16

+
1

32
+ · · ·+ 1

2n + · · · = b2

1
8
+

1
16

+
1

32
+ · · ·+ 1

2n + · · · = b3

1
16

+
1

32
+ · · ·+ 1

2n + · · · = b4

and so forth, so that
∞

∑
k=1

k
2k =

∞

∑
n=1

bn. Find the

values of the geometric series bn, and then find
∞

∑
n=1

bn (which will be another geometric series).

60. We can also interpret Bernoulli’s approach in the
previous problem as a geometric argument for
representing the area of an infinitely long region
in two different ways.

(a) Represent the total area in the figure below
as a (geometric) sum of areas of side-by-side
rectangles, then find the sum of the series.

(b) Represent the total area of the stacked rectan-
gles in the figure below as a sum of the areas
of the horizontal slices.

(c) Explain why the series must be equal.

61. Use the approach of Problem 59 to find:

(a) the value of the non-geometric series:

∞

∑
k=1

k
3k =

1
3
+

2
9
+

3
27

+
4

81
+ · · ·

(b) a formula (when c > 1) for the value of:

∞

∑
k=1

k
ck =

1
c
+

2
c2 +

3
c3 +

4
c4 + · · ·
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9.4 Practice Answers

1. (a) Because each student gets an equal share, and because they
eventually eat all of the cake, they each get 1

3 of the cake. More
precisely, after first first step, 1

4 of the cake remains, with 3
4 having

been eaten by the students. After the second step,
(

1
4

)2
of the

cake remains, with 1 −
(

1
4

)2
having been eaten. After the n-th

step,
(

1
4

)n
of the cake remains, with 1 −

(
1
4

)n
having been eaten.

So after the n-th step, each student has eaten 1
3

[
1 −

(
1
4

)n]
of the

cake. “Eventually,” each student gets (almost) 1
3 of the cake.

(b) As an infinite series each person gets:

1
4
+

(
1
4

)2
+

(
1
4

)3
+

(
1
4

)4
+ · · · =

∞

∑
k=1

(
1
4

)k

2. We can rewrite 0.3 = 0.333 . . . as:

3
10

+
3

100
+

3
1000

=
3

10

[
1 +

1
10

+
1

100
+

1
1000

+ · · ·
]

=
3

10

[
1 +

1
10

+
1

102 +
1

103 + · · ·
]

which is a geometric series with C = 3
10 and r = 1

10 . Because
|r| = 1

10 < 1, the series converges to:

C
1 − r

=
3

10

1 − 1
10

=
3

10
9

10
=

3
9
=

1
3

Similarly, we can rewrite 0.432 = 0.432432432 . . . as:

432
1000

+
432

1000000
+

432
1000000000

=
432
1000

[
1 +

1
1000

+
1

1000000
+ · · ·

]
=

432
1000

[
1 +

1
1000

+
1

10002 + · · ·
]

which is a geometric series with C = 432
1000 and r = 1

1000 . Becasue
|r| = 1

1000 < 1, the series converges to:

C
1 − r

=
432

1000

1 − 1
1000

=
432

1000
999

1000
=

432
999

=
16
37

3. The ratio for F(x) is r = 2x, so for the series to converge we need:

|2x| < 1 ⇒ −1 < 2x < 1 ⇒ −1
2
< x <

1
2
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The series
∞

∑
k=0

(2x)k therefore converges to
1

1 − 2x
when −1

2
< x <

1
2

.

For G(x), the ratio is r = 3x − 4, so we need:

|3x − 4| < 1 ⇒ −1 < 3x − 4 < 1 ⇒ 3 < 3x < 5 ⇒ 1 < x <
5
3

The series
∞

∑
k=0

(3x − 4)k converges to
1

1 − (3x − 4)
=

1
5 − 3x

when

1 < x <
5
3

.

4. Let sn =
n

∑
k=3

[
sin
(

1
k

)
− sin

(
1

k + 1

)]
so that:

sn =

[
sin
(

1
3

)
− sin

(
1
4

)]
+

[
sin
(

1
4

)
− sin

(
1
5

)]
+

[
sin
(

1
5

)
− sin

(
1
6

)]
+ · · ·+

[
sin
(

1
n

)
− sin

(
1

n + 1

)]
=

[
sin
(

1
3

)
− sin

(
1

n + 1

)]
allowing us to see that lim

n→∞
sn = sin

(
1
3

)
and hence:

∞

∑
k=3

[
sin
(

1
k

)
− sin

(
1

k + 1

)]
= sin

(
1
3

)
≈ 0.327

Background on the Harmonic Series

A taut piece of string, such as a guitar string or piano wire, can only
vibrate in such a way that it forms an integer number of waves. The
fundamental mode determines the note being played, while the number
and intensity of the harmonics (overtones) determine the characteristic
quality of the sound. Because of these characteristic qualities, a listener
can distinguish between a middle C (264 vibrations per second) played
on a piano versus the same note played on a guitar or clarinet.
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