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9.7 Comparison Tests

In the previous section we compared the value of an infinite sum to the
value of an improper integral and used the convergence or divergence
of the integral to determine whether the series converged or diverged.
In this section, we compare an infinite series to another infinite series
already known to be convergent or divergent in order to determine the
convergence or divergence of the new series. As with the Integral Test,
the methods of this section only apply to series with positive terms.

Basic Comparison Test

Consider the series
∞

∑
k=1

1
k2 and

∞

∑
k=1

1
k2 + 1

. The first series is a p-series

with p = 2 > 1, so we know it converges by the P-Test. The second
series also converges, but it is not a p-series or a geometric series or a
harmonic series, so we need to appeal to the Integral Test. Because:∫ ∞

1

1
x2 + 1

dx = lim
M→∞

∫ M

1

1
1 + x2 dx = lim

M→∞

[
arctan(x)

]M

1

= lim
M→∞

[arctan(M)− arctan(1)] =
π

2
− π

4
=

π

4

the series
∞

∑
k=1

1
k2 + 1

converges as well. Is there an easier way to see

that this second series converges? For large values of k:

k2 + 1 ≈ k2 ⇒ 1
k2 + 1

≈ 1
k2

so we might suspect that the convergence of
∞

∑
k=1

1
k2 and

∞

∑
k=1

1
k2 + 1

are

related even if these series do not converge to the same sum. Consider

a graph of rectangles with areas corresponding to
∞

∑
k=1

1
k2 (see first

margin figure) and another graph with rectangles corresponding to
∞

∑
k=1

1
k2 + 1

(second margin figure). Comparing these graphs, it appears

that
∞

∑
k=1

1
k2 + 1

≤
∞

∑
k=1

1
k2 . For any k ≥ 1 and n ≥ 1:

0 <
1

k2 + 1
<

1
k2 ⇒ 0 <

n

∑
k=1

1
k2 + 1

<
n

∑
k=1

1
k2 ⇒

∞

∑
k=1

1
k2 + 1

≤
∞

∑
k=1

1
k2

Because we know the series on the right in the last inequality converges
(as discussed above), the series on the left, being term-by-term smaller,
should converge as well. The following test formalizes and generalizes
this result.

To be precise, we know that:

n

∑
k=1

1
k2 + 1

≤
n

∑
k=1

1
k2 ≤

∞

∑
k=1

1
k2

holds for all n ≥ 1, so the partial sums
n

∑
k=1

1
k2 + 1

are increasing and bounded

above, hence convergent by the Mono-
tone Convergence Theorem.
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Basic Comparison Test (BCT)

If 0 < dk ≤ ak ≤ ck for all k ≥ 1, then:

•
∞

∑
k=1

ck converges ⇒
∞

∑
k=1

ak converges

•
∞

∑
k=1

dk diverges ⇒
∞

∑
k=1

ak diverges

Proof. If 0 < ak ≤ ck and
∞

∑
k=1

ck converges, then:

sn =
n

∑
k=1

ak ≤
n

∑
k=1

ck ≤
∞

∑
k=1

ck = C

for some finite number C, so the sequence {sn} is bounded above.
Because ak > 0, {sn} is monotonically increasing, so by the Monotone

Converge Theorem {sn} converges, hence
∞

∑
k=1

ak converges.

If 0 < dk ≤ ak and
∞

∑
k=1

dk diverges, then sn =
n

∑
k=1

ak ≥
n

∑
k=1

dk = Dn.

Because dk > 0, {Dn} is monotonically increasing, and because
∞

∑
k=1

dk

diverges, the partial sums Dn must not be bounded above, hence the
bigger partial sums sn (which are also increasing) are not bounded

above and lim
n→∞

sn = ∞ so that
∞

∑
k=1

ak diverges.

The Basic Comparison Test (BCT) also
works when the hypotheses hold for all
k ≥ N for some positive integer N.

It’s important to note what the BCT does

not say: if terms of
∞

∑
k=1

ak are each smaller

than the corresponding terms of a diver-
gent series, or each bigger than the cor-
responding terms of a convergent series,
the BCT does not allow us to conclude
anything about the convergence or diver-

gence of
∞

∑
k=1

ak .

The Basic Comparison Test requires that we compare a given series
to a series whose convergence or divergence we already know. This
requires that we have at our disposal a collection of series that converge
and some that diverge. Often we select a p-series or a geometric series
to compare with the new series, but making this choice quickly requires
some experience and practice.

Example 1. Use the Basic Comparison Test to determine the conver-

gence or divergence of
∞

∑
k=1

1
k2 + 3

and
∞

∑
k=1

k + 1
k2 .

Solution. We can compare each of these series with a p-series for an
appropriate value of p. For the first series:

k2 + 3 > k2 ⇒ 0 <
1

k2 + 3
<

1
k2

holds for all k. We know that
∞

∑
k=1

1
k2 converges (it’s a p-series with

p = 2 > 1), so
∞

∑
k=1

1
k2 + 3

must also converge.
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For the second series, we know that (for all k ≥ 1):

k + 1
k2 >

k
k2 =

1
k
> 0

The harmonic series
∞

∑
k=1

1
k

diverges, so
∞

∑
k=1

k + 1
k2 must also diverge. ◀

Practice 1. Use the Basic Comparison Test to determine the convergence

or divergence of
∞

∑
k=3

1√
k − 2

and
∞

∑
k=1

1
2k + 7

.

Example 2. Your classmate has shown that
1
k2 <

1
k2 − 1

<
1
k

for all

k ≥ 2. Using this information and the Basic Comparison Test, what can

you conclude about the convergence of the series
∞

∑
k=2

1
k2 − 1

?

Solution. Nothing. The Basic Comparison Test only provides a defini-
tive answer about a series if that series is smaller than a convergent
series or larger than a divergent series. In this situation, the series
∞

∑
k=2

1
k2 − 1

is larger than a convergent series,
∞

∑
k=2

1
k2 , and smaller than

a divergent series,
∞

∑
k=2

1
k

, so the Basic Comparison Test does not allow

us to conclude anything about the convergence of
∞

∑
k=2

1
k2 − 1

. ◀

Although the inequalities in the previous Example did not allow us

to determine whether
∞

∑
k=2

1
k2 − 1

converges or diverges, some clever

algebra does allow us to employ the BCT with this series. For k ≥ 2:

k2 ≥ 4 ⇒ 1
4

k2 ≥ 1 ⇒ −1
4

k2 ≤ −1 ⇒ k2 − 1
4

k2 ≤ k2 − 1

⇒ 3
4

k2 ≤ k2 − 1 ⇒
4
3
k2 ≥ 1

k2 − 1

Because
∞

∑
k=2

1
k2 converges, the BCT (together with the above inequality)

tells us that
∞

∑
k=2

1
k2 − 1

must also converge.

We’ve left out some steps here; you
should fill them in.

We could also have applied the Integral Test, which requires the use
of Partial Fraction Decomposition:

∫ ∞

2

1
x2 − 1

dx = lim
M→∞

∫ M

2

[
1
2

x − 1
−

1
2

x + 1

]
dx =

1
2

ln(3)
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to show that the series
∞

∑
k=2

1
k2 − 1

converges, or we could have used the

same partial fraction decomposition to rewrite the series:

∞

∑
k=2

1
k2 − 1

=
1
2

∞

∑
k=2

[
1

k − 1
− 1

k + 1

]
=

1
2

[(
1 − 1

3

)
+

(
1
2
− 1

4

)
+

(
1
3
− 1

5

)
+ · · ·

]
=

3
4

as a telescoping series and show that its sum is 3
4 .

Limit Comparison Test

Consider the three infinite series:

∞

∑
k=2

1
k2 ,

∞

∑
k=2

1
k2 + 1

and
∞

∑
k=2

1
k2 − 1

All of them converge. Showing that the first series converges is easy:
use the P-Test with p = 2 > 1. Because 0 < 1

k2+1 < 1
k2 , it’s relatively

easy to show the second series converges (using the BCT and comparing
it to the first series). The third series looks quite similar to the first two,
but each of the three methods we used in the preceding discussion to
show it converges was rather complicated. There must be a better way!

Limit Comparison Test (LCT)

If ak > 0 and bk > 0 for all k and lim
k→∞

ak
bk

= L where 0 < L < ∞,

then
∞

∑
k=1

ak and
∞

∑
k=1

bk both converge or both diverge.

Proof. If the hypotheses hold and
∞

∑
k=1

bk converges, then, because

lim
k→∞

ak
bk

= L and 0 < L < ∞, there is some integer N so that:

k ≥ N ⇒ ak
bk

≤ L + 1 ⇒ ak ≤ (L + 1)bk

and the Basic Comparison Test then tells us that
∞

∑
k=1

ak converges. If the

hypotheses hold and
∞

∑
k=1

bk diverges, there is some integer N so that:

k ≥ N ⇒ ak
bk

≥ L
2
> 0 ⇒ ak ≥

L
2
· bk

The Basic Comparison Test then tells us that
∞

∑
k=1

ak diverges.
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Example 3. Use the LCT to show that
∞

∑
k=2

1
k2 − 1

converges.

Solution. For k ≥ 2, let ak =
1

k2 − 1
and bk =

1
k2 so ak > 0, bk > 0 and:

lim
k→∞

ak
bk

= lim
k→∞

1
k2−1

1
k2

= lim
k→∞

k2

k2 − 1
= 1

Because 0 < 1 < ∞ and
∞

∑
k=2

1
k2 (a p-series, with p = 2) converges, the

LCT tells us that
∞

∑
k=2

1
k2 − 1

converges. ◀

Practice 2. Use the Limit Comparison Test to show whether the series
∞

∑
k=1

k2 + 5k
k3 + k2 + 7

and
∞

∑
k=3

5√
k4 − 11

converge or diverge.

The Limit Comparison Test allows us to “ignore” some parts of the
terms of a series that cause algebraic difficulties when using the BCT,
but which have no effect on the convergence of the series.

Using “Dominant Terms”

To use the Limit Comparison Test with a new series, we need to find
another, simpler series that we already know converges or diverges to
compare with our new series. When the new series involves a rational
expression, one effective method to find an appropriate simpler series
is ignore everything but the largest power of the variable (the dominant
term) in the numerator and denominator of the new series. The Limit
Comparison Test will then allow us to conclude that the new series
converges if and only if the “dominant term” series converges.

Example 4. For each of series below, form a new series using only the
dominant terms from the numerator and the denominator. Does the
“dominant term” series converge?

(a)
∞

∑
k=3

5k2 − 3k + 2
17 + 2k4 (b)

∞

∑
k=1

1 + 4k√
k3 + 5k

(c)
∞

∑
k=1

k23 + 1
5k10 + k26 + 3

Solution. (a) The dominant terms of the numerator and denominator
are 5k2 and 2k4, respectively, so the “dominant term” series is
∞

∑
k=3

5k2

2k4 =
5
2
·

∞

∑
k=1

1
k2 (a p-series with p = 2), which converges.

(b) The dominant terms are 4k and
√

k3 = k
3
2 , so the “dominant term”

series is
∞

∑
k=1

4k

k
3
2
= 4 ·

∞

∑
k=1

1

k
1
2

(a p-series with p = 1
2 ), which diverges.
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(c) The dominant terms are k23 and k26, so the “dominant term” series

is
∞

∑
k=1

k23

k26 =
∞

∑
k=1

1
k3 ( a p-series with p = 3), which converges.

Using the Limit Comparison Test to compare each of the given series
with their corresponding “dominant term” series, we can conclude that
the first and third converge and that the second diverges. ◀

Practice 3. For each of series below, form a new series using only the
dominant terms from the numerator and the denominator. Does the
“dominant term” series converge? Does the given series converge?

(a)
∞

∑
k=1

3k4 − 5k + 2
1 + 17k2 + 9k5 (b)

∞

∑
k=1

√
1 + 9k

k2 + 5k − 2
(c)

∞

∑
k=1

k25 + 1
5k10 + k26 + 3

Experienced calculus students commonly use “dominant terms” to
make quick and accurate judgments about the convergence or diver-
gence of a series. With practice, so can you.

9.7 Problems

In Problems 1–12, use the Basic Comparison Test to
determine whether the series converges or diverges.

1.
∞

∑
k=1

cos2(k)
k2 2.

∞

∑
k=1

3
k3 + 7

3.
∞

∑
n=3

5
n − 1

4.
∞

∑
k=1

2 + sin(k)
k3

5.
∞

∑
m=1

3 + cos(m)

m
6.

∞

∑
k=1

arctan(k)

k
3
2

7.
∞

∑
k=2

ln(k)
k

8.
∞

∑
k=2

k − 1
k · 1.5k

9.
∞

∑
k=1

k + 9
k · 2k 10.

∞

∑
n=2

n3 + 7
n4 − 1

11.
∞

∑
k=1

1
k!

12.
∞

∑
n=1

1
1 + 2 + 3 + · · ·+ n

In Problems 13–22 use the Limit Comparison Test
(or the Test for Divergence) to determine whether
the given series converges or diverges.

13.
∞

∑
k=3

k + 1
k2 + 4

14.
∞

∑
k=1

7√
k3 + 3

15.
∞

∑
w=1

5
w + 1

16.
∞

∑
n=1

7n3 − 4n + 3
3n4 + 7n3 + 9

17.
∞

∑
k=1

k3

(1 + k2)
3 18.

∞

∑
k=1

(
arctan(k)

k

)2

19.
∞

∑
n=1

5 − 1
n

n
20.

∞

∑
w=1

(
1 +

1
w

)w

21.
∞

∑
k=2

(
1 − 1

k
k

)3

22.
∞

∑
k=2

√
k3 − 4
k5 + 1

In 23–32, use a “dominant term” series to determine
whether the given series converges or diverges.

23.
∞

∑
n=3

n + 100
n3 + 4

24.
∞

∑
n=3

n + 100
n2 − 4

25.
∞

∑
k=1

7k√
k3 + 5

26.
∞

∑
k=1

5
k + 1

27.
∞

∑
k=2

k3 − 4k + 3
2k4 + 7k6 + 9

28.
∞

∑
n=1

5n3 + 7n2 + 9

(1 + n3)
2

29.
∞

∑
k=1

(
arctan(3k)

2k

)2

30.
∞

∑
n=1

(
3 − 1

n
n

)2

31.
∞

∑
k=1

√
k3 + 4k2

k2 + 3k − 2 32.
∞

∑
k=2

arcsin
(

1 − 1
k2

)
k
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In 33–78, use any method from this or previous sec-
tions to determine whether the series converges or
diverges. Include reasoning for your answers.

33.
∞

∑
n=2

n2 + 10
n3 − 3

34.
∞

∑
k=1

3k√
k5 + 7

35.
∞

∑
k=1

3
2k + 1

36.
∞

∑
n=2

n2 − n + 1
3n4 + 2n2 + 1

37.
∞

∑
n=1

2n3 + n2 + 6

(3 + n2)
2 38.

∞

∑
k=1

(
arctan(k)

3

)k

39.
∞

∑
k=3

√
1 − 2

k
k

40.
∞

∑
n=3

√
n2 + 4n

(n − 2)3

41.
∞

∑
k=1

(k + 5)2

k2 · 3k 42.
∞

∑
n=1

1 + sin(n)
n2 + 4

43.
∞

∑
k=1

k + 2√
k2 + 1

44.
∞

∑
k=1

sin(kπ)

k + 1

45.
∞

∑
k=0

3
ek + k

46.
∞

∑
n=0

(2 + 3n)2 + 9

(1 + n3)
2

47.
∞

∑
n=1

(
tan(3)
2 + n

)2
48.

∞

∑
n=1

n · sin
(

1
n

)

49.
∞

∑
k=1

sin
(

1
k

)
50.

∞

∑
n=1

sin2
(

1
n

)

51.
∞

∑
n=1

sin3
(

1
n

)
52.

∞

∑
n=1

cos2
(

1
n

)

53.
∞

∑
n=1

cos3
(

1
n

)
54.

∞

∑
n=1

tan2
(

1
n

)

55.
∞

∑
k=1

(
1 − 2

k

)k
56.

∞

∑
k=1

(
1 +

2
k

)k

57.
∞

∑
k=1

5
3k 58.

∞

∑
n=1

5 + cos(n3)

n2

59.
∞

∑
n=1

2
3 + sin(n3)

60.
∞

∑
k=1

5(
1
3

)k

61.
∞

∑
k=0

e−k
62.

∞

∑
k=0

(π

e

)k

63.
∞

∑
k=0

(
π2

e3

)k
64.

∞

∑
k=1

cos
(

1
k3

)

65.
∞

∑
n=1

5 + cos(n2)

n3 66.
∞

∑
k=1

1
k · [3 + ln(k)]

67.
∞

∑
m=1

1

m · [3 + ln(m)]2
68.

∞

∑
n=1

4
n · arctan(n)

69.
∞

∑
n=1

4 arctan(n)
n

70.
∞

∑
k=2

ln(k)
k3

71.
∞

∑
k=2

ln(k)
k2 72.

∞

∑
n=1

(
n

2n + 3

)n

73.
∞

∑
n=1

1 + n
1 + n2 74.

∞

∑
k=2

[
sin(k)− sin(k + 1)

]

75.
∞

∑
k=1

√
k3 + 5
k5 + 3

76.
∞

∑
k=1

1
k2

77.
∞

∑
n=1

n
1
n

3

√
k3 + 7
k8 + 5

78.
∞

∑
k=1

3

√
k3 + 7
k8 + 5

9.7 Practice Answers

1. Considering the first series, for any integer k ≥ 3:

k − 2 < k ⇒
√

k − 2 <
√

k ⇒ 1√
k
<

1√
k − 2

Because
∞

∑
k=3

1√
k

(a p-series with p = 1
2 ≤ 1) diverges and each term

of
∞

∑
k=3

1√
k − 2

is bigger, the BCT says
∞

∑
k=3

1√
k

also diverges.
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Considering the second series, for any k:

0 < 7 ⇒ 2k < 2k + 7 ⇒ 1
2k >

1
2k + 7

Because
∞

∑
k=3

(
1
2

)k
(a geometric series with ratio |r| = 1

2 < 1) con-

verges and each term of
∞

∑
k=3

1
2k + 7

is even smaller, the BCT tells us

that
∞

∑
k=3

1
2k + 7

also converges.

2. For large values of k, the terms of the series
∞

∑
k=1

k2 + 5
k3 + k2 + 7

behave

like
k2

k3 =
1
k

so we will compare the given series to
∞

∑
k=1

1
k

, which we

know diverges (it’s the harmonic series). Computing the limit of the
ratio of the corresponding terms of these series:

lim
k→∞

k2+5
k3+k2+7

1
k

= lim
k→∞

k3 + 5k
k3 + k2 + 7

= lim
k→∞

1 + 5
k2

1 + 1
k +

7
k3

= 1

Because 0 < 1 < ∞, the LCT says
∞

∑
k=1

k2 + 5
k3 + k2 + 7

also diverges.

For large values of k, the terms of the series
∞

∑
k=3

5√
k4 − 11

behave like

5√
k4

=
5
k2 so we will compare the given series to

∞

∑
k=3

5
k2 , which we

know converges (it’s a constant multiple of a p-series with p = 2 > 1).
The limit of the ratio of the corresponding terms of these series is:

lim
k→∞

5√
k4−11

5
k2

= lim
k→∞

k2
√

k4 − 11
= lim

k→∞

1√
1 − 11

k4

= 1

Because 0 < 1 < ∞, the LCT says
∞

∑
k=3

5√
k4 − 11

also converges.

3. (a)
∞

∑
k=1

3k4

9k5 =
1
3

∞

∑
k=1

1
k

diverges (it’s a multiple of the harmonic se-

ries), so
∞

∑
k=1

3k4 − 5k + 2
1 + 17k2 + 9k5 also diverges (by the LCT).

(b)
∞

∑
k=1

√
9k

k2 = 3
∞

∑
k=1

1

k
3
2

converges (it’s a multiple of a p-series with

p = 3
2 > 1), so

∞

∑
k=1

√
1 + 9k

k2 + 5k − 2
also converges (by the LCT).

(c)
∞

∑
k=1

k25

k26 =
∞

∑
k=1

1
k

diverges, so
∞

∑
k=1

k25 + 1
5k10 + k26 + 3

diverges (LCT).Why does
∞

∑
k=1

1
k

diverge?
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