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X (27(_]{ = Z—I:k — 1, so Root Test inconclu-

sive; diverges by Test for Divergence.

\/ |cos (k) [*
diverges by Test for Divergence.

= 1, so Root Test is inconclusive;

L= % < 1; absolutely convergent.
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On your own. 103. On your own.

Section 10.1

1.

This is a geometric series with ratio x, so it con-
verges precisely when |x| < 1; the interval of
convergence is (—1,1). (Graph it yourself.)

. Applying the Ratio Test:

3k+1 . xk+1

EX

for all values of x, so the series converges when
3x| < 1= |x| < ! and diverges when |x| > 1.

(e}

Atx = % the series becomes ) 1, which diverges
k=1

by the Test for Divergence; at x = — %, the series

becomes ) (—1)¥, which also diverges by the
k=1
Test for Divergence. The interval of convergence

is therefore (—1, 1). (The graph is left to you.)
Applying the Ratio Test:

k1 P
k+1 | .
o

so the series converges when |x| < 1 and diverges
when |x| > 1. At x = 1 the series becomes the
harmonic series, which diverges; at x = —1, the

11.

13.

series becomes the alternating harmonic series,
which converges conditionally (by the Alternat-
ing Series Test). The interval of convergence is
therefore [—1,1). (The graph is left to you.)

Applying the Ratio Test:

‘(k+1)~xk+1 Ck+1

k

— x| — Ix]

so the series converges when |x| < 1 and diverges
e}

when |x| > 1. At x = 1 the series becomes ) _ k,
k=1
which diverges by the Test for Divergence; at

x = —1, the series becomes ) _ k- (—1), which
k=1
also diverges by the Test for Divergence. The

interval of convergence is therefore (—1,1).

Applying the Ratio Test:

‘(k+1)~x2k+3 :k+1 ) 5

Xt — x
k

k- x2k+1

so the series converges when x> < 1 = |x| < 1
and diverges when |x| > 1. At x = 1 the series
o0

becomes Y k, which diverges by the Test for Di-
k=1

[e0]
vergence; at x = —1, the series becomes Z —k,

k=1
which also diverges by the Test for Divergence.

The interval of convergence is therefore (—1,1).

Applying the Ratio Test:

xk+1

G| K-fx]

% (k+1)!

k- [x] x|

Gti)-k kt1 0

for any x, so the interval of convergence is there-
fore (—o0, 00).

Applying the Ratio Test:

2%+2
(k+1)- xzkiz (k+1)-x2 x?
4 — s
k.x= 16k 16
42k

. x?
so the series converges when 6 <l=x"<

16 = |x| < 4 and diverges when |x| > 4. At

2

x = $4 the series becomes Z k, which diverges,
k=1
so the interval of convergence is (—4,4).
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Applying the Ratio Test:
xk+1 ok - \x‘
2T k| T2

for all x, so the series converges when % <l=
|x| < 2 and diverges when |x| > 2. At x = 2 the
[e¢]

series becomes 2 1, which diverges; at x = -2,
k=1
it becomes ) (—=1)k, which also diverges. The
k=1
interval of convergence is (—2,2).
1
R=-(1-(-1)) =1
2 (1-(-1))
R=1 21. R=1 23. R=4
o Xk
Z oF is one possibility.
k=0
o Xk
kgo 2 is one possibility.
R=1(5-(-5))=5 31. R=2

This is a geometric series with ratio x, so it con-
verges precisely when |x| < 1, hence its interval
of convergence is (—1,1). On that interval:

La=1

This is a geometric series with ratio 2x, so it con-
verges precisely when |2x| < 1, hence its interval

of convergence is (—%, %) On that interval:

0 1
k
k;)(zx) T 1-2x

This is a geometric series with ratio x, so its inter-

val of convergence is (—1,1). On that interval:
£ -
k=1

This is a geometric series with ratio x3, so it con-

[e9)

— —x 1—x

1
xk] “l=— 1=
=0
verges precisely when |x3| < 1 = |x| < 1, hence
its interval of convergence is (—1,1), where:

Z<x3)k: 1—x3

k=0
This is a geometric series with ratio 4x, so it con-
verges precisely when |4x| < 1, hence its interval
of convergence is (—%, %) On that interval:

), ()t =g

k=0

Section 10.2

1. This is a geometric series with ratio x + 2, so it
converges precisely when:

x+2[<l=-1<x+2<1=-3<x<-1
The interval of convergence is (—3,—1),so R =
3 (=1—(=3)) = 1. (The graph is left to you.)
3. This is a geometric series with ratio x + 5, so it
converges when:
[x+5/<1l=-1<x+5<1=-6<x<—4
and diverges everywhere else. The interval of
convergence is (—6, —4),so R = 1.

5. Applying the Ratio Test:

(x—2)k+1
k+1 _ . |
(x=D1* k+1

x—2| — |x—2]

so the series converges when:
r—2|<l=-1<x-2<1=1<x<3

and diverges when x < lorx > 3. Atx =3
the series becomes the harmonic series, which
diverges; at x = 1, the series becomes the alter-
nating harmonic series, which converges condi-
tionally. The interval of convergence is therefore
[1,3), hence R = 1.

7. Applying the Ratio Test:

(x77)2k+3

RGN k\? 2 2
(x—7)2k+1 = k+1 (x=7)" — (x—=7)
T

so the series converges when:

(x=72<1=|x-7<1
= -1<x-7<1=6<x<8

and diverges when x < 6 or x > 8. At x = §, the
> 1

series becomes k21 2 which converges (by the

P-test, with p = 2); at x = 6, the series becomes
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11.

13.

15.

17.

19.

21.
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27.

29.

[ee)

Z 2z which likewise converges. The interval
k=1
of convergence is [6, 8], hence R = 1.

This is a geometric series with ratio 2x — 6, so it
converges precisely when:

2x—6|<1=-1<2x—6<1
=>5<2x<7=25<x<35

The interval of convergence is (2.5,3.5) ; R=0.5.
Applying the Ratio Test:

b kx—s| -5
(k+1) | K- |Xx—O] |X—
(xLS)k  (k+1)! k+1 — 0

for any x, so the interval of convergence is

(—o0,00) and R = oo.

Applying the Ratio Test:

(k+1)!- (x — 7)1
k! - xk

= (k+1)-|x—7|

which has a limit of oo as k — oo for all x ex-
cept x = 7 (in which case the limit is 0, so the
series converges). The interval of convergence is
therefore the single point{7} and R = 0.

The center of the interval is x = 5 but the power
series is centered at x = 4.

The interval of convergence must be centered at
x = 7 so the only candidates for it are: (5,9),
(1,13], (—1,15], [3,11), [0,14) and {7}.

The interval of convergence must be centered at
x = 1 so the possibilities are: (0,2), (—5,7), [0,2],
(=3,5], (=9,11], [0,2) and {1}.

1

1
Rf§(6—0)f3 23.Rf§(8—2)f3
00 _ 2k
Z (xikf-}) is one possibility.
k=0 3

is one possibility.

This is a geometric series with ratio x — 3, so it
converges precisely when:

[x=3|<1l=-1<x-3<1=2<x<4

On that interval:

Y (x-3)t= 1—(1—3) :4ix

k=0

31.

33.

35-

37-

39-

41.

o . . . . X—6 .
This is a geometric series with ratio ——, so it

5
converges precisely when:

x—6
5

‘<1é|x—6<5é—5<x—6<5
=>1<x<11

On that interval:

i(x%),_ 1 5
5 T 1ox6 " 11—x

5

This is a geometric series with ratio 5 sin(x). Be-

cause ’; sin(x)| < % < 1 for all values of x, the

interval of convergence is (—o0,00) and:

> (1 ko 1 2
Z (2 Sll’l(x)> - 1_— %sin(x) - 2—sin(x)

k=0

This is a geometric series with ratio x — g, so it
converges precisely when:

x—a|<1l=-1<x—a<l=a-1<x<a+l

Applying the Ratio Test:

(xfu)k“ k
k+1
=g al —
k

so the series converges when:
[x—al<l=-1<x—a<l=a-1<x<a+l

and diverges when x <a—1lorx > a+1. At
x = a+1 the series becomes the harmonic se-
ries, which diverges; at x = a — 1, the series be-
comes the alternating harmonic series, which con-
verges conditionally. The interval of convergence
is therefore [a — 1,a + 1).

This is a geometric series with ratio ax, so it con-
verges precisely when:

1 1
\ax|<1:>—1<ax<1=>—;<x<;
This is a geometric series with ratio ax — b, so it

converges precisely when:

lax —b| <1=-1<ax—-b<1

b—-1 b+1
= - <x<——



Section 10.3

1. Starting with the geometric series:

1
1—

[ee]
=Y W=1+u+v?+ud+- -
=

and using the substitution u = x* yields:

1
1— x4

=Y =1+t a2
k=0

Substitute u = —x* in the geometric series:
1 c- k. Ak 4,8 12
= 1) x* =1—-x"4+x"—x
14 x4 ,{g (=1) * *
Rewrite the function as:
1
1 _ 3
5+x 1+3

(&

T1-(-9)

—3 in the geometric series:

1 & 1
75; =z

and put u =

2 3

X

25

x
125

s
625

54 x

11.

arctan(u) = é (—1)*
= arctan (xz) = Ii) (—1)k-
= x-arctan (xz) = Ii) (—1)k-

13. Substitute u = x? into the result from Example 2:

Zku
Z

(1—u

=
(1—x2

7. Substitute u = —x2 in the geometric series:
1 _ ¢ k. 3k _ 3 .6 49
m—kgo(_].)x —1—x +x — X +
and multiply the result by x?:
x2 _ i(_1)k~x3k+2:xz—x5+x8—x11+---
1+x &
9. Into the first result from Example 3
>k 1 1
In(1-u)=-Y —=-u—-u*—Zu
=k 2 3
substitute u = —x? to get:
- 1)k+1 2%
n(1 Rl
+x k; k
1 1
_,2_Lta 1o
=X o + 3x
2k+1
u - 15 15 1,
T u—gu —|—5u 7u+
4k+2
X 2 1e 1 g 1 44 B
T B LA L A
4k+3
X 3 1z 1y 15
T X 3x +5x X+

V=14 2u+3u?+4ud +5u +

2 =14 2%+ 3 4 4x® 458 -

15. Differentiate the result from Example 2 and then divide by 2:

(1—x)~ ka
= 2(1—x)" Zk -1)
1 = k(k
= =
(1—x)3 k; 2

P14 2x+3x2 +4x3 + 504 + - -
224 6x+12x2+20x3 + -+

2 =143x+6x>+10x3 + - -
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17. Replace x with —x? in the result from Problem 15:
1 kk(k—1) o4 2 4 6
=Y (-1 : =1-3x>+6x* —10x% + - --
AP~ & (-1) x X X x

19. Integrate the first result from Practice 1 between x = 0 and x = %:

1

/Om _/ [ngk]dx—/ [1+x+x+ ]dx
1 1 1

1
i TR Y I VPR S v AT L I I O 1
3k+1 0 2 7 o 264 8%

Nl—

21. Integrate the result from Practice 2 between x = 0 and x = %:

3

3 Pl 3
/5h1(1+x dx—/ karl dx:/5 x—i2 it lo |
0 0 2 3

[S;158)

_ |y (—1)"
- L;O (k+2)(k+1) "‘M]O

or about 0.1548 (adding up the first three terms of the numerical sum).

[S1118)

= - - 4+ =

s 17 9 9w
o 50 250 ' 2500

|1, 151
—[zx 6x—|—12x

23. Multiply the second result from Example 3 by x? and integrate between x = 0 and x = 3:

1 1T oo 2%k+3 1
22, _[? oy e [Pt
/0 x arctan(x)dx—/0 [Z( 1) 1 dx—/o {x 3% T gx } dx

k=0
© x2k+4 % 1 1
& e e

11,1
T 64 1152 10240

25. Integrate the result from Example 2 between x = 0 and x = 0.3:

03 1 03 [ - 03 R
/0 mdx:/o k;lkvc dx:/o [1+2x+3x —|—~-~}dx

. 0.3 03
= [Z -xkl = [x+x2+x3+-~-}o' =0.3+0.09+0.027 + - - - ~ 0.417
0

—---~0.01485

27. If x # 0, divide the second result from Example 3 by x to get:

arctan(x) & P 1, 1,4 154
— —1)k. —1—= Xtz -
FEP IS T C
arctan(x)
As x — 0, the last expression approaches 1, so 111’1’(1) — 1.
x—

29. If x # 0, divide the result from Practice 2 by 2x:

In(1+x) S (-DF . 1 1 1, 134 1
e —Igzk+2~x—§—ix+6x -5~ + = 5 (@sx—0)




31.

33

35-

37

39-

41.

If x # 0, divide the power series for arctan (x) obtained in the solution to Example 4 by x? to get:

arctan (x2 © (—1)k
Ctxz( ):Z( 1)

k=0

1 1 1
4k ] A 28 T2 0 —
2k+1x =1 3x —|—5x 7x + 1(as x — 0)

If x # 0, replace x with —x? in the power series for In (1 + x) and divide by 3x to get:

In (1 - x2) 1 & % >, x2k-1 1. 15 15
_ L = 7x —_— .

=—— —_— = — = —x— —x" —
3x 3xk:21 k k; 3k 3760 9

- — 0(asx — 0)

(Check that you get the same result in Problems 27-34 from applying L'Hopital’s Rule.)

1 [o¢]
T = ) (—=1)%- x¥ (a geometric series with ratio —x precisely when |—x| < 1= |x| < 1= -1 <x <1,
k=0

so the interval of convergence is (—1,1).

From Example 3, we know that:

1 1 1 = 1
Inl-x)=-x—-x—-x—-x*—.. ==} - xk
k=0

Applying the Ratio Test to this series:

5|kt [ — x|

as k — o0, so the series converge when |x| < 1 and diverges when |x| > 1. At x = 1, the series becomes a
multiple of the harmonic series, which diverges; at x = —1, the series becomes a multiple of the alternating
harmonic series, which converges conditionally. So the interval of convergence is [—1,1).

From Example 3, we know that:

> (=1 15 15 1
arctan(x) = k;} ék +)1x2k+1 =x— §x3 + g9(5 - 79(7 I
Applying the Ratio Test to this series:
(_1)k+1x2k+3
% | 2k+1 2 1
(_1)kx2k+1 - 2k+3
2k+1

as k — oo, so the series convereges when x> < 1 = |x| < 1 and diverges when x> > 1 = |x| > 1. At
x = %1, the series converges conditionally (by the Alternating Series Test—check this) so the interval of
convergence is [—1,1].

From Example 2 we know that:

o0
1-x)2=Y k- l=14+2v+32+4x + 524+
k=1

Applying the Ratio Test to this series:

(k41) - x*
k- k1

_k+1
Tk

|x|] — 1

as k — oo, so the series converges when |x| < 1 and diverges when |x| > 1. At x = 1, the series becomes
Y2 | k, which diverges; at x = —1, the series becomes Y 3> ; k- (—1)¥~!, which also diverges. The interval
of convergence is (—1,1).
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Section 10.4
1. With f(x) =In(1+x), f(0) =In(1) =0 and:
fll)=@1+x)"" = f(0)=1
fl(x) = =1+x)72 = f(0) = -1
fx) =2(1+2)7° = f7(0) =2
fH(x) = -6(14x)"*= fH0) = —6

and so on, so the first few terms of the MacLaurin
series for f(x) are:

0+1'x+;—3x2+%x3+;—!6x4+m
:x—%x2+%x3—%x4+~'
3. f(x) = arctan(x) = f(0) = arctan(0) = 0 and:
) = 1o = f0) =1
1 _ 2x 1" _
P10 =~ g = £10) =0
1" o 6x% —2 11 _
P = = 10 =2
W = 226=%) o)
I = = 0 =0

and so on, so the first few terms of the MacLaurin
series for f(x) are:

fH(x) = cos(x) = fH(0) =1

From here the derivatives repeat the same pat-
tern, so f®)(0) = 0, f®)(0) = —1 and the first
few terms of the MacLaurin series for f(x) are:
Lo 14 15
1—5x +5x “aX + e
7. With f(x) = sec(x), f(0) = sec(0) =1 and:

f'(x) = sec(x) tan(x) = f/(0) =0

f"(x) = sec®(x) + sec(x) tan?(x) = f(0) =1
" (x) = 5sec®(x) tan(x) + sec(x) tan>(x)
so that f/(0) = 0, while f*(x) = 5sec®(x) +

18 sec®(x) tan?(x) + sec(x) tan*(x) = f#)(0) =
5; the first terms of the MacLaurin series are:

5 5
|_x_l’_ !x _l’_ |_x_l’_ x+

flmy == fFa)=1
fix) = —x 2= fr(1) = -1
f/”(x) — 2x73 = f///(l) — 2
(x) (

and so on, so the first few terms of the Taylor
series are:

11. With f(x) =sin(x), f (5) =sin(5) =1 and:

(3=
f//(x) — —Sin(x) = f// (%) 1
" (x) = cos(x) = " (g) —0

From here the derivatives repeat the same pattern,
so f®) (Z) =0, f® (Z) = —1 and the first few
terms of the Taylor series:

-5 (-3 s D) g ()




15.

17.

19.

21.

23.

25.

and so on, so the first few terms of the Taylor

series are:
3+1(x—9) —i(x—9)2+i(x—9)3—
6 108 648
. PN WS SV )
Using Py(x) =1 5% + TR cos(x):
x cos(x) Py(x)
0.1 0.995004165  0.995004167
0.2 0.98006657 0.98006666
0.5 0.87758 0.87604
1.0 0.54030 0.54167
20 —04161 —0.3333
, 1, 15
Using Py(x) = x — 3 + i arctan(x):
x arctan(x) Py(x)
0.1 0.09966865  0.09966867
0.2  0.19739% 0.197397
0.5 0.4636 0.4646
1.0 0.7854 0.8667
2.0 1.1071 5.7333
With sin(u) = u — 1u?’ + Lu5 — .-, putu = x?
6 1120 1 ’
(2 2 toe L o10_ .
so that sin (x ) =x"— e +120x and:
1 1 1
(02 _ [ D AU S | B
/sm (x ) dx_C+3x Tl +1320x
With sin(u) = u — 1143 + LuS —-.., putu = x3
6 1120 1 ’
(3 =3t L5 .
so that sin (x ) =X X +120x and:

1 1 1
/Sin<x3) dx =C+ - xt — =104 —_x16 ...

4 60 1920

1
Withe“:1+u+§u2+--~,putu:—xzsothat

e_x2:1—x2+%x4+~~ and:

2 g 1s 15
/e dx=C+x 3x +10x

1
Withe“:1—|—u+§u2+--~,putu:—x3sothat
1
e :1—x3+§x6+~~~ and:

1 1
/e‘x3dx:C+x—Zx4+ﬁx7—“'

27.

29.

31.

33

35-

37

1 1
Multiplysin(x):x—6x3+mx5—~~ by x to
1 1
. 81 = 2—7 4 _ 6_... .
get x -sin (x) = x e —|—120x so:
: _ s 15, 1 7
/x sin (x) dx—C+3x 20~ +840x
. : 15, 15 2
Multiply sin(x) = X=X o = by x
1 1
. qf — 3_7 5 JE— 7_ o
to get x - sin (x) = x cx +120x s0:
1 1 1
2. 1 g —_ 4—7 6 _ 8_
/x sin (x) dx C+4x T —l—%ox
Subtract cos(x) = 1— 1x2 4+ La* — .- from 1
and divide by x? to get:
1—cos(x)  3x%—gxt+.. 11
2 X2 2 24

which has limit % as x — 0.

Subtracte* =1+ x+ %xz +--- from 1 and divide
by x to get:

T—e x+ix2+4-- 1
= :1+7x_|_...
X X 2

which has limit 1 as x — 0.

Dividing sin(x) = x — —x” + —x” — - - -

yields a limit of 1 as x — 0.

Subtract sin(x) = x — éxS + é—OXS — 501—40x7- .

from x — %x?’ and divide by x° to get:

1.5 1 .7
o s o 1 1,
x° 120 5040

. .. 1
which has a limit of 0 as x — 0.
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39-

41.

43.

45.

47.

49.

51.

Starting with e =1+ u + 5 u2 +3 u3 + 3 u4 + .-+, put u = x, then u = —x to get:

, | 1 1 1 1 1, 1.4 1,
sinh(x) = 5 {1+x+2,x+3|x+4 +---]—2{1—x+2!x—3!x—4!x +
1
— 3 5 7
x+§x +ax +ﬁx+
, B 15 15 1, 1 1 1 B
D(smh(x))—D(x—l-?)!x —i—ax —I—ﬁx + - )—1+2|x +Ix +6 6 4... = cosh(x)

(%) = cos (g) +i-sin (g) =0+i-1=1i whilee™ = cos(n) +i-sin(m) = —1+i-0=—1.

3 . . 3 3 3 3-2 3 3-2-1 .
(0> = 1 by definition, while <1> == 3, (2> =5 = 3 and <3) =3 = 1; these agree with

the numbers 1, 3, 3, 1 from Pascal’s triangle and with the coefficients of (1 + x)3 =14 3x +3x% + 5.

The MacLaurin series for (1 + x)% is:

b (0) () 2 () Q) ) a0 ) ) () w

1 1

Using the Binomial Series Theorem, the MacLaurin series for —— = (1 4+ u)™ 2 is:

& Nee=rialai

L (Y (3Y L (VY (5Y L (1N (3Y (3 (7). Ly
2 2 2) 2! 2 2 2/ 3! 2 2 2 2) 4!
1 1 1 3 5 35

: — 2 o (12 12,24 2 6, 2.8 . .
Putting u x- gives — (1—x%) 1+ 7x + g% + T + 128" + - -+, so integrating
term-by-term (and using the fact that arcsin(0) = 0) yields:

arcsin()—x+ x+ix5+i +£ 9+...

6 40 112 1152

With f(x )=(1+x) = f(0) =1, f'(x) = m(1+x)""1 = f/(0) =m, f'(x) = m(m—1)(1+x)"2 =
f(0) = m(m f”( ) = m(m—1)(m—2)(1 +x)m > = f”’(o) m(m —1)(m —2) and f¥(x) =
m(m—1)(m )( —3)(1 +x)"* = f4(0) = m(m —1)(m — 2)(m — 3) so the MacLaurin series is:

(=14 My MO 0 =D =2) 0 =) =D =3)

Section 10.5

. Py(x) =0, P (x) = Pa(x) = x, P3(x) = Py(x) = x — %x3; use technology to create graphs.
Cfx) =In(x) = fllx) =xl = fl(x) = —x 2= f(x) =200 = fW(x) = 6273, 50 Py(x) = 0,

Pi(x) = x, Py(x) = x — 3x2, P3(x) = x — 3x2 4 x3 and Py(x) = x — 322 + $x° — {x*
Py(x) =1, Py(x )—1+(x—1):P2(x):P3(x):P4(x)

) = 1407 = f) = - 0+0)7 = ) = S+ = 0 = — 2040 E =
f(4)(x) = % (14+x)7 2,50 Py(x) =1, Py(x) =1—3x, Po(x) = 1 X +3 3x2, P3(x) =1— %x—b—%xz— 15—6x3,
Py(x) =1—tx+ 322 — 228+ Bt

f(x) = sin(x) = f'(x) = cos(x) = f"(x) = —sin(x) = f"(x) = —cos(x) = f#(x) = sin(x) so
Py(x) =1=Pi(x), Pa(x) =1— % (x = Z)* = Ps(x) and Py(x) =1 — L (x = £)* + & (x— £)*



11.

13.

15.

17.

19.

21.

23.
25.

27.

in(z
Rs(x) = S0 ()0
1 /7r\6 70
IRs(x)| < 720 (5) = 26080 ~ 002
COS(z
Rs(x) = 6f ) (x—0)8
6
)6 = T
—cos(z
Rio(x) = T“ (x—0)10
1 1
R < 6= — 17
[Rio(¥)] < 207680 56700 ~ 00000176
Z
Ro(x) = & (x—0)°
2.722 . 64
|R6(x)|§—720- < T~ 0658
1 1
R - n>6
R = Gy <1000 "2
Ro(r)l < 2 o L5
" (n+1)! = 100000 "=
2.722 . pntl
< >
Ra)l < =575 <1000 7 "2 10

Any derivative of f(x) = cos(x) is either % sin(x)
or + cos(x), so ‘f(”ﬂ)(z)‘ < 1 for any z. Hence:

‘f(n-‘rl)(z)‘ ) ¥
|Rn(x)| = W' — 0" < 1)

As noted in the solution to Example 5, this ex-

n+1

pression approaches 0 as n — oo (for any x).

(a) Using the definition of the derivative:

= lim f(h) = f(0) = lim 767}172 -0
h h—0 h

h—0

£1(0)

(b)

29. (a)

(b)

()

31. (a)

(b)

A21

Forh>0,lety:%éh:$sothat:

P
(0) = lim S T l

y—00 ? y—00 ey
By L'Hopital’s Rule:
1
f(0) = lim =0
Y= 2y - eV

The process for i < 0 is quite similar.
5 (71)k+1 .4

& 2%k-1
(71)50-&-1 . 4‘

1052

= ~ 3.33968
315

*i~00404

2-50-1 99

’ (_1)k+1 4

1
>
< 10000 =k > 20001

2k—1

1 4 4 4
4 arctan (5> e + —— 15625 ~ 0.789589
1
and arctan (239) ~ 0.004184 so:

7~ 4[0.197397 — 0.004184] ~ 3.14162

We are using smaller values of x in the arctan
series, and the powers of these smaller values
of x approach 0 more quickly than the values
of x used in Methods I and IL



