
A2 answers

Section 9.1

1. (a) 32, 64 (b) a5 = 25 (c) an = 2n

3. (a) −1, 1 (b) a5 = (−1)5 (c) an = (−1)n

5. (a) 120, 720 (b) a5 = 5! (c) an = n!

7. 1, 3
2 , 11

6 , 25
12 , 137

60 , 49
20

9. 1, 1
2 , 3

4 , 5
8 , 11

16 , 21
32 11. 1, 0, 1, 0, 1, 0

13. (a) g(5) = −1, g(6) = 1 (b) See below left.

15. (a) t(5) = 21
32 , t(6) = 43

64 (b) See above right.

17. an = 1
n2 19. an = n−1

n 21. an = n
2n

23. −1, 0, 1
3 , 1

2 , 3
5 , 2

3 ; see below left.

25. 1, 2
3 , 3

5 , 4
7 , 5

9 , 6
11 ; see above right.

27. 2, 7
2 , 8

3 , 13
4 , 14

5 , 19
6 ; see below left.

29. 0, 1
2 , − 2

3 , 3
4 , − 4

5 , 5
6 ; see above right.

31. 1, 1
2 , 1

6 , 1
24 , 1

120 , 1
720 ; see below left.

33. 2, 2, 4
3 , 2

3 , 4
15 , 4

45 ; see above right.

35. 2, −2, 2, −2, 2, −2, 2, −2, 2, −2

37.
√

3
2 , −

√
3

2 , 0,
√

3
2 , −

√
3

2 , 0,
√

3
2 , −

√
3

2 , 0,
√

3
2

39. 1, 3, 6, 10, 15, 21, 28, 36, 45, 55

Section 9.2

1. {an} appears to converge; {bn} does not.

3. { fn} appears to converge; {en} does not.

5. converges to 1 7. diverges (to ∞)

9. converges to 1
2 11. converges to ln(3)

13. diverges 15. converges to 0

17. converges to e−1 = 1
e 19. converges to 1

21. Given ε > 0, take N ≥
√

3√
ε
. Then:

n > N ⇒ n >

√
3√
ε
⇒ n2 >

3
ε
⇒ 3

n2 < ε

so that |an − L| =
∣∣∣ 3

n2 − 0
∣∣∣ = 3

n2 < ε.

23. Given ε > 0, take N ≥ 1
ε . Then:

n > N ⇒ n >
1
ε
⇒ 1

n
< ε

so that |an − L| =
∣∣∣ 3n−1

n − 3
∣∣∣ = 1

n < ε.

25. The given sequence is a subsequence of
{

1
n

}
,

which converges (to 0), so the given subsequence
must also converge (to 0).

27. The sequence simplifies to {(−1)n}: the sub-
sequence of even-indexed terms is {1, 1, 1, . . .},
which converges to 1, while the subsequence of
odd-indexed terms is {−1,−1,−1, . . .}, which
converges to −1. Because the given sequence
has two subsequences that converge to different
limits, the original sequence diverges.

29. The given sequence is a subsequence of{(
1 + 5

k
)k
}

, which converges to e5, so the given

sequence also converges to e5.

31. an+1 − an =
[
7− 2

n+1
]
−
[
7− 2

n
]
= 2

n −
2

n+1 =
2

n(n+1) > 0 so {an} is monotonically increasing.

33. an+1 − an = 2n+1 − 2n == 2n [2− 1] = 2n > 0 so
the sequence {an} is monotonically increasing.

35. an+1 − an =
[
5 + 7

3n+1

]
−
[
5 + 7

3n

]
= 7

3n+1 − 7
3n =

−14
3n+1 < 0 so {an} is monotonically decreasing.
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37. an = n+1
n! ⇒ an+1 = n+2

(n+1)! ⇒
an+1

an
= n+2

(n+1)! ·
n!

n+1 = (n+2)·n!
(n+1)2·n! = n+2

(n+1)2 < 1 when n ≥ 1, so
{an} is monotonically decreasing.

39. an =
( 5

4
)n ⇒ an+1 =

( 5
4
)n+1 ⇒ an+1

an
= 5

4 > 1, so
{an} is monotonically increasing.

41. an = n
en ⇒ an+1 = n+1

en+1 ⇒
an+1

an
= n+1

en+1 · en

n =
(n+1)

n·e < 1 when n ≥ 1, so {an} is monotonically
decreasing.

43. f (x) = 5− 3
x ⇒ f ′(x) = 3

x2 > 0, so f (x) is al-
ways increasing, which means that

{
5− 3

n
}

is
monotonically increasing.

45. f (x) = cos
(

1
x

)
⇒ f ′(x) = 1

x2 sin
(

1
x

)
, so

f ′(x) > 0 for x ≥ 1, meaning that f (x) is increas-

ing and
{

cos
(

1
n

)}
is monotonically increasing.

47. an = n+3
n! ⇒ an+1 = n+4

(n+1)! ⇒
an+1

an
= n+4

(n+1)! ·
n!

n+3 = (n+4)·n!
(n+1)(n+3)·n! = n+4

(n+1)(n+3) < 1 when
n ≥ 1, so {an} is monotonically decreasing.

49. an+1 − an =
[
1− 1

2n+1

]
−
[
1− 1

2n

]
= 1

2n − 1
2n+1 =

1
2n+1 > 0 so the sequence

{
1− 1

2n

}
is monotoni-

cally increasing.

51. an = n+1
en ⇒ an+1 = n+2

en+1 ⇒
an+1

an
= n+2

en+1 · en

n+1 =
(n+2)
(n+1)·e =< 1 when n ≥ 1, so

{
n+1
en

}
is monotoni-

cally decreasing.

53. For N = 4: a1 = 4⇒ a2 = 1
2

(
4 + 4

4

)
= 2.5⇒

a3 = 1
2

(
2.5 + 4

2.5

)
= 2.05⇒ a4 = 1

2

(
2.05 + 4

2.05

)
≈ 2.00061. For N = 9: a1 = 9 ⇒ a2 =
1
2
(
9 + 9

9
)
= 5 ⇒ a3 = 1

2
(
5 + 9

5
)
= 3.2 ⇒ a4 =

1
2
(
3.2 + 9

3.2
)
= 3.00625. For N = 5: a1 = 5 ⇒

a2 = 1
2
(
5 + 5

5
)
= 3 ⇒ a3 = 1

2
(
3 + 5

3
)
≈ 2.333 ⇒

a4 ≈ 1
2
(
2.333 + 5

2.333
)
≈ 2.238.

55. (a) Solving 0.01 = 0.02
0.02k+1 for k:

0.02k+ 1 =
0.02
0.01

= 2⇒ 0.02k = 1⇒ k =
1

0.02

or 50 generations.

(b) Solving 1
2 p = p

kp+1 for k in terms of p:

kp + 1 =
p

0.5p
= 2⇒ kp = 1⇒ k =

1
p

57. (a) The first “few” grains can be anywhere on the
x-axis. (b) After placing “a lot of grains,” there
will be a large pile of sand close to x = 3.

59. (a) −1 ≤ sin(n) ≤ 1 for all integers n, so the first
few grains will be scattered between −1 and +1
on the x-axis. (b) After placing “a lot of grains,”
the sand will be scattered “uniformly” along the
interval from −1 to +1. (c) A formal proof of
this fact is rather sophisticated, but the result is
interesting: no two grains ever end up on the
same point on the x-axis.

Section 9.3

1.
∞

∑
k=1

1
k

3.
∞

∑
k=1

2
3k 5.

∞

∑
k=1

(
−1

2

)k

7. s1 = 1, s2 = 1 + 4 = 5, s3 = 5 + 9 = 14,
s4 = 14 + 16 = 30; see below left.

9. s1 = 1
3 , s2 = 7

12 , s3 = 47
60 , s4 = 19

20 ; above center.

11. s1 = 1
2 , s2 = 3

4 , s3 = 7
8 , s4 = 15

16 ; above right.

13. a1 = s1 = 3, a2 = s2 − s1 = 2 − 3 = −1,
a3 = s3− s2 = 4− 2 = 2, a4 = s4− s3 = 5− 4 = 1

15. a1 = 4, a2 = 0.5, a3 = −0.2, a4 = 0.5

17. a1 = 1, a2 = 0.1, a3 = 0.01, a4 = 0.001

19. 0.888 . . . = 0.8 + 0.08 + 0.008 + · · · =
∞

∑
k=1

8
10k

21.
∞

∑
k=1

5
10k 23.

∞

∑
k=1

a
10k 25.

∞

∑
k=1

17
100k

27.
∞

∑
k=1

7
100k 29.

∞

∑
k=1

abc
1000k 31.

∞

∑
k=0

30 (0.8)k

33. 80%, 64%, 51.2%, (0.8)n · 100%

35. lim
k→∞

(
1
4

)k
= 0, so

∞

∑
k=1

(
1
4

)k
= 0 may or may

not converge. (Section 9.4 shows it converges.)
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37. lim
k→∞

(
4
3

)k
= ∞ 6= 0, so

∞

∑
k=1

(
4
3

)k
diverges.

39. lim
k→∞

sin(k)
k

= 0, so
∞

∑
k=1

sin(k)
k

may or may not

converge. (Techniques you may learn in more
advanced courses will show that it converges.)

41. lim
k→∞

cos(k) does not exist, so
∞

∑
k=1

cos(k) diverges.

43. lim
k→∞

k2 − 20
k5 + 4

= 0, so
∞

∑
k=1

k2 − 20
k5 + 4

may or may not

converge. (We’ll see later that it converges.)

45. Let sn =
n

∑
k=1

ak. Then:

cA = c ·
∞

∑
k=1

ak = c · lim
n→∞

sn = lim
n→∞

c · sn

= lim
n→∞

c ·
n

∑
k=1

ak = lim
n→∞

n

∑
k=1

c · ak =
∞

∑
k=1

c · ak

47. If sn =
n

∑
k=1

ak, ∑∞
k=1 ak = A means that lim

n→∞
sn =

A. We also know that lim
n→∞

sn−1 = A and that
an = sn − sn−1, so:

lim
n→∞

, an = lim
n→∞

, [sn − sn−1]

= lim
n→∞

, sn − lim
n→∞

, sn−1 = A− A = 0

Section 9.4

1. This is a geometric series with |r| = 2
7 < 1, so it

converges to:

1
1− r

=
1

1− 2
7
=

1
5
7
=

7
5

3. This is a geometric series with |r| = 4
7 < 1, so it

converges to:

1
1− r

=
1

1−
(
− 4

7

) =
1
11
7

=
7
11

5. This is a geometric series with |r| = 2
7 < 1, so it

converges, but the index starts at k = 1, hence:

∞

∑
k=1

(
2
7

)k
=

[
∞

∑
k=0

(
2
7

)k
]
−
(

2
7

)0

=
1

1− 2
7
− 1 =

7
5
− 1 =

2
5

7. This geometric series diverges: |r| = 7
4 > 1.

9. This is a geometric series with |r| = 2
7 < 1, so it

converges, but the index starts at k = 5, hence:[
∞

∑
k=0

(
2
7

)k
]
−
[

4

∑
k=0

(
−2

7

)k
]

=
1

1 + 2
7
−
[

1− 2
7
+

4
49
− 8

343
+

16
2401

]
= − 32

21609
≈ −0.00148

11. This geometric series diverges: |r| = π
3 > 1.

13.
∞

∑
k=0

(
1
3

)k
=

1
1− 1

3
=

3
2

15.
∞

∑
k=3

(
1
2

)k
=

1
8
·

∞

∑
k=3

(
1
2

)k
=

1
8
· 1

1− 1
2
=

1
4

17.
∞

∑
k=1

(
−2

3

)k
= −2

3
·

∞

∑
k=0

(
−2

3

)k
= −2

3
· 3

5
= −2

5

19. (a)
1

1− 1
2
− 1 =

1
1
2
− 1 = 2− 1 = 1

(b)
1

1− 1
3
− 1 =

1
2
3
− 1 =

3
2
− 1 =

1
2

(c)
1

1− 1
a
− 1 =

1
a−1

a
− 1 =

a
a− 1

− a− 1
a− 1

=
1

a− 1

21. (a) 40(0.4)n (b)
∞

∑
n=0

40(0.4)n (c)
40

1− 0.4
≈ 66.67 ft

23. (a)
∞

∑
n=1

(
1
2

)n
(b)

1
2

,
1
4

,
(

1
2

)n
(c) All of it.

25.
∞

∑
k=0

(
1
4

)k
=

1
1− 1

4
=

4
3

27. (a) We can express the total area as:

1 + 3 · 1
9
+ 3 · 4 · 1

92 + 3 · 42 · 1
93 + · · ·

= 1 +
3
9
+

3
9
· 4

9
++

3
9
· 42

92 + · · ·

= 1 +
1
3

[
1 +

4
9
+

(
4
9

)2
+ · · ·

]

= 1 +
1
3
· 1

1− 4
9
= 1 +

1
3
· 9

5
= 1 +

3
5
= 1.6

(b) Let L be the length of one side of the original
triangle, so the perimeter of the original triangle
is 3L. The first step replaces each original side
with four smaller sides each 1

3 the length of the
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original side, so the perimeter after the first step
is 3 · 4 · 1

3 L = 4L. The second step replaces each
of the 12 existing sides with four smaller sides
each 1

3 the length of the previous sides, so the

perimeter is now 3 · 42 · 1
3

(
1
3 L
)
= 3L

(
4
3

)2
. In

general, the perimeter after n steps is 3L
(

4
3

)n
,

which has limit ∞ as n increases without bound.

29. (a) The total height can be expressed as:

2 · 1 + 2 · 1
2
+ 2 · 1

4
+ 2 · 1

8
+ · · · = 2

1− 1
2
= 4

(b) The total surface area is:

4π · 12 + 4π

(
1
2

)2
+ 4π

(
1
4

)2
+ 4π

(
1
8

)2
+ · · ·

= 4π

[
1 +

1
4
+

(
1
4

)2
+

(
1
4

)3
+ · · ·

]

= 4π · 1
1− 1

4
= 4π · 4

3
=

16π

3
≈ 16.755

(c) The total volume is:

4
3

π · 13 +
4
3

π ·
(

1
2

)3
+

4
3

π ·
(

1
4

)3
+ · · ·

=
4
3

π

[
1 +

1
8
+

(
1
8

)2
+ · · ·

]

=
4
3

π · 1
1− 1

8
=

4
3

π · 8
7
=

32π

21
≈ 4.787

31. We can rewrite 0.8 = 0.888 . . . as:

8
10
·

∞

∑
k=0

(
1

10

)k
=

8
10
· 1

9
10

=
8
9

Similarly, 0.9 = 0.999 . . . =
9
10
· 1

9
10

= 1 and

0.285714 =
285714

1000000
· 1

999999
1000000

=
285714
999999

.

33. The series converges precisely when:

|2x + 1| < 1 ⇒ −1 < 2x + 1 < 1

⇒ −2 < 2x < 0 ⇒ −1 < x < 0

35. The series converges if and only if:

|1− 2x| < 1 ⇒ −1 < 2x− 1 < 1

⇒ 0 < 2x < 2 ⇒ 0 < x < 1

37. The series converges when x satisfies:

|7x| < 1 ⇒ −1 < 7x < 1 ⇒ −1
7
< x <

1
7

39. The ratio is x
2 , so the series converges when:∣∣∣ x

2

∣∣∣ < 1 ⇒ −1 <
x
2
< 1 ⇒ −2 < x < 2

41. The ratio is 2x, so the series converges when:

|2x| < 1 ⇒ −1 < 2x < 1 ⇒ −1
2
< x <

1
2

43. The ratio is sin(x), so the series converges when:
|sin(x)| < 1, which holds true for all values of x
except odd multiples of π

2 .

45. The first student stated the formula correctly, but
it is valid only when |x| < 1, so the second stu-
dent should not have put x = 2 into the formula.

47. This is a telescoping sum: s4 = 1
3 −

1
5 = 2

15 ,
s5 = 1

3 −
1
6 = 1

6 , sn = 1
3 −

1
n+1

49. This is a telescoping sum: s4 = 13 − 53 = −124,
s5 = 13 − 63 = −215, sn = 13 − (n + 1)3

51. This is a telescoping sum: s4 = f (1) − f (5),
s5 = f (1)− f (6), sn = f (1)− f (n + 1)

53. s4 = sin(1)− sin
(

1
5

)
≈ 0.643

s5 = sin(1)− sin
(

1
6

)
≈ 0.676

sn = sin(1)− sin
(

1
n+1

)
→ sin(1) ≈ 0.841

55. s4 = 1
4 −

1
25 = 0.21; s5 = 1

4 −
1

36 = 2
9

sn = 1
4 −

1
(n+1)2 → 1

4

57. On your own.

59. On your own.

61. (a)
3
4

(b)
c

(c− 2)2

Section 9.5

1. Sum.
∞

∑
k=1

3.
∞

∑
k=1

f (k) 5.
∞

∑
k=2

f (k)

7. f (1) + f (2) 9. f (2) + f (3)

11. f (1) + f (2) + f (3) <
∫ 4

1 f (x) dx
. < f (2) + f (3) + f (4) <

∫ 5
2 f (x) dx

13. (a) You did well. (b) You may have done well
or you may have done poorly. (c) You may have
done well or poorly. (d) You did poorly.
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15. (a) Unknown is good. (b) Unknown might be
good or might be bad. (c) Unknown might be
good or might be bad. (d) Unknown is bad.

17. ∑
k=2

1
k3 − 5

19. ∑
k=1

1
k2 + 5k

21. (a) k + 4 (b)
k + 4
k + 3

(c)
k + 4
k + 3

23. (a)
3

k + 1
(b)

3
k
3

k+1

(c)
k

k + 1

25. (a) 2k+1 (b) 2k+1

2k (c) 2 27. (a) xk+1 (b) x (c) x

29. converges; 1
2 31. diverges; 2

33. diverges; 1 35. diverges; k
k+1

37. < 39. > 41. >

43. s3 < s5 < s4 < s6 45. s5 < s6 < s4 < s3

47. s1 = 2, s2 = 1, s3 = 1.9, s4 = 1.1, s5 = 1.8,
s6 = 1.2, s7 = 1.7, s8 = 1.3; “funnel-shaped”:

49. s1 = −2, s2 = −0.5, s3 = −1.3, s4 = −0.7,
s5 = −1.1, s6 = −0.9, s7 = 1.1, s8 = 1.0; initially
“funnel-shaped”:

51. The terms ak need to alternate in sign.

53. (a) D, E, F (b) A, D (c) D

55.

57.

Section 9.6

1. f (x) = (2x + 5)−1 is positive, continuous and
decreasing on [1, ∞), and:

lim
M→∞

∫ M

1

1
2x + 5

dx = lim
M→∞

[
ln (2x + 5)

2

]M

1
= ∞

so
∫ ∞

1

1
2x + 5

dx and
∞

∑
k=1

1
2k + 5

both diverge.

3. f (x) = (2x + 5)−
3
2 is positive, continuous and

decreasing on [1, ∞), and:∫ M

1
(2x + 5)−

3
2 dx =

[
−1√

2x + 5

]M

1
→ 1√

7

as M→ ∞ so
∫ ∞

1
(2x + 5)−

3
2 dx converges, hence

∞

∑
k=1

1

(2k + 5)
3
2

converges.

5. On [2, ∞), f (x) =
1

x · [ln(x)]2
is positive, continu-

ous and decreasing, and:∫ M

1

1

1 · [ln(x)]2
dx =

[
−1

ln(x)

]M

1
→ 1

ln(2)

as M→ ∞ so
∫ ∞

1

1

1 · [ln(x)]2
dx converges, hence

∞

∑
k=2

1

k · [ln(k)]2
converges.

7. f (x) =
1

1 + x2 is positive, continuous and de-

creasing (everywhere), and:∫ M

1

1
1 + x2 dx = [arctan(x)]M1 →

π

2
− π

4
=

π

4

as M → ∞ so
∫ M

1

1
1 + x2 dx converges, hence

∞

∑
k=1

1
k2 + 1

converges.
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9.
∞

∑
k=1

[
1
k
− 1

k + 3

]
is a telescoping series:

[
1− 1

4

]
+

[
1
2
− 1

5

]
+

[
1
3
− 1

6

]
+

[
1
4
− 1

7

]
+

[
1
5
− 1

8

]
+ · · · = 1 +

1
2
+

1
3

so the series converges to 11
6 . The Integral Test also works because f (x) =

1
x
− 1

x + 3
is positive, continuous

and decreasing (you should verify this), and:

lim
M→∞

∫ M

1

[
1
x
− 1

x + 3

]
dx = lim

M→∞

[
ln(x)− ln(x + 3)

]M

1
= lim

M→∞

[
ln
(

M
M + 3

)
− ln(1) + ln(4)

]
= ln(4)

Because the improper integral converges, the series converges as well, but the Integral Test does not tell us
the sum of the series. In this instance, the “telescoping series” method is both easier and more precise.

11. Applying the Integral Test to
∞

∑
k=1

1
k(k + 5)

using f (x) =
1

x(x + 5)
(you should verify that this function is

positive, continuous and decreasing) and Partial Fraction Decomposition:

lim
M→∞

∫ M

1

1
5

[
1
x
− 1

x + 5

]
dx = lim

M→∞

1
5

[
ln(x)− ln(x + 5)

]M

1
= lim

M→∞

1
5

[
ln
(

M
M + 5

)
+ ln(6)

]
=

ln(6)
5

Because the improper integral converges, the series converges as well, but we can use the same partial
fraction decomposition to turn the series into a telescoping series and find its exact value:[

1− 1
6

]
+

[
1
2
− 1

7

]
+

[
1
3
− 1

8

]
+

[
1
4
− 1

9

]
+

[
1
5
− 1

10

]
+

[
1
6
− 1

11

]
+ · · · = 1 +

1
2
+

1
3
+

1
4
+

1
5
=

137
60

13. Applying the Integral Test to
∞

∑
k=1

ke−k2
using f (x) = xe−x2

(verify it is positive, continuous and decreasing):

lim
M→∞

∫ M

1
xe−x2

dx = lim
M→∞

[
−1
2ex2

]M

1
= lim

M→∞

[
−1

2eM2 +
1
2e

]
=

1
2e

Because the improper integral converges, the series converges as well.

15. Applying the Integral Test to
∞

∑
k=1

1√
6k + 10

using f (x) =
1√

6x + 10
(verify it is positive, continuous and

decreasing):

lim
M→∞

∫ M

1
(6x + 10)−

1
2 dx = lim

M→∞

[
1
3

√
6x + 10

]M

1
= lim

M→∞

1
3

[√
6M + 10− 4

]
= ∞

Because the improper integral diverges, the series diverges as well.

17. converges (p = 4 > 1) 19. diverges (p = 1
5 ≤ 1) 21. diverges (p = 1 ≤ 1)

23. converges (p = 3
2 > 1) 25. converges (p = 4

3 > 1) 27. diverges (p = 2
3 ≤ 1)

29.
∫ 11

1

1
x3 dx ≤ s10 ≤ 1 +

∫ 10

1

1
x3 dx ⇒ 0.4958677 < s10 < 1.495

∫ 101

1

1
x3 dx ≤ s100 ≤ 1 +

∫ 100

1

1
x3 dx ⇒ 0.0.499951 < s100 < 1.49995

∫ 1000001

1

1
x3 dx ≤ s1000000 ≤ 1 +

∫ 1000000

1

1
x3 dx ⇒ 0.5000000 < s1000000 < 1.5000000
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31. ln(11) < s10 < 1 + ln(10),
4.6151 < s100 < 5.6052,
13.8155 < s1000000 < 14.8155

33. arctan(11)− π
4 < s10 < 1

2 + arctan(11)− π
4 ,

0.7755 < s100 < 1.2754,
0.7854 < s1000000 < 1.2854

35. s10 =
10

∑
k=1

1
k4 ≈ 1.08203658 ⇒ s11 ≈ 1.08210488

and
∫ ∞

11

1
x4 dx =

1
3993

≈ 0.00025044, so:

1.08228702 <
∞

∑
k=1

1
k4 < 1.08235532

Using n = 20 yields:

1.08232058 <
∞

∑
k=1

1
k4 < 1.08232572

37.
∫ ∞

11

1
x2 + 1

dx ≈ 0.09065989, s10 ≈ 0.98179282

and s11 ≈ 0.98998954, so:

1.07245271 <
∞

∑
k=1

1
k2 + 1

< 1.08064943

Using n = 20 yields:

1.07552492 <
∞

∑
k=1

1
k2 + 1

< 1.07778736

39. Using n = 10: 2.5984 <
∞

∑
k=1

1

k
√

k
< 2.6258

Using n = 20: 2.6071 <
∞

∑
k=1

1

k
√

k
< 2.6175

41. Use the substitution u = ln(x)⇒ du = 1
x dx and

the Integral Test to see that the improper integral:∫ ∞

2

1
x · [ln(x)]q

dx

diverges for q ≤ 1 and converges for q > 1, hence
the series does as well.

43. converges (q = 3 > 1)

45. diverges (ln
(
k3) = 3 ln(k) so q = 1 ≤ 1)

Section 9.7

1. 0 ≤ cos2(k) ≤ 1 ⇒ 0 ≤ cos2(k)
k2 ≤ 1

k2 so
∞

∑
k=1

cos2(k)
k2 converges by BCT with

∞

∑
k=1

1
k2 .

3. n− 1 < n⇒ 5
n− 1

≥ 5
n

so
∞

∑
n=3

5
n− 1

diverges by

comparison with
∞

∑
n=3

5
n

, which diverges because

it is a multiple of p-series with p = 1.

5. 3 + cos(m) ≥ 2 so
∞

∑
m=1

3 + cos(m)

m
diverges by

comparison with
∞

∑
m=1

2
m

, which diverges because

it is a multiple of the harmonic series.

7. For k ≥ 3, ln(k) > 1 and
ln(k)

k
>

1
k

, so
∞

∑
k=2

ln(k)
k

diverges by comparison with
∞

∑
k=2

1
k

.

9. k ≥ 9 ⇒ 0 <
k + 9
k · 2k ≤

2k
k · 2k =

1
2k−1 so

∞

∑
k=1

k + 9
k · 2k

converges by comparison with
∞

∑
k=1

1
2k−1 (a geo-

metric series with ratio 1
2 < 1).

11. k ≥ 2 ⇒ k! ≥ k(k − 1) ≥ k
(

k− 1
2

k
)

=
1
2

k2 ⇒

0 <
1
k!

<
2
k2 so

∞

∑
k=1

1
k!

converges by comparison

with
∞

∑
k=1

2
k2 (a p-series with p = 2 > 1).

13. Using the LCT with the harmonic series:

lim
k→∞

k+1
k2+4

1
k

= lim
k→∞

k2 + k
k2 + 4

= 1

so
∞

∑
k=3

k + 1
k2 + 4

because
∞

∑
k=3

1
k

diverges.

15. Diverges by LCT with the harmonic series.

17. Converges by LCT with the p-series
∞

∑
k=1

1
k3 :

lim
k→∞

k3

(1+k2)3

1
k3

= lim
k→∞

k6

k6 + 2k4 + 3k2 + 1
= 1

19. Diverges by LCT with harmonic series.

21. Converges by LCT with the p-series
∞

∑
k=1

1
k3
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23. Converges by LCT with the p-series
∞

∑
n=3

1
n2

25. Diverges by LCT with the p-series
∞

∑
k=1

1√
k

27. Converges by LCT with the p-series
∞

∑
k=2

1
k3

29. Converges by LCT with the p-series
∞

∑
k=1

1
k2

31. Diverges by LCT with the p-series
∞

∑
k=1

1√
k

33. Diverges by LCT with harmonic series.

35. Diverges by LCT with harmonic series.

37. Diverges by LCT with harmonic series.

39. Diverges by LCT with the p-series
∞

∑
k=1

1√
k

41. Converges by LCT with
∞

∑
k=1

1
3k

43. Diverges by Test for Divergence.

45. Converges by LCT with
∞

∑
k=1

1
ek

47. Converges by LCT with the p-series
∞

∑
n=1

1
n2

49. Diverges by LCT with harmonic series.

51. Converges by LCT with the p-series
∞

∑
n=1

1
n3

53. Diverges by Test for Divergence.

55. Diverges by Test for Divergence.

57. Converges: geometric series with r = 1
3 .

59. Diverges by Test for Divergence.

61. Converges: geometric series with r = e−1.

63. Converges: geometric series with r = π2

e3 < 1
2 .

65. Converges by BCT with the p-series
∞

∑
n=1

1
n3

67. Converges by Integral Test.

69. Diverges by LCT with harmonic series.

71. For x ≥ 5, ln(x) <
√

x; to verify this, note that:

D (ln(x)) =
1
x
≤ 1

2
√

x
= D

(√
x
)

and ln(5) <
√

5. Hence for k ≥ 5:

ln(k)
k2 <

√
k

k2 =
1

k
3
2

so
∞

∑
k=2

ln(k)
k2 converges by BCT with

∞

∑
k=2

1

k
3
2

.

73. Diverges by LCT with harmonic series.

75. Diverges by LCT with harmonic series.

77. Diverges by Test for Divergence.

Section 9.8

1. (a) See below left. (b) Alternating (so far).

3. (a) See above right. (b) Alternating (so far).

5. (a) See below. (b) Not alternating.

7. Alternating: a1 = 2, a2 = −1, a3 = 2, a4 = −1,
a5 = 2

9. Not alternating: a1 = 2, a2 = 1, a3 = −0.9,
a4 = 0.8, a5 = −0.1

11. Not alternating: a1 = −1, a2 = 2, a3 = −1.2,
a4 = 0.2, a5 = 0.2

13. A has decreasing partial sums, so terms are all
negative; C has increasing partial sums, so terms
are all positive.

15. B has increasing partial sums, so terms are all
positive (they do not alternate).

17. Converges by AST. 19. Converges by AST.

21. Diverges by Test for Divergence.

23. Converges by AST. 25. Converges by AST.

27. Diverges by Test for Divergence.

29. The AST does not apply to this series because the
terms are all negative, but it does converge; factor
out −2 and use the LCT with the resulting series
and a geometric series.

31. Converges because all terms are 0.



A10 answers

33. (a) s4 = 1− 1
4 +

1
9 −

1
16 = 115

144 ≈ 0.79861
(b) |a5| = 1

25 = 0.04 (c) 0.75861 < S < 0.83861

35. (a) s4 = 1
ln(2) −

1
ln(3) +

1
ln(4) −

1
ln(5) ≈ 0.6325

(b) |a5| = 1
ln(6) ≈ 0.5581 (c) 0.0744 < S < 1.1906

37. (a) s4 ≈ 0.20992 (b) |a5| = (0.8)6 ≈ 0.26214
(c) −0.05222 < S < 0.47206

39. (a) s4 ≈ 0.441836 (b) |a5| = sin
(

1
5

)
≈ 0.198669

(c) 0.243167 < S < 0.640505

41. (a) s4 = −1+ 1
8 −

1
27 +

1
64 ≈ −0.896412

(b) |a5| = 0.008 (c) −0.904412 < S < −0.888412

43. 1
(N+1)+6 ≤

1
100 ⇒ N + 7 ≥ 100⇒ N ≥ 93

45. We need 2√
(N+1)+21

≤ 1
100 ⇒

√
N + 22 ≥ 200⇒

N + 22 ≥ 40000⇒ N ≥ 39978

47.
(

1
3

)N+1
≤ 1

500 ⇒ N + 1 ≥ ln(500)
ln(3) ≈ 5.66, so use

N = 5.

49. We need 1
(N+1)4 ≤ 1

1000 ⇒ (N + 1)4 ≥ 1000 ⇒
N + 1 > 5.62⇒ N > 4.62, so use N = 5.

51. 1
(N+1)+ln(N+1) ≤

1
25 ⇒ (N + 1) + ln(N + 1) ≥ 25;

this will certainly be true if N + 1 ≥ 25⇒ N ≥ 24
(but some experimenting with a calculator shows
that N = 21 works while N = 20 does not).

53. (a) S(0.3) = 0.3− (0.3)3

3!
+

(0.3)5

5!
− (0.3)7

7!
+ · · ·

(b) s3 = 0.3− (0.3)3

3! + (0.3)5

5! ≈ 0.29552025

(c) |S− s3| ≤ (0.3)7

7! ≈ 0.000000043

55. (a) S(0.1) = 0.1− (0.1)3

3!
+

(0.1)5

5!
− (0.1)7

7!
+ · · ·

(b) s3 = 0.1− (0.1)3

3! + (0.1)5

5! ≈ 0.09983342

(c) |S− s3| ≤ (0.1)7

7! ≈ 2× 10−11

57. (a) C(1) = 1− 1
2!

+
1
4!
− 1

6!
+ · · ·

(b) s3 = 1− 1
2! +

1
4! ≈ 0.5416667

(c) |S− s3| ≤ 1
6! ≈ 0.0013889

59. (a) 1− (−0.2)2

2!
+

(−0.2)4

4!
− (−0.2)6

6!
+ · · ·

(b) s3 = 1− (−0.2)2

2! + (−0.2)4

4! ≈ 0.980066667

(c) |S− s3| ≤ (−0.2)6

6! ≈ 9× 10−8

61. (a) 1 + (−1) +
(−1)2

2!
+

(−1)3

3!
+

(−1)4

4!
+ · · ·

(b) s3 = 1− 1 + 1
2 = 0.5

(c) |S− s3| ≤ 1
3! =

1
6 ≈ 0.16667

63. (a) 1 + (−0.2) +
(−0.2)2

2!
+

(−0.2)3

3!
+

(−0.2)4

4!
+ · · ·

(b) s3 = 1− 0.2 + 0.04
2 = 0.82

(c) |S− s3| ≤ (0.2)4

6 ≈ 0.0013333

Section 9.9

1.
∞

∑
k=1

∣∣∣∣∣ (−1)k+1

k + 2

∣∣∣∣∣ = ∞

∑
k=1

1
k + 2

, which diverges (by

LCT with the harmonic series) so
∞

∑
k=1

(−1)k+1

k + 2
is not absolutely convergent, however the AST
applies, so it converges conditionally.

3.
∞

∑
n=1

∣∣∣∣(−1)n+1 · 5
n3

∣∣∣∣ = 5
∞

∑
n=1

1
n3 , which converges,

so
∞

∑
n=1

(−1)n+1 · 5
n3 converges absolutely.

5.
∞

∑
k=0

∣∣∣(−0.5)k
∣∣∣ =

∞

∑
k=0

(0.5)k is a convergent geo-

metric series, so
∞

∑
k=0

(−0.5)k converges absolutely.

7.
∞

∑
k=1

∣∣∣∣∣ (−1)k+1

k2

∣∣∣∣∣ = ∞

∑
k=1

1
k2 converges (by the P-Test),

so
∞

∑
k=1

(−1)k+1

k2 converges absolutely.

9.
∞

∑
n=2

∣∣∣∣(−1)n · ln(n)
n

∣∣∣∣ =
∞

∑
n=2

ln(n)
n

diverges (by

BCT with the harmonic series), but the AST says
∞

∑
n=2

(−1)n · ln(n)
n

converges conditionally.

11.
∞

∑
k=1

∣∣∣∣∣ (−1)k

k + ln(k)

∣∣∣∣∣ = ∞

∑
k=1

1
k + ln(k)

diverges by BCT

with
∞

∑
k=1

1
2k

, but the AST applies to
∞

∑
k=1

(−1)k

k + ln(k)
,

so it converges conditionally.

13.
∞

∑
k=1

∣∣∣∣(−1)k · sin
(

1
k

)∣∣∣∣ =
∞

∑
k=1

sin
(

1
k

)
diverges

(by LCT with the harmonic series), but the AST

says
∞

∑
k=1

(−1)k · sin
(

1
k

)
converges conditionally.



A11

15.
∞

∑
k=1

√
k sin

(
1
k2

)
converges by LCT with

∞

∑
k=1

1

k
3
2

,

so
∞

∑
k=1

(−1)k
√

k sin
(

1
k2

)
converges absolutely.

17.
∞

∑
m=2

(−1)m · ln(m)

ln (m3)
diverges, because the terms

do not approach 0.

19. Converges conditionally.

21. Diverges by Test for Divergence.

23. Converges absolutely (all terms are 0).

25. Converges conditionally.

27. Diverges by Test for Divergence.

29. Converges absolutely.

31.
n!

(n + 1)!
=

n!
(n + 1) · n!

=
1
n

33.
(n− 1)!
(n + 1)!

=
(n− 1)!

(n + 1) · n · (n− 1)!
=

1
n(n + 1)

35.
n!

(n + 2)!
=

n!
(n + 2)(n + 1) · n!

=
1

(n + 1)(n + 2)

37.
2 · n!

n! · (n + 1)(n + 2) · · · (2n)
=

2
(n + 1)(n + 2) · · · (2n)

39.
n · n · n · · · n · n

1 · 2 · 3 · · · (n− 1) · n =
n
1
· n

2
· n

3
· · · n

n− 1
· n

n

41.
1

k+1
1
k

=
k

k + 1
→ 1, so the Ratio Test is inconclu-

sive; series diverges (harmonic series).

43.
1

(k+1)3

1
k3

=

(
k

k + 1

)3
→ 1, so the Ratio Test is

inconclusive; series converges (P-Test).

45.

(
1
2

)k+1

(
1
2

)k =
1
2
< 1; absolutely convergent (AC).

47.
1n+1

1n = 1, so the Ratio Test is inconclusive; di-
verges (by Test for Divergence).

49.
1

(k+1)!
1
k!

=
k!

(k + 1)!
=

1
k + 1

→ 0 < 1; AC.

51.
2k+1

(k+1)!
2k

k!

= 2 · k!
(k + 1)!

=
2

k + 1
→ 0 < 1; AC.

53.

(
1
2

)3k+3

(
1
2

)3k =
1
8
< 1; converges absolutely.

55.
(0.9)2k+3

(0.9)2k+1 = 0.81 < 1; converges absolutely.

57.

∣∣∣∣∣ (−1.1)k+1

(−1.1)k

∣∣∣∣∣ = 1.1 > 1; diverges.

59.

∣∣∣∣∣ (x− 5)k+1

(x− 5)k

∣∣∣∣∣ = |x− 5| < 1 ⇒ 4 < x < 6. At

x = 4 and x = 6 the series diverges (by the Test
for Divergence), so the series converges absolutely
on (4, 6) and diverges elsewhere.

61.

∣∣∣∣∣∣∣
(x−5)k+1

(k+1)2

(x−5)k

k2

∣∣∣∣∣∣∣ =
(

k
k + 1

)2

|x− 5| → |x− 5| < 1 ⇒

4 < x < 6. At x = 4 and x = 6 the series con-
verges absolutely (by the P-Test), so the series
converges absolutely on [4, 6] and diverges else-
where.

63.

∣∣∣∣∣∣
(x−2)k+1

(k+1)!
(x−2)k

k!

∣∣∣∣∣∣ = 1
k + 1

· |x− 2| → 0 < 1 for all x, so

the series converges absolutely on (−∞, ∞).

65. Converges absolutely on
[

11
2

,
13
2

]
.

67. Converges absolutely on (−∞, ∞).

69.

∣∣∣∣∣∣
(x+1)2k+2

k+1
(x+1)2k

k

∣∣∣∣∣∣ = k
k + 1

· (x + 1)2 → (x + 1)2 < 1 ⇒

|x + 1| < 1 ⇒ −2 < x < 0; at x = −2 the series
diverges and at x = 0 the series diverges, so it
converges absolutely on (−2, 0).

71. Converges absolutely on [4, 6].

73. Converges absolutely on (−∞, ∞).

75. Converges absolutely on (−∞, ∞).

77. Converges absolutely on (−∞, ∞).

79. k

√(
2
7

)k
=

2
7
< 1; absolutely convergent.

81. k

√
1
k3 → 1, so Root Test inconclusive; absolutely

convergent by P-Test.

83. k

√
1
kk =

1
k
→ 0 < 1; absolutely convergent.
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85. k

√(
1
2
− 2

k

)k
=

1
2
− 2

k
→ 1

2
< 1; AC.

87. k

√(
2 + k

k

)k
=

2 + k
k
→ 1, so Root Test inconclu-

sive; diverges by Test for Divergence.

89. k
√
|cos(kπ)|k = 1, so Root Test is inconclusive;

diverges by Test for Divergence.

91. L = 2
3 < 1; absolutely convergent.

93. k

√
(2k)k

k2k =
2k
k2 =

2
k
→ 0 < 1; AC.

95. 1
2 − 1 + 1

4 + 1
6 + 1

8 + 1
10 + 1

12 + 1
14 + 1

16 −
1
3 + 1

18 +
1

20 + 1
22 + 1

24 + 1
26

97. 1√
2
+ 1

2 − 1+ 1√
6
+ 1√

8
+ 1√

10
− 1√

3
+ 1√

12
+ 1√

14
−

1√
5
+ 1

4 −
1√
7
+ 1√

18
+ 1√

20
− 1

3

99. 1√
2
− 1 + 1

2 +
1√
6
− 1√

3
+ 1√

8
+ 1√

10
− 1√

5
+ 1√

12
−

1√
7
+ 1√

14
− 1

3 + 1
4 + 1√

18
− 1√

11

101. On your own. 103. On your own.

Section 10.1

1. This is a geometric series with ratio x, so it con-
verges precisely when |x| < 1; the interval of
convergence is (−1, 1). (Graph it yourself.)

3. Applying the Ratio Test:∣∣∣∣∣3k+1 · xk+1

3k · xk

∣∣∣∣∣ = |3x|

for all values of x, so the series converges when
|3x| < 1 ⇒ |x| < 1

3 and diverges when |x| > 1
3 .

At x = 1
3 the series becomes

∞

∑
k=1

1, which diverges

by the Test for Divergence; at x = − 1
3 , the series

becomes
∞

∑
k=1

(−1)k, which also diverges by the

Test for Divergence. The interval of convergence
is therefore (− 1

3 , 1
3 ). (The graph is left to you.)

5. Applying the Ratio Test:∣∣∣∣∣∣
xk+1

k+1
xk

k

∣∣∣∣∣∣ = k
k + 1

· |x| −→ |x|

so the series converges when |x| < 1 and diverges
when |x| > 1. At x = 1 the series becomes the
harmonic series, which diverges; at x = −1, the

series becomes the alternating harmonic series,
which converges conditionally (by the Alternat-
ing Series Test). The interval of convergence is
therefore [−1, 1). (The graph is left to you.)

7. Applying the Ratio Test:∣∣∣∣∣ (k + 1) · xk+1

k · xk

∣∣∣∣∣ = k + 1
k
· |x| −→ |x|

so the series converges when |x| < 1 and diverges

when |x| > 1. At x = 1 the series becomes
∞

∑
k=1

k,

which diverges by the Test for Divergence; at

x = −1, the series becomes
∞

∑
k=1

k · (−1)k, which

also diverges by the Test for Divergence. The
interval of convergence is therefore (−1, 1).

9. Applying the Ratio Test:∣∣∣∣∣ (k + 1) · x2k+3

k · x2k+1

∣∣∣∣∣ = k + 1
k
· x2 −→ x2

so the series converges when x2 < 1 ⇒ |x| < 1
and diverges when |x| > 1. At x = 1 the series

becomes
∞

∑
k=1

k, which diverges by the Test for Di-

vergence; at x = −1, the series becomes
∞

∑
k=1
−k,

which also diverges by the Test for Divergence.
The interval of convergence is therefore (−1, 1).

11. Applying the Ratio Test:∣∣∣∣∣∣
xk+1

(k+1)!
xk

k!

∣∣∣∣∣∣ = k! · |x|
(k + 1)!

=
k! · |x|

(k + 1) · k!
=
|x|

k + 1
−→ 0

for any x, so the interval of convergence is there-
fore (−∞, ∞).

13. Applying the Ratio Test:∣∣∣∣∣∣ (k + 1) · x2k+2

42k+2

k · x2k

42k

∣∣∣∣∣∣ = (k + 1) · x2

16k
−→ x2

16

so the series converges when
x2

16
< 1 ⇒ x2 <

16 ⇒ |x| < 4 and diverges when |x| > 4. At

x = ±4 the series becomes
∞

∑
k=1

k, which diverges,

so the interval of convergence is (−4, 4).


