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85. k

√(
1
2
− 2

k

)k
=

1
2
− 2

k
→ 1

2
< 1; AC.

87. k

√(
2 + k

k

)k
=

2 + k
k
→ 1, so Root Test inconclu-

sive; diverges by Test for Divergence.

89. k
√
|cos(kπ)|k = 1, so Root Test is inconclusive;

diverges by Test for Divergence.

91. L = 2
3 < 1; absolutely convergent.

93. k

√
(2k)k

k2k =
2k
k2 =

2
k
→ 0 < 1; AC.

95. 1
2 − 1 + 1

4 + 1
6 + 1

8 + 1
10 + 1

12 + 1
14 + 1

16 −
1
3 + 1

18 +
1

20 + 1
22 + 1

24 + 1
26

97. 1√
2
+ 1

2 − 1+ 1√
6
+ 1√

8
+ 1√

10
− 1√

3
+ 1√

12
+ 1√

14
−

1√
5
+ 1

4 −
1√
7
+ 1√

18
+ 1√

20
− 1

3

99. 1√
2
− 1 + 1

2 +
1√
6
− 1√

3
+ 1√

8
+ 1√

10
− 1√

5
+ 1√

12
−

1√
7
+ 1√

14
− 1

3 + 1
4 + 1√

18
− 1√

11

101. On your own. 103. On your own.

Section 10.1

1. This is a geometric series with ratio x, so it con-
verges precisely when |x| < 1; the interval of
convergence is (−1, 1). (Graph it yourself.)

3. Applying the Ratio Test:∣∣∣∣∣3k+1 · xk+1

3k · xk

∣∣∣∣∣ = |3x|

for all values of x, so the series converges when
|3x| < 1 ⇒ |x| < 1

3 and diverges when |x| > 1
3 .

At x = 1
3 the series becomes

∞

∑
k=1

1, which diverges

by the Test for Divergence; at x = − 1
3 , the series

becomes
∞

∑
k=1

(−1)k, which also diverges by the

Test for Divergence. The interval of convergence
is therefore (− 1

3 , 1
3 ). (The graph is left to you.)

5. Applying the Ratio Test:∣∣∣∣∣∣
xk+1

k+1
xk

k

∣∣∣∣∣∣ = k
k + 1

· |x| −→ |x|

so the series converges when |x| < 1 and diverges
when |x| > 1. At x = 1 the series becomes the
harmonic series, which diverges; at x = −1, the

series becomes the alternating harmonic series,
which converges conditionally (by the Alternat-
ing Series Test). The interval of convergence is
therefore [−1, 1). (The graph is left to you.)

7. Applying the Ratio Test:∣∣∣∣∣ (k + 1) · xk+1

k · xk

∣∣∣∣∣ = k + 1
k
· |x| −→ |x|

so the series converges when |x| < 1 and diverges

when |x| > 1. At x = 1 the series becomes
∞

∑
k=1

k,

which diverges by the Test for Divergence; at

x = −1, the series becomes
∞

∑
k=1

k · (−1)k, which

also diverges by the Test for Divergence. The
interval of convergence is therefore (−1, 1).

9. Applying the Ratio Test:∣∣∣∣∣ (k + 1) · x2k+3

k · x2k+1

∣∣∣∣∣ = k + 1
k
· x2 −→ x2

so the series converges when x2 < 1 ⇒ |x| < 1
and diverges when |x| > 1. At x = 1 the series

becomes
∞

∑
k=1

k, which diverges by the Test for Di-

vergence; at x = −1, the series becomes
∞

∑
k=1
−k,

which also diverges by the Test for Divergence.
The interval of convergence is therefore (−1, 1).

11. Applying the Ratio Test:∣∣∣∣∣∣
xk+1

(k+1)!
xk

k!

∣∣∣∣∣∣ = k! · |x|
(k + 1)!

=
k! · |x|

(k + 1) · k!
=
|x|

k + 1
−→ 0

for any x, so the interval of convergence is there-
fore (−∞, ∞).

13. Applying the Ratio Test:∣∣∣∣∣∣ (k + 1) · x2k+2

42k+2

k · x2k

42k

∣∣∣∣∣∣ = (k + 1) · x2

16k
−→ x2

16

so the series converges when
x2

16
< 1 ⇒ x2 <

16 ⇒ |x| < 4 and diverges when |x| > 4. At

x = ±4 the series becomes
∞

∑
k=1

k, which diverges,

so the interval of convergence is (−4, 4).
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15. Applying the Ratio Test:∣∣∣∣∣ xk+1

2k+1 ·
2k

xk

∣∣∣∣∣ = |x|2
for all x, so the series converges when |x|2 < 1⇒
|x| < 2 and diverges when |x| > 2. At x = 2 the

series becomes
∞

∑
k=1

1, which diverges; at x = −2,

it becomes
∞

∑
k=1

(−1)k, which also diverges. The

interval of convergence is (−2, 2).

17. R =
1
2
(1− (−1)) = 1

19. R = 1 21. R = 1 23. R = 4

25.
∞

∑
k=0

xk

5k is one possibility.

27.
∞

∑
k=0

xk

2k · k2 is one possibility.

29. R = 1
2 (5− (−5)) = 5 31. R = 2

33. This is a geometric series with ratio x, so it con-
verges precisely when |x| < 1, hence its interval
of convergence is (−1, 1). On that interval:

∞

∑
k=0

xk =
1

1− x

35. This is a geometric series with ratio 2x, so it con-
verges precisely when |2x| < 1, hence its interval

of convergence is
(
− 1

2 , 1
2

)
. On that interval:

∞

∑
k=0

(2x)k =
1

1− 2x

37. This is a geometric series with ratio x, so its inter-
val of convergence is (−1, 1). On that interval:

∞

∑
k=1

xk =

[
∞

∑
k=0

xk

]
− 1 =

1
1− x

− 1 =
x

1− x

39. This is a geometric series with ratio x3, so it con-
verges precisely when |x3| < 1⇒ |x| < 1, hence
its interval of convergence is (−1, 1), where:

∞

∑
k=0

(x3)k =
1

1− x3

41. This is a geometric series with ratio 4x, so it con-
verges precisely when |4x| < 1, hence its interval

of convergence is
(
− 1

4 , 1
4

)
. On that interval:

∞

∑
k=0

(4x)k =
1

1− 4x

Section 10.2

1. This is a geometric series with ratio x + 2, so it
converges precisely when:

|x + 2| < 1⇒ −1 < x + 2 < 1⇒ −3 < x < −1

The interval of convergence is (−3,−1), so R =
1
2 (−1− (−3)) = 1. (The graph is left to you.)

3. This is a geometric series with ratio x + 5, so it
converges when:

|x + 5| < 1⇒ −1 < x + 5 < 1⇒ −6 < x < −4

and diverges everywhere else. The interval of
convergence is (−6,−4), so R = 1.

5. Applying the Ratio Test:∣∣∣∣∣∣
(x−2)k+1

k+1
(x−1)k

k

∣∣∣∣∣∣ = k
k + 1

· |x− 2| −→ |x− 2|

so the series converges when:

|x− 2| < 1⇒ −1 < x− 2 < 1⇒ 1 < x < 3

and diverges when x < 1 or x > 3. At x = 3
the series becomes the harmonic series, which
diverges; at x = 1, the series becomes the alter-
nating harmonic series, which converges condi-
tionally. The interval of convergence is therefore
[1, 3), hence R = 1.

7. Applying the Ratio Test:∣∣∣∣∣∣∣
(x−7)2k+3

(k+1)2

(x−7)2k+1

k2

∣∣∣∣∣∣∣ =
(

k
k + 1

)2
· (x− 7)2 −→ (x− 7)2

so the series converges when:

(x− 7)2 < 1⇒ |x− 7| < 1

⇒ −1 < x− 7 < 1⇒ 6 < x < 8

and diverges when x < 6 or x > 8. At x = 8, the

series becomes
∞

∑
k=1

1
k2 , which converges (by the

P-test, with p = 2); at x = 6, the series becomes
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∞

∑
k=1

−1
k2 , which likewise converges. The interval

of convergence is [6, 8], hence R = 1.

9. This is a geometric series with ratio 2x− 6, so it
converges precisely when:

|2x− 6| < 1⇒ −1 < 2x− 6 < 1

⇒ 5 < 2x < 7⇒ 2.5 < x < 3.5

The interval of convergence is (2.5, 3.5); R = 0.5.

11. Applying the Ratio Test:∣∣∣∣∣∣
(x−5)k+1

(k+1)!
(x−5)k

k!

∣∣∣∣∣∣ = k! · |x− 5|
(k + 1)!

=
|x− 5|
k + 1

−→ 0

for any x, so the interval of convergence is
(−∞, ∞) and R = ∞.

13. Applying the Ratio Test:∣∣∣∣∣ (k + 1)! · (x− 7)k+1

k! · xk

∣∣∣∣∣ = (k + 1) · |x− 7|

which has a limit of ∞ as k → ∞ for all x ex-
cept x = 7 (in which case the limit is 0, so the
series converges). The interval of convergence is
therefore the single point{7} and R = 0.

15. The center of the interval is x = 5 but the power
series is centered at x = 4.

17. The interval of convergence must be centered at
x = 7 so the only candidates for it are: (5, 9),
[1, 13], (−1, 15], [3, 11), [0, 14) and {7}.

19. The interval of convergence must be centered at
x = 1 so the possibilities are: (0, 2), (−5, 7), [0, 2],
(−3, 5], (−9, 11], [0, 2) and {1}.

21. R =
1
2
(6− 0) = 3 23. R =

1
2
(8− 2) = 3

25.
∞

∑
k=0

(x− 3)k

3k is one possibility.

27.
∞

∑
k=0

(5− x)k

k · 3k is one possibility.

29. This is a geometric series with ratio x − 3, so it
converges precisely when:

|x− 3| < 1⇒ −1 < x− 3 < 1⇒ 2 < x < 4

On that interval:
∞

∑
k=0

(x− 3)k =
1

1− (x− 3)
=

1
4− x

31. This is a geometric series with ratio
x− 6

5
, so it

converges precisely when:∣∣∣∣ x− 6
5

∣∣∣∣ < 1⇒ |x− 6| < 5⇒ −5 < x− 6 < 5

⇒ 1 < x < 11

On that interval:
∞

∑
k=0

(
x− 6

5
)k =

1
1− x−6

5
=

5
11− x

33. This is a geometric series with ratio
1
2

sin(x). Be-

cause
∣∣∣∣12 sin(x)

∣∣∣∣ ≤ 1
2
< 1 for all values of x, the

interval of convergence is (−∞, ∞) and:

∞

∑
k=0

(
1
2

sin(x)
)k

=
1

1− 1
2 sin(x)

=
2

2− sin(x)

35. This is a geometric series with ratio x − a, so it
converges precisely when:

|x− a| < 1⇒ −1 < x− a < 1⇒ a− 1 < x < a+ 1

37. Applying the Ratio Test:∣∣∣∣∣∣
(x−a)k+1

k+1
(x−a)k

k

∣∣∣∣∣∣ = k
k + 1

· |x− a| −→ |x− a|

so the series converges when:

|x− a| < 1⇒ −1 < x− a < 1⇒ a− 1 < x < a+ 1

and diverges when x < a− 1 or x > a + 1. At
x = a + 1 the series becomes the harmonic se-
ries, which diverges; at x = a− 1, the series be-
comes the alternating harmonic series, which con-
verges conditionally. The interval of convergence
is therefore [a− 1, a + 1).

39. This is a geometric series with ratio ax, so it con-
verges precisely when:

|ax| < 1⇒ −1 < ax < 1⇒ −1
a
< x <

1
a

41. This is a geometric series with ratio ax− b, so it
converges precisely when:

|ax− b| < 1⇒ −1 < ax− b < 1

⇒ − b− 1
a

< x <
b + 1

a
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Section 10.3

1. Starting with the geometric series:

1
1− u

=
∞

∑
k=0

uk = 1 + u + u2 + u3 + · · ·

and using the substitution u = x4 yields:

1
1− x4 =

∞

∑
k=0

x4k = 1 + x4 + x8 + x12 + · · ·

3. Substitute u = −x4 in the geometric series:

1
1 + x4 =

∞

∑
k=0

(−1)k · x4k = 1− x4 + x8− x12 + · · ·

5. Rewrite the function as:

1
5 + x

=
1
5

1 + x
5
=

1
5

1−
(
− x

5
)

and put u = − x
5 in the geometric series:

1
5 + x

=
1
5

∞

∑
k=0

(− x
5
)k =

1
5
− x

25
+

x2

125
− x3

625
+ · · ·

7. Substitute u = −x3 in the geometric series:

1
1 + x3 =

∞

∑
k=0

(−1)k · x3k = 1− x3 + x6 − x9 + · · ·

and multiply the result by x2:

x2

1 + x3 =
∞

∑
k=0

(−1)k · x3k+2 = x2− x5 + x8− x11 + · · ·

9. Into the first result from Example 3:

ln(1− u) = −
∞

∑
k=1

uk

k
= −u− 1

2
u2 − 1

3
u3 − · · ·

substitute u = −x2 to get:

ln(1 + x2) =
∞

∑
k=1

(−1)k+1 · x2k

k

= x2 − 1
2

x4 +
1
3

x6 − · · ·

11. Substitute u = x2 to get into the second result from Example 3 and multiply by x:

arctan(u) =
∞

∑
k=0

(−1)k · u2k+1

2k + 1
= u− 1

3
u3 +

1
5

u5 − 1
7

u7 + · · ·

⇒ arctan
(

x2
)
=

∞

∑
k=0

(−1)k · x4k+2

2k + 1
= x2 − 1

3
x6 +

1
5

x10 − 1
7

x14 + · · ·

⇒ x · arctan
(

x2
)
=

∞

∑
k=0

(−1)k · x4k+3

2k + 1
= x3 − 1

3
x7 +

1
5

x11 − 1
7

x15 + · · ·

13. Substitute u = x2 into the result from Example 2:

1
(1− u)2 =

∞

∑
k=1

k · uk−1 = 1 + 2u + 3u2 + 4u3 + 5u4 + · · ·

⇒ 1
(1− x2)2 =

∞

∑
k=1

k · x2k−2 = 1 + 2x2 + 3x4 + 4x6 + 5x8 + · · ·

15. Differentiate the result from Example 2 and then divide by 2:

(1− x)−2 =
∞

∑
k=1

k · xk−1 = 1 + 2x + 3x2 + 4x3 + 5x4 + · · ·

⇒ 2(1− x)−3 =
∞

∑
k=1

k(k− 1) · xk−2 = 2 + 6x + 12x2 + 20x3 + · · ·

⇒ 1
(1− x)3 =

∞

∑
k=1

k(k− 1)
2

· xk−2 = 1 + 3x + 6x2 + 10x3 + · · ·
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17. Replace x with −x2 in the result from Problem 15:

1
(1 + x2)3 =

∞

∑
k=1

(−1)k k(k− 1)
2

· x2k−4 = 1− 3x2 + 6x4 − 10x6 + · · ·

19. Integrate the first result from Practice 1 between x = 0 and x = 1
2 :∫ 1

2

0

1
1− x3 dx =

∫ 1
2

0

[
∞

∑
k=0

x3k

]
dx =

∫ 1
2

0

[
1 + x3 + x6 + · · ·

]
dx

=
∞

∑
k=0

[
1

3k + 1
x3k+1

] 1
2

0
=

[
x +

1
4

x4 +
1
7

x7 + · · ·
] 1

2

0
=

1
2
+

1
64

+
1

896
+ · · · ≈ 0.5167

21. Integrate the result from Practice 2 between x = 0 and x = 3
5 :∫ 3

5

0
ln (1 + x) dx =

∫ 3
5

0

[
∞

∑
k=0

(−1)k

k + 1
· xk+1

]
dx =

∫ 3
5

0

[
x− 1

2
x2 +

1
3

x3 − · · ·
]

dx

=

[
∞

∑
k=0

(−1)k

(k + 2)(k + 1)
· xk+2

] 3
5

0

=

[
1
2

x2 − 1
6

x3 +
1

12
x4 − · · ·

] 3
5

0
=

9
50
− 9

250
+

27
2500

− · · ·

or about 0.1548 (adding up the first three terms of the numerical sum).

23. Multiply the second result from Example 3 by x2 and integrate between x = 0 and x = 1
2 :∫ 1

2

0
x2 · arctan(x) dx =

∫ 1
2

0

[
∞

∑
k=0

(−1)k · x2k+3

2k + 1

]
dx =

∫ 1
2

0

[
x3 − 1

3
x5 +

1
5

x7 − · · ·
]

dx

=

[
∞

∑
k=0

(−1)k · x2k+4

(2k + 4)(2k + 1)

] 1
2

0

=

[
1
4

x4 − 1
18

x6 +
1
40

x8 − · · ·
] 1

2

0

=
1
64
− 1

1152
+

1
10240

− · · · ≈ 0.01485

25. Integrate the result from Example 2 between x = 0 and x = 0.3:∫ 0.3

0

1
(1− x)2 dx =

∫ 0.3

0

[
∞

∑
k=1

k · xk−1

]
dx =

∫ 0.3

0

[
1 + 2x + 3x2 + · · ·

]
dx

=

[
∞

∑
k=1
·xk

]0.3

0

=
[

x + x2 + x3 + · · ·
]0.3

0
= 0.3 + 0.09 + 0.027 + · · · ≈ 0.417

27. If x 6= 0, divide the second result from Example 3 by x to get:

arctan(x)
x

=
∞

∑
k=0

(−1)k · x2k

2k + 1
= 1− 1

3
x2 +

1
5

x4 − 1
7

x6 + · · ·

As x → 0, the last expression approaches 1, so lim
x→0

arctan(x)
x

= 1.

29. If x 6= 0, divide the result from Practice 2 by 2x:

ln (1 + x)
2x

=
∞

∑
k=0

(−1)k

2k + 2
· xk =

1
2
− 1

4
x +

1
6

x2 − 1
8

x3 + · · · −→ 1
2

(as x → 0)
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31. If x 6= 0, divide the power series for arctan (x) obtained in the solution to Example 4 by x2 to get:

arctan
(

x2)
x2 =

∞

∑
k=0

(−1)k

2k + 1
x4k = 1− 1

3
x4 +

1
5

x8 − 1
7

x12 + · · · −→ 1 (as x → 0)

33. If x 6= 0, replace x with −x2 in the power series for ln (1 + x) and divide by 3x to get:

ln
(
1− x2)
3x

= − 1
3x

∞

∑
k=1

x2k

k
= −

∞

∑
k=1

x2k−1

3k
= −1

3
x− 1

6
x3 − 1

9
x5 − · · · −→ 0 (as x → 0)

(Check that you get the same result in Problems 27–34 from applying L’Hôpital’s Rule.)

35.
1

1 + x
=

∞

∑
k=0

(−1)k · xk (a geometric series with ratio −x precisely when |−x| < 1⇒ |x| < 1⇒ −1 < x < 1,

so the interval of convergence is (−1, 1).

37. From Example 3, we know that:

ln(1− x) = −x− 1
2

x2 − 1
3

x3 − 1
4

x4 − · · · = −
∞

∑
k=0

1
k + 1

· xk+1

Applying the Ratio Test to this series: ∣∣∣∣∣∣−
xk+1

k+1

− xk

k

∣∣∣∣∣∣ = k
k + 1

· |x| −→ |x|

as k→ ∞, so the series converge when |x| < 1 and diverges when |x| > 1. At x = 1, the series becomes a
multiple of the harmonic series, which diverges; at x = −1, the series becomes a multiple of the alternating
harmonic series, which converges conditionally. So the interval of convergence is [−1, 1).

39. From Example 3, we know that:

arctan(x) =
∞

∑
k=0

(−1)k

2k + 1
x2k+1 = x− 1

3
x3 +

1
5

x5 − 1
7

x7 + · · ·

Applying the Ratio Test to this series:∣∣∣∣∣∣
(−1)k+1x2k+3

2k+3
(−1)kx2k+1

2k+1

∣∣∣∣∣∣ = 2k + 1
2k + 3

· x2 −→ 1

as k → ∞, so the series convereges when x2 < 1 ⇒ |x| < 1 and diverges when x2 > 1 ⇒ |x| > 1. At
x = ±1, the series converges conditionally (by the Alternating Series Test—check this) so the interval of
convergence is [−1, 1].

41. From Example 2 we know that:

(1− x)−2 =
∞

∑
k=1

k · xk−1 = 1 + 2x + 3x2 + 4x3 + 5x4 + · · ·

Applying the Ratio Test to this series:∣∣∣∣∣ (k + 1) · xk

k · xk−1

∣∣∣∣∣ = k + 1
k
· |x| −→ 1

as k→ ∞, so the series converges when |x| < 1 and diverges when |x| > 1. At x = 1, the series becomes
∑∞

k=1 k, which diverges; at x = −1, the series becomes ∑∞
k=1 k · (−1)k−1, which also diverges. The interval

of convergence is (−1, 1).



A18 answers

Section 10.4

1. With f (x) = ln(1 + x), f (0) = ln(1) = 0 and:

f ′(x) = (1 + x)−1 ⇒ f ′(0) = 1

f ′′(x) = −(1 + x)−2 ⇒ f ′′(0) = −1

f ′′′(x) = 2(1 + x)−3 ⇒ f ′′′(0) = 2

f (4)(x) = −6(1 + x)−4 ⇒ f (4)(0) = −6

and so on, so the first few terms of the MacLaurin
series for f (x) are:

0 + 1 · x +
−1
2!

x2 +
2
3!

x3 +
−6
4!

x4 + · · ·

= x− 1
2

x2 +
1
3

x3 − 1
4

x4 + · · ·

3. f (x) = arctan(x)⇒ f (0) = arctan(0) = 0 and:

f ′(x) =
1

1 + x2 ⇒ f ′(0) = 1

f ′′(x) = − 2x

(1 + x2)
2 ⇒ f ′′(0) = 0

f ′′′(x) =
6x2 − 2

(1 + x2)
3 ⇒ f ′′′(0) = −2

f (4)(x) =
24
(

x− x3)
(1 + x2)

4 ⇒ f (4)(0) = 0

and so on, so the first few terms of the MacLaurin
series for f (x) are:

0 + 1 · x +
0
2!
· x2 +

−2
3!

x3 +
0
4!
· x4 + · · ·

= x− 1
3

x2 +
1
3

x3 − 1
4

x4 + · · ·

5. With f (x) = cos(x), f (0) = cos(0) = 1 and:

f ′(x) = − sin(x)⇒ f ′(0) = 0

f ′′(x) = − cos(x)⇒ f ′′(0) = −1

f ′′′(x) = sin(x)⇒ f ′′′(0) = 0

f (4)(x) = cos(x)⇒ f (4)(0) = 1

From here the derivatives repeat the same pat-
tern, so f (5)(0) = 0, f (6)(0) = −1 and the first
few terms of the MacLaurin series for f (x) are:

1− 1
2!

x2 +
1
4!

x4 − 1
6!

x6 + · · ·

7. With f (x) = sec(x), f (0) = sec(0) = 1 and:

f ′(x) = sec(x) tan(x)⇒ f ′(0) = 0

f ′′(x) = sec3(x) + sec(x) tan2(x)⇒ f ′′(0) = 1

f ′′′(x) = 5 sec3(x) tan(x) + sec(x) tan3(x)

so that f ′′′(0) = 0, while f (4)(x) = 5 sec5(x) +
18 sec3(x) tan2(x) + sec(x) tan4(x) ⇒ f (4)(0) =

5; the first terms of the MacLaurin series are:

1− x2 +
5
4!

x4 + · · · = 1− x2 +
5
24

x4 + · · ·

9. With f (x) = ln(x), f (1) = ln(1) = 0 and:

f ′(x) = x−1 ⇒ f ′(1) = 1

f ′′(x) = −x−2 ⇒ f ′′(1) = −1

f ′′′(x) = 2x−3 ⇒ f ′′′(1) = 2

f (4)(x) = −6x−4 ⇒ f (4)(1) = −6

and so on, so the first few terms of the Taylor
series are:

(x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3− 1

4
(x− 1)4 + · · ·

11. With f (x) = sin(x), f
(

π
2
)
= sin

(
π
2
)
= 1 and:

f ′(x) = cos(x)⇒ f ′
(π

2

)
= 0

f ′′(x) = − sin(x)⇒ f ′′
(π

2

)
= −1

f ′′′(x) = cos(x)⇒ f ′′′
(π

2

)
= 0

f (4)(x) = sin(x)⇒ f (4)
(π

2

)
= 1

From here the derivatives repeat the same pattern,
so f (5)

(
π
2
)
= 0, f (6)

(
π
2
)
= −1 and the first few

terms of the Taylor series:

1− 1
2!

(
x− π

2

)2
+

1
4!

(
x− π

2

)4
− 1

6!

(
x− π

2

)6
+ · · ·

13. With f (x) =
√
(x), f (9) =

√
(9) = 3 and:

f ′(x) =
1
2

x−
1
2 ⇒ f ′(9) =

1
6

f ′′(x) = −1
4

x−
3
2 ⇒ f ′′(9) = − 1

108

f ′′′(x) =
3
8

x−
5
2 ⇒ f ′′′(9) =

1
648
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and so on, so the first few terms of the Taylor
series are:

3 +
1
6
(x− 9)− 1

108
(x− 9)2 +

1
648

(x− 9)3 − · · ·

15. Using P4(x) = 1− 1
2

x2 +
1

24
x4 ≈ cos(x):

x cos(x) P4(x)

0.1 0.995004165 0.995004167
0.2 0.98006657 0.98006666
0.5 0.87758 0.87604
1.0 0.54030 0.54167
2.0 −0.4161 −0.3333

17. Using P4(x) = x− 1
3

x3 +
1
5

x5 ≈ arctan(x):

x arctan(x) P4(x)

0.1 0.09966865 0.09966867
0.2 0.197396 0.197397
0.5 0.4636 0.4646
1.0 0.7854 0.8667
2.0 1.1071 5.7333

19. With sin(u) = u− 1
6

u3 +
1

120
u5− · · · , put u = x2

so that sin
(

x2
)
= x2 − 1

6
x6 +

1
120

x10 − · · · and:∫
sin
(

x2
)

dx = C+
1
3

x3− 1
42

x7 +
1

1320
x11−· · ·

21. With sin(u) = u− 1
6

u3 +
1

120
u5− · · · , put u = x3

so that sin
(

x3
)
= x3 − 1

6
x9 +

1
120

x15 − · · · and:∫
sin
(

x3
)

dx = C+
1
4

x4− 1
60

x10 +
1

1920
x16−· · ·

23. With eu = 1+ u+
1
2

u2 + · · · , put u = −x2 so that

e−x2
= 1− x2 +

1
2

x4 + · · · and:∫
e−x2

dx = C + x− 1
3

x3 +
1

10
x5 − · · ·

25. With eu = 1+ u+
1
2

u2 + · · · , put u = −x3 so that

e−x3
= 1− x3 +

1
2

x6 + · · · and:∫
e−x3

dx = C + x− 1
4

x4 +
1

14
x7 − · · ·

27. Multiply sin(x) = x− 1
6

x3 +
1

120
x5 − · · · by x to

get x · sin (x) = x2 − 1
6

x4 +
1

120
x6 − · · · so:

∫
x · sin (x) dx = C +

1
3

x3 − 1
30

x5 +
1

840
x7 − · · ·

29. Multiply sin(x) = x − 1
6

x3 +
1

120
x5 − · · · by x2

to get x · sin (x) = x3 − 1
6

x5 +
1

120
x7 − · · · so:

∫
x2 · sin (x) dx = C+

1
4

x4− 1
36

x6 +
1

960
x8−· · ·

31. Subtract cos(x) = 1 − 1
2 x2 + 1

24 x4 − · · · from 1
and divide by x2 to get:

1− cos(x)
x2 =

1
2 x2 − 1

24 x4 + · · ·
x2 =

1
2
− 1

24
x2 + · · ·

which has limit
1
2

as x → 0.

33. Subtract ex = 1+ x+ 1
2 x2 + · · · from 1 and divide

by x to get:

1− ex

x
=

x + 1
2 x2 + · · ·

x
= 1 +

1
2

x + · · ·

which has limit 1 as x → 0.

35. Dividing sin(x) = x− 1
6

x3 +
1

120
x5 − · · · by x:

x− 1
6 x3 + 1

120 x5 − · · ·
x

= 1− 1
6

x2 +
1

120
x4 · · ·

yields a limit of 1 as x → 0.

37. Subtract sin(x) = x− 1
6

x3 +
1

120
x5 − 1

5040
x7 · · ·

from x− 1
6

x3 and divide by x5 to get:

− 1
120 x5 + 1

5040 x7 − · · ·
x5 =

1
120
− 1

5040
x2 + · · ·

which has a limit of
1

120
as x → 0.
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39. Starting with eu = 1 + u + 1
2! u

2 + 1
3! u

3 + 1
4! u

4 + · · · , put u = x, then u = −x to get:

sinh(x) =
ex − e−x

2
=

1
2

[
1 + x +

1
2!

x2 +
1
3!

x3 +
1
4!

x4 + · · ·
]
− 1

2

[
1− x +

1
2!

x2 − 1
3!

x3 − 1
4!

x4 + · · ·
]

= x +
1
3!

x3 +
1
5!

x5 +
1
7!

x7 + · · ·

41. D (sinh(x)) = D
(

x +
1
3!

x3 +
1
5!

x5 +
1
7!

x7 + · · ·
)
= 1 +

1
2!

x2 +
1
4!

x4 +
1
6!

x6 + · · · = cosh(x)

43. ei( π
2 ) = cos

(π

2

)
+ i · sin

(π

2

)
= 0 + i · 1 = i, while eπi = cos(π) + i · sin(π) = −1 + i · 0 = −1.

45.
(

3
0

)
= 1 by definition, while

(
3
1

)
=

3
1!

= 3,
(

3
2

)
=

3 · 2
2!

= 3 and
(

3
3

)
=

3 · 2 · 1
3!

= 1; these agree with

the numbers 1, 3, 3, 1 from Pascal’s triangle and with the coefficients of (1 + x)3 = 1 + 3x + 3x2 + x3.

47. The MacLaurin series for (1 + x)
5
2 is:

1 +
5
2

x +

(
5
2

)(
3
2

)
· 1

2!
x2 +

(
5
2

)(
3
2

)(
1
2

)
· 1

3!
x3 +

(
5
2

)(
3
2

)(
1
2

)(
−1

2

)
· 1

4!
x4 + · · ·

49. Using the Binomial Series Theorem, the MacLaurin series for
1√

1 + u
= (1 + u)−

1
2 is:

1− 1
2

u +

(
1
2

)(
3
2

)
· 1

2!
u2 −

(
1
2

)(
3
2

)(
5
2

)
· 1

3!
u3 +

(
1
2

)(
3
2

)(
5
2

)(
7
2

)
· 1

4!
u4 + · · ·

Putting u = −x2 gives
1√

1− x2
= (1− x2)−

1
2 = 1 +

1
2

x2 +
3
8

x4 +
5

16
x6 +

35
128

x8 + · · · , so integrating

term-by-term (and using the fact that arcsin(0) = 0) yields:

arcsin(x) = x +
1
6

x3 +
3
40

x5 +
5

112
x7 +

35
1152

x9 + · · ·

51. With f (x) = (1 + x)m ⇒ f (0) = 1, f ′(x) = m(1 + x)m−1 ⇒ f ′(0) = m, f ′′(x) = m(m− 1)(1 + x)m−2 ⇒
f ′′(0) = m(m − 1), f ′′′(x) = m(m − 1)(m − 2)(1 + x)m−3 ⇒ f ′′′(0) = m(m − 1)(m − 2) and f (4)(x) =

m(m− 1)(m− 2)(m− 3)(1 + x)m−4 ⇒ f (4)(0) = m(m− 1)(m− 2)(m− 3) so the MacLaurin series is:

(1 + x)m = 1 +
m
1!

x +
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)
3!

x3 +
m(m− 1)(m− 2)(m− 3)

4!
x4 + · · ·

Section 10.5

1. P0(x) = 0, P1(x) = P2(x) = x, P3(x) = P4(x) = x− 1
6

x3; use technology to create graphs.

3. f (x) = ln(x) ⇒ f ′(x) = x−1 ⇒ f ′′(x) = −x−2 ⇒ f ′′′(x) = 2x−3 ⇒ f (4)(x) = −6x−3, so P0(x) = 0,
P1(x) = x, P2(x) = x− 1

2 x2, P3(x) = x− 1
2 x2 + 1

3 x3 and P4(x) = x− 1
2 x2 + 1

3 x3 − 1
4 x4

5. P0(x) = 1, P1(x) = 1 + (x− 1) = P2(x) = P3(x) = P4(x)

7. f (x) = (1 + x)−
1
2 ⇒ f ′(x) = −1

2
(1 + x)−

3
2 ⇒ f ′′(x) =

3
4
(1 + x)−

5
2 ⇒ f ′′′(x) = −15

8
(1 + x)−

7
2 ⇒

f (4)(x) =
105
16

(1 + x)−
9
2 , so P0(x) = 1, P1(x) = 1− 1

2 x, P2(x) = 1− 1
2 x + 3

8 x2, P3(x) = 1− 1
2 x + 3

8 x2− 5
16 x3,

P4(x) = 1− 1
2 x + 3

8 x2 − 5
16 x3 + 35

128 x4

9. f (x) = sin(x) ⇒ f ′(x) = cos(x) ⇒ f ′′(x) = − sin(x) ⇒ f ′′′(x) = − cos(x) ⇒ f (4)(x) = sin(x) so
P0(x) = 1 = P1(x), P2(x) = 1− 1

2
(

x− π
2
)2

= P3(x) and P4(x) = 1− 1
2
(
x− π

2
)2

+ 1
24
(

x− π
2
)4
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11. R5(x) =
sin(z)

6!
(x− 0)6

|R5(x)| ≤ 1
720

(π

2

)6
=

π6

46080
≈ 0.021

13. R5(x) =
cos(z)

6!
(x− 0)6

|R5(x)| ≤ 1
720

(π)6 =
π6

720
≈ 1.335

15. R10(x) =
− cos(z)

10!
(x− 0)10

|R10(x)| ≤ 1
362880

· 26 =
1

56700
≈ 0.0000176

17. R6(x) =
ez

6!
(x− 0)6

|R6(x)| ≤ e2

720
· 26 ≤ 2.722 · 64

720
≈ 0.658

19. |Rn(x)| ≤ 1
(n + 1)!

<
1

1000
⇒ n ≥ 6

21. |Rn(x)| ≤ 1.6n+1

(n + 1)!
<

1
100000

⇒ n ≥ 10

23. |Rn(x)| ≤ 2.722 · 2n+1

(n + 1)!
<

1
1000

⇒ n ≥ 10

25. Any derivative of f (x) = cos(x) is either ± sin(x)
or ± cos(x), so

∣∣∣ f (n+1)(z)
∣∣∣ ≤ 1 for any z. Hence:

|Rn(x)| =

∣∣∣ f (n+1)(z)
∣∣∣

(n + 1)!
|x− 0|n+1 ≤ |x|n+1

(n + 1)!

As noted in the solution to Example 5, this ex-
pression approaches 0 as n→ ∞ (for any x).

27. (a) Using the definition of the derivative:

f ′(0) = lim
h→0

f (h)− f (0)
h

= lim
h→0

e−h−2 − 0
h

(b) For h > 0, let y = 1
h ⇒ h = 1

y so that:

f ′(0) = lim
y→∞

e−y2

1
y

= lim
y→∞

y
ey2

By L’Hôpital’s Rule:

f ′(0) = lim
y→∞

1
2y · ey2 = 0

The process for h < 0 is quite similar.

29. (a)
5

∑
k=1

(−1)k+1 · 4
2k− 1

=
1052
315

≈ 3.33968

(b)
∣∣∣∣ (−1)50+1 · 4

2 · 50− 1

∣∣∣∣ = 4
99
≈ 0.0404

(c)

∣∣∣∣∣ (−1)k+1 · 4
2k− 1

∣∣∣∣∣ < 1
10000

⇒ k ≥ 20001

31. (a) 4 arctan
(

1
5

)
≈ 4

5
− 4

375
+

4
15625

≈ 0.789589

and arctan
(

1
239

)
≈ 0.004184 so:

π ≈ 4 [0.197397− 0.004184] ≈ 3.14162

(b) We are using smaller values of x in the arctan
series, and the powers of these smaller values
of x approach 0 more quickly than the values
of x used in Methods I and II.


