
2
The Derivative

The two previous chapters have laid the foundation for the study of
calculus. They provided a review of some material you will need and
started to emphasize the various ways we will view and use functions:
functions given by graphs, equations and tables of values.

Chapter 2 will focus on the idea of tangent lines. We will develop a
definition for the derivative of a function and calculate derivatives of
some functions using this definition. Then we will examine some of the
properties of derivatives, see some relatively easy ways to calculate the
derivatives, and begin to look at some ways we can use them.

2.0 Introduction to Derivatives

This section begins with a very graphical approach to slopes of tangent
lines. It then examines the problem of finding the slopes of the tangent
lines for a single function, y = x2, in some detail — and illustrates how
these slopes can help us solve fairly sophisticated problems.

Slopes of Tangent Lines: Graphically

The figure in the margin shows the graph of a function y = f (x). We
can use the information in the graph to fill in the table:

x y = f (x) m(x)

0 0 1
1 1 0
2 0 −1
3 −1 0
4 1 1
5 2 1

2

where m(x) is the (estimated) slope of the line tangent to the graph
of y = f (x) at the point (x, y). We can estimate the values of m(x) at
some non-integer values of x as well: m(0.5) ≈ 0.5 and m(1.3) ≈ −0.3,
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for example. We can even say something about the behavior of m(x)
over entire intervals: if 0 < x < 1, then m(x) is positive, for example.

The values of m(x) definitely depend on the values of x (the slope
varies as x varies, and there is at most one slope associated with each
value of x) so m(x) is a function of x. We can use the results in the table
to help sketch a graph of the function m(x) (see top margin figure).

Practice 1. A graph of y = f (x) appears in the margin. Set up a table
of (estimated) values for x and m(x), the slope of the line tangent to
the graph of y = f (x) at the point (x, y), and then sketch a graph of
the function m(x).

In some applications, we need to know where the graph of a function
f (x) has horizontal tangent lines (that is, where the slope of the tangent
line equals 0). The slopes of the lines tangent to graph of y = f (x) in
Practice 1 are 0 when x = 2 or x ≈ 4.25.

Practice 2. At what values of x does the graph of y = g(x) (in the
margin) have horizontal tangent lines?

Example 1. The graph of the height of a rocket at time t appears in
the margin. Sketch a graph of the velocity of the rocket at time t.
(Remember that instantaneous velocity corresponds to the slope of the
line tangent to the graph of position or height function.)

Solution. The penultimate margin figure shows some sample tangent
line segments, while the bottom margin figure shows the velocity of
the rocket. (What so you think happened at time t = 8?) ◀

Practice 3. The graph below shows the temperature during a summer
day in Chicago. Sketch a graph of the rate at which the temperature is
changing at each moment in time. (As with instantaneous velocity, the
instantaneous rate of change for the temperature corresponds to the
slope of the line tangent to the temperature graph.)

The function m(x), the slope of the line tangent to the graph of
y = f (x) at (x, f (x)), is called the derivative of f (x).
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We used the idea of the slope of the tangent line all throughout
Chapter 1. In Section 2.1, we will formally define the derivative of a
function and begin to examine some of its properties, but first let’s see
what we can do when we have a formula for f (x).

Tangents to y = x2

When we have a formula for a function, we can determine the slope
of the tangent line at a point (x, f (x)) by calculating the slope of the
secant line through the points (x, f (x)) and (x + h, f (x + h)):

msec =
f (x + h)− f (x)
(x + h)− (x)

and then taking the limit of msec as h approaches 0:

mtan = lim
h→0

msec = lim
h→0

f (x + h)− f (x)
(x + h)− (x)

Example 2. Find the slope of the line tangent to the graph of the
function y = f (x) = x2 at the point (2, 4).

Solution. In this example, x = 2, so x + h = 2 + h and f (x + h) =

f (2 + h) = (2 + h)2. The slope of the tangent line at (2, 4) is

mtan = lim
h→0

msec = lim
h→0

f (2 + h)− f (2)
(2 + h)− (2)

= lim
h→0

(2 + h)2 − 22

h
= lim

h→0

4 + 4h + h2 − 4
h

= lim
h→0

4h + h2

h
= lim

h→0
[4 + h] = 4

The line tangent to y = x2 at the point (2, 4) has slope 4. ◀

We can use the point-slope formula for a line to find an equation of
this tangent line:

y − y0 = m(x − x0) ⇒ y − 4 = 4(x − 2) ⇒ y = 4x − 4

Practice 4. Use the method of Example 2 to show that the slope of
the line tangent to the graph of y = f (x) = x2 at the point (1, 1) is
mtan = 2. Also find the values of mtan at (0, 0) and (−1, 1).

It is possible to compute the slopes of the tangent lines one point
at a time, as we have been doing, but that is not very efficient. You
should have noticed in Practice 4 that the algebra for each point was
very similar, so let’s do all the work just once, for an arbitrary point
(x, f (x)) = (x, x2) and then use the general result to find the slopes at
the particular points we’re interested in.
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The slope of the line tangent to the graph of y = f (x) = x2 at the
arbitrary point (x, x2) is:

mtan = lim
h→0

msec = lim
h→0

f (x + h)− f (x)
(x + h)− (x)

= lim
h→0

(x + h)2 − x2

h
= lim

h→0

x2 + 2xh + h2 − x2

h

= lim
h→0

2xh + h2

h
= lim

h→0
[2x + h] = 2x

The slope of the line tangent to the graph of y = f (x) = x2 at the point
(x, x2) is mtan = 2x. We can use this general result at any value of x
without going through all of the calculations again. The slope of the
line tangent to y = f (x) = x2 at the point (4, 16) is mtan = 2(4) = 8
and the slope at (p, p2) is mtan = 2(p) = 2p. The value of x determines
the location of our point on the curve, (x, x2), as well as the slope of the
line tangent to the curve at that point, mtan = 2x. The slope mtan = 2x
is a function of x and is called the derivative of y = x2.

Simply knowing that the slope of the line tangent to the graph of
y = x2 is mtan = 2x at a point (x, y) can help us quickly find an
equation of the line tangent to the graph of y = x2 at any point and
answer a number of difficult-sounding questions.

Example 3. Find equations of the lines tangent to y = x2 at the points
(3, 9) and (p, p2).

Solution. At (3, 9), the slope of the tangent line is 2x = 2(3) = 6, and
the equation of the line is y − 9 = 6(x − 3) ⇒ y = 6x − 9.

At (p, p2), the slope of the tangent line is 2x = 2(p) = 2p, and the
equation of the line is y − p2 = 2p(x − p) ⇒ y = 2px − p2. ◀

Example 4. A rocket has been programmed to follow the path y = x2 in
space (from left to right along the curve, as seen in the margin figure),
but an emergency has arisen and the crew must return to their base,
which is located at coordinates (3, 5). At what point on the path y = x2

should the captain turn off the engines so that the ship will coast along
a path tangent to the curve to return to the base?

Solution. You might spend a few minutes trying to solve this problem
without using the relation mtan = 2x, but the problem is much easier
if we do use that result.

Let’s assume that the captain turns off the engine at the point (p, q)
on the curve y = x2 and then try to determine what values p and q
must have so that the resulting tangent line to the curve will go through
the point (3, 5). The point (p, q) is on the curve y = x2, so q = p2 and
the equation of the tangent line, found in Example 3, must then be
y = 2px − p2.
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To find the value of p so that the tangent line will go through the
point (3, 5), we can substitute the values x = 3 and y = 5 into the
equation of the tangent line and solve for p:

y = 2px − p2 ⇒ 5 = 2p(3)− p2 ⇒ p2 − 6p + 5 = 0

⇒ (p − 1)(p − 5) = 0

The only solutions are p = 1 and p = 5, so the only possible points
are (1, 1) and (5, 25). You can verify that the tangent lines to y = x2 at
(1, 1) and (5, 25) both go through the point (3, 5). Because the ship is
moving from left to right along the curve, the captain should turn off
the engines at the point (1, 1). (Why not at (5, 25)?) ◀

Practice 5. Verify that if the rocket engines in Example 4 are shut off at
(2, 4), then the rocket will go through the point (3, 8).

2.0 Problems

1. Use the function f (x) graphed below to fill in the
table and then graph m(x), the estimated slope
of the tangent line to y = f (x) at the point (x, y).

x f (x) m(x) x f (x) m(x)

0.0 2.5
0.5 3.0
1.0 3.5
1.5 4.0
2.0

2. Use the function g(x) graphed below to fill in the
table and then graph m(x), the estimated slope
of the tangent line to y = g(x) at the point (x, y).

x g(x) m(x) x g(x) m(x)

0.0 2.5
0.5 3.0
1.0 3.5
1.5 4.0
2.0
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3. (a) At what values of x does the graph of f
(shown below) have a horizontal tangent line?

(b) At what value(s) of x is the value of f the
largest? Smallest?

(c) Sketch a graph of m(x), the slope of the line
tangent to the graph of f at the point (x, f (x)).

4. (a) At what values of x does the graph of g
(shown below) have a horizontal tangent line?

(b) At what value(s) of x is the value of g the
largest? Smallest?

(c) Sketch a graph of m(x), the slope of the line
tangent to the graph of g at the point (x, g(x)).

5. (a) Sketch the graph of f (x) = sin(x) on the in-
terval −3 ≤ x ≤ 10.

(b) Sketch a graph of m(x), the slope of the line
tangent to the graph of sin(x) at the point
(x, sin(x)).

(c) Your graph in part (b) should look familiar.
What function is it?

6. Match the situation descriptions with the corre-
sponding time-velocity graphs shown below.

(a) A car quickly leaving from a stop sign.

(b) A car sedately leaving from a stop sign.

(c) A student bouncing on a trampoline.

(d) A ball thrown straight up.

(e) A student confidently striding across campus
to take a calculus test.

(f) An unprepared student walking across cam-
pus to take a calculus test.

Problems 7–10 assume that a rocket is following the
path y = x2, from left to right.

7. At what point should the engine be turned off in
order to coast along the tangent line to a base at
(5, 16)?

8. At (3,−7)? 9. At (1, 3)?

10. Which points in the plane can not be reached by
the rocket? Why not?

In Problems 11–16, perform these steps:

(a) Calculate and simplify:

msec =
f (x + h)− f (x)
(x + h)− (x)

(b) Determine mtan = lim
h→0

msec.

(c) Evaluate mtan at x = 2.

(d) Find an equation of the line tangent to the graph
of f at (2, f (2)).

11. f (x) = 3x − 7 12. f (x) = 2 − 7x
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13. f (x) = ax + b where a and b are constants

14. f (x) = x2 + 3x 15. f (x) = 8 − 3x2

16. f (x) = ax2 + bx+ c where a, b and c are constants

In Problems 17–18, use the result:

f (x) = ax2 + bx + c ⇒ mtan = 2ax + b

17. Given f (x) = x2 + 2x, at which point(s) (p, f (p))
does the line tangent to the graph at that point
also go through the point (3, 6)?

18. (a) If a ̸= 0, then what is the shape of the graph
of y = f (x) = ax2 + bx + c?

(b) At what value(s) of x is the line tangent to the
graph of f (x) horizontal?

2.0 Practice Answers

1. Approximate values of m(x) appear in the table in the margin; the
margin figure shows a graph of m(x). x f (x) m(x)

0 2 −1
1 1 −1
2 1

3 0
3 1 1
4 3

2
1
2

5 1 −2

2. The tangent lines to the graph of g are horizontal (slope = 0) when
x ≈ −1, 1, 2.5 and 5.

3. The figure below shows a graph of the approximate rate of tempera-
ture change (slope).

4. At (1, 1), the slope of the tangent line is:

mtan = lim
h→0

msec = lim
h→0

f (1 + h)− f (1)
(1 + h)− (1)

= lim
h→0

(1 + h)2 − 12

h
= lim

h→0

1 + 2h + h2 − 1
h

= lim
h→0

2h + h2

h
= lim

h→0
[2 + h] = 2
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so the line tangent to y = x2 at the point (1, 1) has slope 2. At (0, 0):

mtan = lim
h→0

msec = lim
h→0

f (0 + h)− f (1)
(0 + h)− (0)

= lim
h→0

(0 + h)2 − 02

h
= lim

h→0

h2

h
= lim

h→0
h = 0

so the line tangent to y = x2 at (0, 0) has slope 0. At (−1, 1):

mtan = lim
h→0

msec = lim
h→0

f (−1 + h)− f (−1)
(−1 + h)− (−1)

= lim
h→0

(−1 + h)2 − (−1)2

h
= lim

h→0

1 − 2h + h2 − 1
h

= lim
h→0

−2h + h2

h
= lim

h→0
[−2 + h] = −2

so the line tangent to y = x2 at the point (−1, 1) has slope −2.

5. From Example 4 we know the slope of the tangent line is mtan = 2x,
so the slope of the tangent line at (2, 4) is mtan = 2x = 2(2) =

4. The tangent line has slope 4 and goes through the point (2, 4),
so an equation of the tangent line (using y − y0 = m(x − x0)) is
y − 4 = 4(x − 2) or y = 4x − 4. The point (3, 8) satisfies the equation
y = 4x − 4, so the point (3, 8) lies on the tangent line.
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2.1 The Definition of Derivative

The graphical idea of a slope of a tangent line is very useful, but for
some purposes we need a more algebraic definition of the derivative
of a function. We will use this definition to calculate the derivatives
of several functions and see that these results agree with our graphical
understanding. We will also look at several different interpretations for
the derivative, and obtain a theorem that will allow us to easily and
quickly determine the derivative of any fixed power of x.

In the previous section we found the slope of the tangent line to
the graph of the function f (x) = x2 at an arbitrary point (x, f (x)) by
calculating the slope of the secant line through the points (x, f (x)) and
(x + h, f (x + h)):

msec =
f (x + h)− f (x)
(x + h)− (x)

and then taking the limit of msec as h approached 0 (see margin). That
approach to calculating slopes of tangent lines motivates the definition
of the derivative of a function.

Definition of the Derivative:
The derivative of a function f is a new function,
f ′ (pronounced “eff prime”), whose value at x is:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

if this limit exists and is finite.

This is the definition of differential calculus, and you must know
it and understand what it says. The rest of this chapter and all of
Chapter 3 are built on this definition, as is much of what appears in
later chapters. It is remarkable that such a simple idea (the slope of a
tangent line) and such a simple definition (for the derivative f ′) will
lead to so many important ideas and applications.

Notation

There are three commonly used notations for the derivative of y = f (x):

• f ′(x) emphasizes that the derivative is a function related to f

• D( f ) emphasizes that we perform an operation on f to get f ′

•
d f
dx

emphasizes that the derivative is the limit of
∆ f
∆x

=
f (x + h)− f (x)

h

We will use all three notations so that you can become accustomed to
working with each of them.
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The function f ′(x) gives the slope of the tangent line to the graph of
y = f (x) at the point (x, f (x)), or the instantaneous rate of change of
the function f at the point (x, f (x)).

If, in the margin figure, we let x be the point a + h, then h = x − a.
As h → 0, we see that x → a and:

f ′(a) = lim
h→0

f (a + h)− f (a)
h

= lim
x→a

f (x)− f (a)
x − a

We will use whichever of these two forms is more convenient alge-
braically in a particular situation.

Calculating Some Derivatives Using the Definition

Fortunately, we will soon have some quick and easy ways to calculate
most derivatives, but first we will need to use the definition to deter-
mine the derivatives of a few basic functions. In Section 2.2, we will use
those results and some properties of derivatives to calculate derivatives
of combinations of the basic functions. Let’s begin by using the graphs
and then the definition to find a few derivatives.

Example 1. Graph y = f (x) = 5 and estimate the slope of the tangent
line at each point on the graph. Then use the definition of the derivative
to calculate the exact slope of the tangent line at each point. Your
graphical estimate and the exact result from the definition should
agree.

Solution. The graph of y = f (x) = 5 is a horizontal line (see margin),
which has slope 0, so we should expect that its tangent line will also
have slope 0.

Using the definition: With f (x) = 5, then f (x + h) = 5 no matter
what h is, so:

D( f (x)) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

5 − 5
h

= lim
h→0

0 = 0

and this agrees with our graphical estimate of the derivative. ◀

Using similar steps, it is easy to show that the derivative of any
constant function is 0.

Theorem: If f (x) = k, then f ′(x) = 0.

Practice 1. Graph y = f (x) = 7x and estimate the slope of the tangent
line at each point on the graph. Then use the definition of the derivative
to calculate the exact slope of the tangent line at each point.

Example 2. Describe the derivative of y = f (x) = 5x3 graphically and
compute it using the definition. Find an equation of the line tangent to
y = 5x3 at the point (1, 5).
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Solution. It appears from the graph of y = f (x) = 5x3 (see margin)
that f (x) is increasing, so the slopes of the tangent lines are positive
except perhaps at x = 0, where the graph seems to flatten out.

With f (x) = 5x3 we have:

f (x + h) = 5(x + h)3 = 5(x3 + 3x2h + 3xh2 + h3)

and using this last expression in the definition of the derivative:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

5(x3 + 3x2h + 3xh2 + h3)− 5x3

h

= lim
h→0

15x2h + 15xh2 + 5h3

h
= lim

h→0
(15x2 + 15xh + 5h2) = 15x2

so D(5x3) = 15x2, which is positive except when x = 0 (as we predicted
from the graph).

The function f ′(x) = 15x2 gives the slope of the line tangent to
the graph of f (x) = 5x3 at the point (x, f (x)). At the point (1, 5),
the slope of the tangent line is f ′(1) = 15(1)2 = 15. From the point-
slope formula, an equation of the tangent line to f at that point is
y − 5 = 15(x − 1) or y = 15x − 10. ◀

Practice 2. Use the definition to show that the derivative of y = x3 is
dy
dx

= 3x2. Find an equation of the line tangent to the graph of y = x3

at the point (2, 8).

If f has a derivative at x, we say that f is differentiable at x. If we
have a point on the graph of a differentiable function and a slope (the
derivative evaluated at the point), it is easy to write an equation of the
tangent line.

Tangent Line Formula:

If f (x) is differentiable at x = a
then an equation of the line tangent to f at (a, f (a)) is:

y = f (a) + f ′(a)(x − a)

Proof. The tangent line goes through the point (a, f (a)) with slope
f ′(a) so, using the point-slope formula, y − f (a) = f ′(a)(x − a) or
y = f (a) + f ′(a)(x − a).

Practice 3. The derivatives D(x) = 1, D(x2) = 2x, D(x3) = 3x2 exhibit
the start of a pattern. Without using the definition of the derivative,
what do you think the following derivatives will be? D(x4), D(x5),
D(x43), D(

√
x) = D(x

1
2 ) and D(xπ). (Just make an intelligent “guess”

based on the pattern of the previous examples. )



120 contemporary calculus

Before further investigating the “pattern” for the derivatives of pow-
ers of x and general properties of derivatives, let’s compute the deriva-
tives of two functions that are not powers of x: sin(x) and |x|.

Theorem: D(sin(x)) = cos(x)

The graph of y = f (x) = sin(x) (see margin) should be very familiar
to you. The graph has horizontal tangent lines (slope = 0) when
x = ±π

2 and x = ± 3π
2 and so on. If 0 < x < π

2 , then the slopes of
the tangent lines to the graph of y = sin(x) are positive. Similarly,
if π

2 < x < 3π
2 , then the slopes of the tangent lines are negative.

Finally, because the graph of y = sin(x) is periodic, we expect that the
derivative of y = sin(x) will also be periodic. Note that the function
cos(x) possesses all of those desired properties for the slope function.

Proof. With f (x) = sin(x), apply an angle addition formula to get:

f (x + h) = sin(x + h) = sin(x) cos(h) + cos(x) sin(h)

and use this formula in the definition of the derivative:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

(sin(x) cos(h) + cos(x) sin(h))− sin(x)
h

This limit looks formidable, but just collect the terms containing sin(x):

lim
h→0

(sin(x) cos(h)− sin(x)) + cos(x) sin(h)
h

so you can factor out sin(x) from the first two terms, rewriting as:

lim
h→0

[
sin(x) · cos(h)− 1

h
+ cos(x) · sin(h)

h

]
Now calculate the limits separately:

lim
h→0

sin(x) · lim
h→0

cos(h)− 1
h

+ lim
h→0

cos(x) · lim
h→0

sin(h)
h

The first and third limits do not depend on h, and we calculated the
second and fourth limits in Section 1.2:

sin(x) · 0 + cos(x) · 1 = cos(x)

So D(sin(x)) = cos(x) and the various properties we expected of the
derivative of y = sin(x) by examining its graph are true of cos(x).

You will need the angle addition formula
for cosine to rewrite cos(x + h) as:

cos(x) · cos(h)− sin(x) · sin(h)
Practice 4. Show that D(cos(x)) = − sin(x) using the definition.
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The derivative of cos(x) resembles the situation for sin(x) but differs
by an important negative sign. You should memorize both of these
important derivatives.

Example 3. For y = |x|, find
dy
dx

.

Solution. The graph of y = f (x) = |x| (see margin) is a “V” shape
with its vertex at the origin. When x > 0, the graph is just y = |x| = x,
which is part of a line with slope +1, so we should expect the derivative
of |x| to be +1. When x < 0, the graph is y = |x| = −x, which is part of
a line with slope −1, so we expect the derivative of |x| to be −1. When
x = 0, the graph has a corner, and we should expect the derivative of
|x| to be undefined at x = 0, as there is no single candidate for a line
tangent to the graph there.

Using the definition, consider the same three cases discussed previ-
ously: x > 0, x < 0 and x = 0.

If x > 0, then, for small values of h, x + h > 0, so:

D( f (x)) = lim
h→0

|x + h| − |x|
h

= lim
h→0

x + h − x
h

= lim
h→0

h
h
= 1

If x < 0, then, for small values of h, x + h < 0, so:

D( f (x)) = lim
h→0

|x + h| − |x|
h

= lim
h→0

−(x + h)− (−x)
h

= lim
h→0

−h
h

= −1

When x = 0, the situation is a bit more complicated:

f ′(0) = lim
h→0

|0 + h| − |0|
h

= lim
h→0

|h|
h

This is undefined, as lim
h→0+

|h|
h

= +1 and lim
h→0−

|h|
h

= −1, so:

D(|x|) =


1 if x > 0

undefined if x = 0
−1 if x < 0

or, equivalently, D(|x|) = |x|
x

. ◀

The derivative of |x| agrees with the func-
tion sgn(x) defined in Chapter 0, except
at x = 0: D(|x|) is undefined at x = 0
but sgn(0) = 0.

Practice 5. Graph y = |x − 2| and y = |2x| and use the graphs to
determine D(|x − 2|) and D(|2x|).

So far we have emphasized the derivative as the slope of the line
tangent to a graph. That very visual interpretation is very useful when
examining the graph of a function, and we will continue to use it.
Derivatives, however, are employed in a wide variety of fields and
applications, and some of these fields use other interpretations. A few
commonly used interpretations of the derivative follow.
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Interpretations of the Derivative

General
Rate of Change The function f ′(x) is the rate of change of the function
at x. If the units for x are years and the units for f (x) are people, then

the units for d f
dx are people

year , a rate of change in population.

Graphical
Slope f ′(x) is the slope of the line tangent to the graph of f at (x, f (x)).

Physical
Velocity If f (x) is the position of an object at time x, then f ′(x) is the
velocity of the object at time x. If the units for x are hours and f (x) is
distance, measured in miles, then the units for f ′(x) = d f

dx are miles
hour ,

miles per hour, which is a measure of velocity.

Acceleration If f (x) is the velocity of an object at time x, then f ′(x) is
the acceleration of the object at time x. If the units for x are hours and
f (x) has the units miles

hour , then the units for the acceleration f ′(x) = d f
dx

are miles/hour
hour = miles

hour2 , “miles per hour per hour.”

Magnification f ′(x) is the magnification factor of the function f for
points close to x. If a and b are two points very close to x, then the
distance between f (a) and f (b) will be close to f ′(x) times the original
distance between a and b: f (b)− f (a) ≈ f ′(x)(b − a).

Business
Marginal Cost If f (x) is the total cost of producing x objects, then f ′(x)
is the marginal cost, at a production level of x: (approximately) the
additional cost of making one more object once we have already made x
objects. If the units for x are bicycles and the units for f (x) are dollars,
then the units for f ′(x) = d f

dx are dollars
bicycle , the cost per bicycle.

Marginal Profit If f (x) is the total profit from producing and selling x
objects, then f ′(x) is the marginal profit: the profit to be made from
producing and selling one more object. If the units for x are bicycles
and the units for f (x) are dollars, then the units for f ′(x) = d f

dx are
dollars
bicycle , the profit per bicycle.

In financial contexts, the word “marginal” usually refers to the
derivative or rate of change of some quantity. One of the strengths of
calculus is that it provides a unity and economy of ideas among diverse
applications. The vocabulary and problems may be different, but the
ideas and even the notations of calculus remain useful.
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Example 4. A small cork is bobbing up and down, and at time t seconds
it is h(t) = sin(t) feet above the mean water level (see margin). Find
the height, velocity and acceleration of the cork when t = 2 seconds.
(Include the proper units for each answer.)

Solution. h(t) = sin(t) represents the height of the cork at any time t,
so the height of the cork when t = 2 is h(2) = sin(2) ≈ 0.91 feet above
the mean water level.

The velocity is the derivative of the position, so v(t) = d
dt h(t) =

d
dt sin(t) = cos(t). The derivative of position is the limit of ∆h

∆t , so the

units are feet
seconds . After 2 seconds, the velocity is v(2) = cos(2) ≈

−0.42 feet per second.
The acceleration is the derivative of the velocity, so a(t) = d

dt v(t) =
d
dt cos(t) = − sin(t). The derivative of velocity is the limit of ∆v

∆t , so the

units are feet/second
seconds or feet

second2 . After 2 seconds the acceleration is

a(2) = − sin(2) ≈ −0.91 ft
sec2 . ◀

Practice 6. Find the height, velocity and acceleration of the cork in the
previous example after 1 second.

A Most Useful Formula: D(xn)

Functions that include powers of x are very common (every polynomial
is a sum of terms that include powers of x) and, fortunately, it is easy to
calculate the derivatives of such powers. The “pattern” emerging from
the first few examples in this section is, in fact, true for all powers of
x. We will only state and prove the “pattern” here for positive integer
powers of x, but it is also true for other powers (as we will prove later).

Theorem: If n is a positive integer, then: D(xn) = n · xn−1

This theorem is an example of the power of generality and proof in
mathematics. Rather than resorting to the definition when we encounter
a new exponent p in the form xp (imagine using the definition to
calculate the derivative of x307), we can justify the pattern for all positive
integer exponents n, and then simply apply the result for whatever
exponent we have. We know, from the first examples in this section,
that the theorem is true for n = 1, 2 and 3, but no number of examples
would guarantee that the pattern is true for all exponents. We need a
proof that what we think is true really is true.

Proof. With f (x) = xn, f (x + h) = (x + h)n, and in order to simplify
f (x+ h)− f (x) = (x+ h)n − xn, we will need to expand (x+ h)n. How-
ever, we really only need to know the first two terms of the expansion
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and to know that all of the other terms of the expansion contain a
power of h of at least 2.

You may also be familiar with Pascal’s
triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Among many beautiful and amazing
properties, the numbers in row n of the
triangle (counting the first row as row 0)
give the coefficients in the expansion of
(A + B)n. Notice that each entry in the
interior of the triangle is the sum of the
two numbers immediately above it.

The Binomial Theorem from algebra says (for n > 3) that:

(x + h)n = xn + n · xn−1h + a · xn−2h2 + b · xn−3h3 + · · ·+ hn

where a and b represent numerical coefficients. (Expand (x + h)n for a
few different values of n to convince yourself of this result.) Then:

D( f (x)) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

(x + h)n − xn

h

Now expand (x + h)n to get:

lim
h→0

xn + n · xn−1h + a · xn−2h2 + b · xn−3h3 + · · ·+ hn − xn

h

Eliminating xn − xn we get:

lim
h→0

n · xn−1h + a · xn−2h2 + b · xn−3h3 + · · ·+ hn

h

and we can then factor h out of the numerator:

lim
h→0

h(n · xn−1 + a · xn−2h + b · xn−3h2 + · · ·+ hn−1)

h

and divide top and bottom by the factor h:

lim
h→0

[
n · xn−1 + a · xn−2h + b · xn−3h2 + · · ·+ hn−1

]
We are left with a polynomial in h and can now compute the limit by
simply evaluating the polynomial at h = 0 to get D(xn) = n · xn−1.

Practice 7. Calculate D(x5), d
dx (x2), D(x100), d

dt (t
31) and D(x0).

We will occasionally use the result of the theorem for the derivatives
of all constant powers of x even though it has only been proven for
positive integer powers, so far. A proof of a more general result (for all
rational powers of x) appears in Section 2.9

Example 5. Find D
(

1
x

)
and

d
dx

(
√

x).

Solution. Rewriting the fraction using a negative exponent:

D
(

1
x

)
= D(x−1) = −1 · x−1−1 = −x−2 = − 1

x2

Rewriting the square root using a fractional exponent:

d
dx

(
√

x) = D(x
1
2 ) =

1
2
· x

1
2−1 =

1
2

x−
1
2 =

1
2
√

x

These results can also be obtained by using the definition of the deriva-
tive, but the algebra involved is slightly awkward. ◀



the derivative 125

Practice 8. Find D(x
3
2 ),

d
dx

(x
1
3 ), D

(
1√
x

)
and

d
dt
(tπ).

Example 6. It costs
√

x hundred dollars to run a training program for
x employees.

(a) How much does it cost to train 100 employees? 101 employees?
If you already need to train 100 employees, how much additional
money will it cost to add 1 more employee to those being trained?

(b) For f (x) =
√

x, calculate f ′(x) and evaluate f ′ at x = 100. How
does f ′(100) compare with the last answer in part (a)?

Solution. (a) Put f (x) =
√

x = x
1
2 hundred dollars, the cost to train

x employees. Then f (100) = $1000 and f (101) = $1004.99, so it costs
$4.99 additional to train the 101st employee. (b) f ′(x) = 1

2 x−
1
2 = 1

2
√

x so

f ′(100) = 1
2
√

100
= 1

20 hundred dollars = $5.00. Clearly f ′(100) is very
close to the actual additional cost of training the 101st employee. ◀

Important Information and Results

This section contains a great deal of important information that we will
continue to use throughout the rest of the course.

So it is worthwhile to collect here some
of those important ideas.

Definition of Derivative: f ′(x) = lim
h→0

f (x + h)− f (x)
h

Valid if the limit exists and is finite.

Notations for the Derivative: f ′(x), D( f (x)), d f
dx

Tangent Line Equation: y = f (a) + f ′(a) · (x − a)
An equation of the line tangent to the
graph of f at (a, f (a)).

Proved for n = positive integer, but true
for all constants n.

Formulas:

• D(constant) = 0

• D(xn) = n · xn−1

• D(sin(x)) = cos(x) and D(cos(x)) = − sin(x)

• D(|x|) =


1 if x > 0

undefined if x = 0
−1 if x < 0

=
|x|
x

Interpretations of f ′(x):

• Slope of a line tangent to a graph

• Instantaneous rate of change of a function at a point

• Velocity or acceleration

• Magnification factor

• Marginal change
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2.1 Problems

1. Match the functions f , g and h shown below with
the graphs of their derivatives (show in the bot-
tom row).

2. The figure below shows six graphs, three of which
are derivatives of the other three. Match the func-
tions with their derivatives.

In Problems 3–6, find the slope msec of the secant
line through the two given points and then calculate
mtan = lim

h→0
msec.

3. f (x) = x2

(a) (−2, 4), (−2 + h, (−2 + h)2)

(b) (0.5, 0.25), (0.5 + h, (0.5 + h)2)

4. f (x) = 3 + x2

(a) (1, 4), (1 + h, 3 + (1 + h)2)

(b) (x, 3 + x2), (x + h, 3 + (x + h)2)

5. f (x) = 7x − x2

(a) (1, 6), (1 + h, 7(1 + h)− (1 + h)2)

(b) (x, 7x − x2), (x + h, 7(x + h)− (x + h)2)

6. f (x) = x3 + 4x

(a) (1, 5), (1 + h, (1 + h)3 + 4(1 + h))

(b) (x, x3 + 4x), (x + h, (x + h)3 + 4(x + h))

7. Use the graph below to estimate the values of
these limits. (It helps to recognize what the limit
represents.)

(a) lim
h→0

f (0 + h)− f (0)
h

(b) lim
h→0

f (1 + h)− f (1)
h

(c) lim
w→0

f (2 + w)− 1
w

(d) lim
h→0

f (3 + h)− f (3)
h

(e) lim
h→0

f (4 + h)− f (4)
h

(f) lim
s→0

f (5 + s)− f (5)
s

8. Use the graph below to estimate the values of
these limits.

(a) lim
h→0

g(0 + h)− g(0)
h

(b) lim
h→0

g(1 + h)− g(1)
h

(c) lim
w→0

g(2 + w)− 2
w

(d) lim
h→0

g(3 + h)− g(3)
h

(e) lim
h→0

g(4 + h)− g(4)
h

(f) lim
s→0

g(5 + s)− g(5)
s
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In Problems 9–12, use the definition of the derivative
to calculate f ′(x) and then evaluate f ′(3).

9. f (x) = x2 + 8 10. f (x) = 5x2 − 2x

11. f (x) = 2x3 − 5x 12. f (x) = 7x3 + x

13. Graph f (x) = x2, g(x) = x2 + 3 and h(x) =

x2 − 5. Calculate the derivatives of f , g and h.

14. Graph f (x) = 5x, g(x) = 5x + 2 and h(x) =

5x − 7. Calculate the derivatives of f , g and h.

In Problems 15–18, find the slopes and equations of
the lines tangent to y = f (x) at the given points.

15. f (x) = x2 + 8 at (1, 9) and (−2, 12).

16. f (x) = 5x2 − 2x at (2, 16) and (0, 0).

17. f (x) = sin(x) at (π, 0) and (π
2 , 1).

18. f (x) = |x + 3| at (0, 3) and (−3, 0).

19. (a) Find an equation of the line tangent to the
graph of y = x2 + 1 at the point (2, 5).

(b) Find an equation of the line perpendicular to
the graph of y = x2 + 1 at (2, 5).

(c) Where is the line tangent to the graph of
y = x2 + 1 horizontal?

(d) Find an equation of the line tangent to the
graph of y = x2 + 1 at the point (p, q).

(e) Find the point(s) (p, q) on the graph of y =

x2 + 1 so the tangent line to the curve at (p, q)
goes through the point (1,−7).

20. (a) Find an equation of the line tangent to the
graph of y = x3 at the point (2, 8).

(b) Where, if ever, is the line tangent to the graph
of y = x3 horizontal?

(c) Find an equation of the line tangent to the
graph of y = x3 at the point (p, q).

(d) Find the point(s) (p, q) on the graph of y = x3

so the tangent line to the curve at (p, q) goes
through the point (16, 0).

21. (a) Find the angle that the line tangent to y = x2

at (1, 1) makes with the x-axis.

(b) Find the angle that the line tangent to y = x3

at (1, 1) makes with the x-axis.

(c) The curves y = x2 and y = x3 intersect at the
point (1, 1). Find the angle of intersection of
the two curves (actually the angle between
their tangent lines) at the point (1, 1).

22. The figure below shows the graph of y = f (x).
Sketch a graph of y = f ′(x).

23. The figure below shows the graph of the height of
an object at time t. Sketch a graph of the object’s
upward velocity. What are the units for each axis
on the velocity graph?

24. Fill in the table with units for f ′(x).

units for x units for f (x) units for f ′(x)

hours miles
people automobiles
dollars pancakes

days trout
seconds miles per second
seconds gallons

study hours test points
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25. A rock dropped into a deep hole will drop
d(x) = 16x2 feet in x seconds.

(a) How far into the hole will the rock be after 4
seconds? After 5 seconds?

(b) How fast will it be falling at exactly 4 seconds?
After 5 seconds? After x seconds?

26. It takes T(x) = x2 hours to weave x small rugs.
What is the marginal production time to weave
a rug? (Be sure to include the units with your
answer.)

27. It costs C(x) =
√

x dollars to produce x golf balls.
What is the marginal production cost to make a
golf ball? What is the marginal production cost
when x = 25? When x = 100? (Include units.)

28. Define A(x) to be the area bounded by the t- and
y-axes, the line y = 5 and a vertical line at t = x
(see figure below).

(a) Evaluate A(0), A(1), A(2) and A(3).

(b) Find a formula for A(x) valid for x ≥ 0.

(c) Determine A′(x).

(d) What does A′(x) represent?

29. Define A(x) to be the area bounded by the t-axis,
the line y = t, and a vertical line at t = x (see
figure below).

(a) Evaluate A(0), A(1), A(2) and A(3).

(b) Find a formula for A(x) valid for x ≥ 0.

(c) Determine A′(x).

(d) What does A′(x) represent?

30. Compute each derivative.

(a) D(x12) (b)
d

dx
( 7
√

x)

(c) D
(

1
x3

)
(d)

d
dx

(xc)

(e) D(|x − 2|)

31. Compute each derivative.

(a) D(x9) (b)
d

dx
(x

2
3 )

(c) D
(

1
x4

)
(d)

d
dx

(xπ)

(e) D(|x + 5|)

In Problems 32–37, find a function f that has the
given derivative. (Each problem has several correct
answers, just find one of them.)

32. f ′(x) = 4x + 3 33. f ′(x) = 3x2 + 8x

34. D( f (x)) = 12x2 − 7 35. f ′(t) = 5 cos(t)

36. d
dx f (x) = 2x − sin(x) 37. D( f (x)) = x + x2



the derivative 129

2.1 Practice Answers

1. The graph of f (x) = 7x is a line through the origin. The slope of the
line is 7. For all x:

mtan = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

7(x + h)− 7x
h

= lim
h→0

7h
h

= lim
h→0

7 = 7

2. f (x) = x3 ⇒ f (x + h) = (x + h)3 = x3 + 3x2h + 3xh2 + h3 so:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

x3 + 3x2h + 3xh2 + h3 − x3

h

= lim
h→0

3x2h + 3xh2 + h3

h
= lim

h→0
3x2 + 3xh + h2 = 3x2

At the point (2, 8), the slope of the tangent line is 3(2)2 = 12 so an
equation of the tangent line is y − 8 = 12(x − 2) or y = 12x − 16.

3. D(x4) = 4x3, D(x5) = 5x4, D(x43) = 43x42,
D(

√
x) = D(x

1
2 ) = 1

2 x−
1
2 = 1

2
√

x , D(xπ) = πxπ−1

4. Proceeding as we did to find the derivative to sin(x):

D(cos(x)) = lim
h→0

cos(x + h)− cos(x)
h

= lim
h→0

cos(x) cos(h)− sin(x) sin(h)− cos(x)
h

= lim
h→0

[
cos(x) · cos(h)− 1

h
− sin(x)

sin(h)
h

]
= cos(x) · 0 − sin(x) · 1 = − sin(x)

5. See margin figure for the graphs of y = |x − 2| and y = |2x|.

D(|x − 2|) =


1 if x > 2

undefined if x = 2
−1 if x < 2

=
|x − 2|
x − 2

D(|2x|) =


2 if x > 0

undefined if x = 0
−2 if x < 0

=
2 |x|

x

6. h(t) = sin(t) so h(1) = sin(1) ≈ 0.84 ft;
v(t) = cos(t) so v(1) = cos(1) ≈ 0.54 ft/sec;
a(t) = − sin(t) so a(1) = − sin(1) ≈ −0.84 ft/sec2.

7. D(x5) = 5x4, d
dx (x2) = 2x1 = 2x, D(x100) = 100x99, d

dt (t
31) = 31t30

and D(x0) = 0x−1 = 0 or D(x0) = D(1) = 0

8. D(x
3
2 ) = 3

2 x
1
2 ,

d
dx

(x
1
3 ) =

1
3

x−
2
3 , D( 1√

x ) = D(x−
1
2 ) = − 1

2 x−
3
2 ,

d
dt
(tπ) = πtπ−1.
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2.2 Derivatives: Properties and Formulas

This section begins with a look at which functions have derivatives.
Then we’ll examine how to calculate derivatives of elementary combi-
nations of basic functions. By knowing the derivatives of some basic
functions and just a few differentiation patterns, you will be able to
calculate the derivatives of a tremendous variety of functions. This
section contains most — but not quite all — of the general differentiation
patterns you will ever need.

Which Functions Have Derivatives?

A function must be continuous in order to be differentiable.

Theorem:

If a function is differentiable at a point
then it is continuous at that point.

It is vital to understand what this theo-
rem tells us and what it does not tell us:
If a function is differentiable at a point,
then the function is automatically contin-
uous there. If the function is continuous
at a point, then the function may or may
not be differentiable there.

Proof. Assume that the hypothesis ( f is differentiable at the point c) is

true. Then lim
h→0

f (c + h)− f (c)
h

must exist and be equal to f ′(c). We

want to show that f must necessarily be continuous at c, so we need to
show that lim

h→0
f (c + h) = f (c).

It’s not yet obvious why we want to do so, but we can write:

f (c + h) = f (c) +
f (c + h)− f (c)

h
· h

and then compute the limit of both sides of this expression:

lim
h→0

f (c + h) = lim
h→0

(
f (c) +

f (c + h)− f (c)
h

· h
)

= lim
h→0

f (c) + lim
h→0

(
f (c + h)− f (c)

h
· h
)

= lim
h→0

f (c) + lim
h→0

(
f (c + h)− f (c)

h

)
· lim

h→0
h

= f (c) + f ′(c) · 0 = f (c)

Therefore f is continuous at c.

We often use the contrapositive form of this theorem, which tells us
about some functions that do not have derivatives.

Contrapositive Form of the Theorem:

If f is not continuous at a point
then f is not differentiable at that point.



the derivative 131

Example 1. Show that f (x) = ⌊x⌋ is not continuous and not differen-
tiable at x = 2 (see margin figure).

Solution. The one-sided limits lim
x→2+

⌊x⌋ = 2 and lim
x→2−

⌊x⌋ = 1 have

different values, so lim
x→2

⌊x⌋ does not exist. Therefore f (x) = ⌊x⌋ is not

continuous at 2, and as a result it is not differentiable at 2. ◀

Lack of continuity implies lack of differentiability, but the next exam-
ples show that continuity is not enough to guarantee differentiability.

Example 2. Show that f (x) = |x| is continuous but not differentiable
at x = 0 (see margin figure).

Solution. We know that lim
x→0

|x| = 0 = |0|, so f is continuous at 0, but

in Section 2.1 we saw that |x| was not differentiable at x = 0. ◀

A function is not differentiable at a cusp or a “corner.”

Example 3. Show that f (x) = 3
√

x = x
1
3 is continuous but not differen-

tiable at x = 0 (see margin figure).

Solution. We can verify that lim
x→0+

3
√

x = lim
x→0−

3
√

x = 0, so lim
x→0

3
√

x =

0 =
3
√

0 so f is continuous at 0. But f ′(x) =
1
3

x−
2
3 =

1

3 3√x2
, which is

undefined at x = 0, so f is not differentiable at 0. ◀

A function is not differentiable where its tangent line is vertical.

Practice 1. At which integer values of x is the graph of f in the margin
figure continuous? Differentiable?

Graphically, a function is continuous if and only if its graph is
“connected” and does not have any holes or breaks. Graphically, a
function is differentiable if and only if it is continuous and its graph is
“smooth” with no corners or vertical tangent lines.

Derivatives of Elementary Combinations of Functions

We now begin to compute derivatives of more complicated functions
built from combinations of simpler functions.

Example 4. The derivative of f (x) = x is D( f (x)) = 1 and the deriva-
tive of g(x) = 5 is D(g(x)) = 0. What are the derivatives of the

elementary combinations: 3 · f , f + g, f − g, f · g and
f
g

?
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Solution. The first three derivatives follow “nice” patterns:

D(3 · f (x)) = D(3x) = 3 = 3 · 1 = 3 · D( f (x))

D( f (x) + g(x)) = D(x + 5) = 1 = 1 + 0 = D( f (x)) + D(g(x))

D( f (x)− g(x)) = D(x − 5) = 1 = 1 − 0 = D( f (x))− D(g(x))

yet the other two derivatives fail to follow the same “nice” patterns:
D( f (x) · g(x)) = D(5x) = 5 but D( f (x)) · D(g(x)) = 1 · 0 = 0, and

D
(

f (x)
g(x)

)
= D

( x
5

)
=

1
5

but
D( f (x))
D(g(x))

=
1
0

is undefined. ◀

The two very simple functions in the previous example show that,

in general, D( f · g) ̸= D( f ) · D(g) and D
(

f
g

)
̸= D( f )

D(g)
.

Practice 2. For f (x) = 6x + 8 and g(x) = 2, compute the derivatives of

3 · f , f + g, f − g, f · g and
f
g

.

Main Differentiation Theorem:

If f and g are differentiable at x, then:

(a) Constant Multiple Rule:

D(k · f (x)) = k · D( f (x))

(b) Sum Rule:

D( f (x) + g(x)) = D( f (x)) + D(g(x))

(c) Difference Rule:

D( f (x)− g(x)) = D( f (x))− D(g(x))

(d) Product Rule:

D( f (x) · g(x)) = f (x) · D(g(x)) + g(x) · D( f (x))

(e) Quotient Rule:

D
(

f (x)
g(x)

)
=

g(x) · D( f (x))− f (x) · D(g(x))

[g(x)]2
Part (e) requires that g(x) ̸= 0.

This theorem says that the simple patterns in the previous example
for constant multiples of functions and sums and differences of func-
tions are true for all differentiable functions. It also includes the correct
patterns for derivatives of products and quotients of differentiable
functions.
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The proofs of parts (a), (b) and (c) of this theorem are straightforward,
but parts (d) and (e) require some clever algebraic manipulations. Let’s
look at some examples before tackling the proof.

Example 5. Recall that D(x2) = 2x and D(sin(x)) = cos(x). Find
D(3 sin(x)) and d

dx (5x2 − 7 sin(x)).

Solution. Computing D(3 sin(x)) requires part (a) of the theorem with
k = 3 and f (x) = sin(x) so D(3 · sin(x)) = 3 · D(sin(x)) = 3 cos(x),

while
d

dx
(5x2 − 7 sin(x)) uses part (c) of the theorem with f (x) = 5x2

and g(x) = 7 sin(x) so:

d
dx

(5x2 − 7 sin(x)) =
d

dx
(5x2)− d

dx
(7 sin(x))

= 5 · d
dx

(x2)− 7 · d
dx

(sin(x))

= 5(2x)− 7(cos(x))

which simplifies to 10x − 7 cos(x). ◀

Practice 3. Find D(x3 − 5 sin(x)) and
d

dx
(sin(x)− 4x3).

Practice 4. The table below gives the values of functions f and g, as
well as their derivatives, at various points. Fill in the missing values for
D(3 · f (x)), D(2 · f (x) + g(x)) and D(3 · g(x)− f (x)).

x f (x) f ′(x) g(x) g′(x) D(3 f (x)) D(2 f (x) + g(x)) D(3g(x)− f (x))

0 3 −2 −4 3
1 2 −1 1 0
2 4 2 3 1

Practice 5. Use the Main Differentiation Theorem to complete the table.

x f (x) f ′(x) g(x) g′(x) D( f (x) · g(x)) D
(

f (x)
g(x)

)
D
(

g(x)
f (x)

)
0 3 −2 −4 3
1 2 −1 1 0
2 4 2 3 1

Many calculus students find it easier to
remember the Product Rule in words:
“the first function times the derivative of
the second plus the second function times
the derivative of the first.”

Example 6. Determine D(x2 · sin(x)) and
d

dx

(
x3

sin(x)

)
.

Solution. (a) Use the Product Rule with f (x) = x2 and g(x) = sin(x):

D(x2 · sin(x)) = D( f (x) · g(x)) = f (x) · D(g(x)) + g(x) · D( f (x))

= x2 · D(sin(x)) + sin(x) · D(x2)

= x2 · cos(x) + sin(x) · 2x = x2 cos(x) + 2x sin(x)
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(b) Use the Quotient Rule with f (x) = x3 and g(x) = sin(x):

d
dx

(
x3

sin(x)

)
=

d
dx

(
f (x)
g(x)

)
=

g(x) · D( f (x))− f (x) · D(g(x))

[g(x)]2

=
sin(x) · D(x3)− x3 · D(sin(x))

[sin(x)]2

=
sin(x) · 3x2 − x3 · cos(x)

sin2(x)

=
3x2 sin(x)− x3 · cos(x)

sin2(x)

which could also be rewritten in terms of csc(x) and cot(x). ◀

The Quotient Rule in words: “the bottom
times the derivative of the top minus the
top times the derivative of the bottom, all
over the bottom squared.”

Practice 6. Find D((x2 + 1)(7x − 3)),
d
dt

(
3t − 2
5t + 1

)
and D

(
cos(x)

x

)
.

Now that we’ve seen how to use the theorem, let’s prove it.

Proof. The only general fact we have about derivatives is the definition
as a limit, so our proofs here will need to recast derivatives as limits
and then use some results about limits. The proofs involve applications
of the definition of the derivative and results about limits.

(a) Using the derivative definition and the limit laws:

D(k · f (x)) = lim
h→0

k · f (x + h)− k · f (x)
h

= lim
h→0

k · f (x + h)− f (x)
h

= k · lim
h→0

f (x + h)− f (x)
h

= k · D( f (x))

(b) You try it (see Practice problem that follows).

(c) Once again using the derivative definition and the limit laws:

D( f (x)− g(x)) = lim
h→0

[ f (x + h)− g(x + h)]− [ f (x)− g(x)]
h

= lim
h→0

[ f (x + h)− f (x)]− [g(x + h)− g(x)]
h

= lim
h→0

f (x + h)− f (x)
h

− lim
h→0

g(x + h)− g(x)
h

= D( f (x))− D(g(x))

The proofs of parts (d) and (e) of the theorem are more complicated
but only involve elementary techniques, used in just the right way.
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Sometimes we will omit such computational proofs, but the Prod-
uct and Quotient Rules are fundamental techniques you will need
hundreds of times.

(d) By the hypothesis, f and g are differentiable, so:

lim
h→0

f (x + h)− f (x)
h

= f ′(x)

and:

lim
h→0

g(x + h)− g(x)
h

= g′(x)

Also, both f and g are continuous (why?) so lim
h→0

f (x + h) = f (x)

and lim
h→0

g(x + h) = g(x).

Let P(x) = f (x) · g(x). Then P(x + h) = f (x + h) · g(x + h) and:

D( f (x) · g(x)) = D(P(x)) = lim
h→0

P(x + h)− P(x)
h

= lim
h→0

f (x + h) · g(x + h)− f (x) · g(x)
h

At this stage we need to use some cleverness to add and subtract
f (x) · g(x + h) from the numerator (you’ll see why shortly):

lim
h→0

f (x + h) · g(x + h) + [− f (x) · g(x + h) + f (x) · g(x + h)]− f (x)g(x)
h

We can then split this giant fraction into two more manageable limits:

lim
h→0

f (x + h)g(x + h)− f (x)g(x + h)
h

+ lim
h→0

f (x)g(x + h)− f (x)g(x)
h

and then factor out a common factor from each numerator:

lim
h→0

g(x + h) · f (x + h)− f (x)
h

+ lim
h→0

f (x) · g(x + h)− g(x)
h

Taking limits of each piece (and using the continuity of g(x)) we get:

D( f (x) · g(x)) = g(x) · f ′(x) + f (x) · g′(x) = g · D( f ) + f · D(g)

The steps for a proof of the Quotient Rule appear in Problem 69.

Practice 7. Prove the Sum Rule: D( f (x) + g(x)) = D( f (x)) + D(g(x)).
(Refer to the proof of part (c) for guidance.)

Using the Differentiation Rules

You definitely need to memorize the differentiation rules, but it is vi-
tally important that you also know how to use them. Sometimes it is
clear that the function we want to differentiate is a sum or product of
two obvious functions, but we commonly need to differentiate func-
tions that involve several operations and functions. Memorizing the
differentiation rules is only the first step in learning to use them.
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Example 7. Calculate D(x5 + x · sin(x)).

Solution. This function is more difficult because it involves both an
addition and a multiplication. Which rule(s) should we use — or, more
importantly, which rule should we use first?

First apply the Sum Rule to trade one derivative for two easier ones:

D(x5 + x · sin(x)) = D(x5) + D(x · sin(x))

= 5x4 + [x · D(sin(x)) + sin(x) · D(x)]

= 5x4 + x · cos(x) + sin(x)

This last expression involves no more derivatives, so we are done. ◀

If instead of computing the derivative you were evaluating the func-
tion x5 + x sin(x) for some particular value of x, you would:

• raise x to the 5th power

• calculate sin(x)

• multiply sin(x) by x and, finally,

• add (sum) the values of x5 and x sin(x)

Notice that the final step of your evaluation of f indicates the first rule
to use to calculate the derivative of f .

Practice 8. Which differentiation rule should you apply first for each
of the following?

(a) x · cos(x)− x3 · sin(x) (b) (2x − 3) cos(x)

(c) 2 cos(x)− 7x2
(d)

cos(x) + 3x√
x

Practice 9. Calculate D
(

x2 − 5
sin(x)

)
and

d
dt

(
t2 − 5

t · sin(t)

)
.

Example 8. A mass attached to a spring oscillates up and down but
the motion becomes “damped” due to friction and air resistance. The

height of the mass after t seconds is given by h(t) = 5 +
sin(t)
1 + t

(in feet).

Find the height and velocity of the mass after 2 seconds.

Solution. The height is h(2) = 5 +
sin(2)
1 + 2

≈ 5 +
0.909

3
= 5.303 feet

above the ground. The velocity is h′(2), so we must first compute h′(t)
and then evaluate the derivative at time t = 2:

h′(t) =
(1 + t) · cos(t)− sin(t) · 1

(1 + t)2

so h′(2) =
3 cos(2)− sin(2)

9
≈ −2.158

9
≈ −0.24 feet per second. ◀
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Practice 10. What are the height and velocity of the weight in the
previous example after 5 seconds? What are the height and velocity of
the weight be after a “long time” has passed?

Example 9. Calculate D(x · sin(x) · cos(x)).

Solution. Clearly we need to use the Product Rule, because the only
operation in this function is multiplication. But the Product Rule deals
with a product of two functions and here we have the product of three:
x and sin(x) and cos(x). If, however, we think of our two functions as
f (x) = x · sin(x) and g(x) = cos(x), then we do have the product of
two functions and:

D(x · sin(x) · cos(x)) = D( f (x) · g(x))

= f (x) · D(g(x)) + g(x) · D( f (x))

= x sin(x) · D(cos(x)) + cos(x) · D(x sin(x))

We are not done, but we have traded one hard derivative for two
easier ones. We know that D(cos(x)) = − sin(x) and we can use the
Product Rule (again) to calculate D(x sin(x)). Then the last line of our
calculation above becomes:

x sin(x) · [− sin(x)] + cos(x) · [x D(sin(x)) + sin(x)D(x)]

and then:
−x sin2(x) + cos(x) [x cos(x) + sin(x)(1)]

which simplifies to −x sin2(x) + x cos2(x) + cos(x) sin(x). ◀

Evaluating a Derivative at a Point

The derivative of a function f (x) is a new function f ′(x) that tells us
the slope of the line tangent to the graph of f at each point x. To find
the slope of the tangent line at a particular point (c, f (c)) on the graph
of f , we should first calculate the derivative f ′(x) and then evaluate
the function f ′(x) at the point x = c to get the number f ′(c). If you
mistakenly evaluate f first, you get a number f (c), and the derivative
of a constant is always equal to 0.

Example 10. Determine the slope of the line tangent to the graph of
f (x) = 3x + sin(x) at (0, f (0)) and (1, f (1)).

Solution. f ′(x) = D(3x + sin(x)) = D(3x) + D(sin(x)) = 3 + cos(x).
When x = 0, the graph of y = 3x + sin(x) goes through the point
(0, 3(0) + sin(0)) = (0, 0) with slope f ′(0) = 3 + cos(0) = 4. When
x = 1, the graph goes through the point (1, 3(1) + sin(1)) ≈ (1, 3.84)
with slope f ′(1) = 3 + cos(1) ≈ 3.54. ◀

Practice 11. Where do f (x) = x2 − 10x + 3 and g(x) = x3 − 12x have
horizontal tangent lines?
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Important Information and Results

This section, like the last one, contains a
great deal of important information that
we will continue to use throughout the
rest of the course, so we collect here some
of those important results.

Differentiability and Continuity: If a function is differentiable then
it must be continuous. If a function is not continuous then it cannot
be differentiable. A function may be continuous at a point and not
differentiable there.

Graphically: Continuous means “connected”; differentiable means “con-
tinuous, smooth and not vertical.”

Differentiation Patterns:

• [k · f (x)]′ = k · f ′(x)

• [ f (x) + g(x)]′ = f ′(x) + g′(x)

• [ f (x)− g(x)]′ = f ′(x)− g′(x)

• [ f (x) · g(x)]′ = f (x) · g′(x) + g(x) · f ′(x)

•
[

f (x)
g(x)

]′
=

g(x) · f ′(x)− f (x) · g′(x)

[g(x)]2

• The final step used to evaluate a function f indicates the first rule
used to differentiate f .

Evaluating a derivative at a point: First differentiate and then evaluate.

2.2 Problems

1. Use the graph of y = f (x) below to determine:

(a) at which integers f is continuous.

(b) at which integers f is differentiable.

2. Use the graph of y = g(x) below to determine:

(a) at which integers g is continuous.

(b) at which integers g is differentiable.

3. Use the values given in the table to determine the values of f · g, D( f · g), f
g and D

(
f
g

)
.

x f (x) f ′(x) g(x) g′(x) f (x) · g(x) D( f (x) · g(x)) f (x)
g(x) D

(
f (x)
g(x)

)
0 2 3 1 5
1 −3 2 5 −2
2 0 −3 2 4
3 1 −1 0 3
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4. Use the values given in the table to determine the values of f · g, D( f · g), f
g and D

(
f
g

)
.

x f (x) f ′(x) g(x) g′(x) f (x) · g(x) D( f (x) · g(x)) f (x)
g(x) D

(
f (x)
g(x)

)
0 4 2 3 −3
1 0 3 2 1
2 −2 5 0 −1
3 −1 −2 −3 4

5. Use the information in the figure below to plot
the values of the functions f + g, f · g and f

g and
their derivatives at x = 1, 2 and 3.

6. Use the information in the figure above to plot
the values of the functions 2 f , f − g and g

f and
their derivatives at x = 1, 2 and 3.

7. Calculate D((x − 5)(3x + 7)) by:

(a) using the Product Rule.

(b) expanding and then differentiating.

Verify that both methods give the same result.

8. Calculate D
(

x3 − 3x + 2√
x

)
by:

(a) using the Quotient Rule.

(b) rewriting and then differentiating.

Verify that both methods give the same result.

In Problems 9–26, compute each derivative.

9.
d

dx

(
19x3 − 7

)
10.

d
dt

(
5 cos(t) +

π

2

)
11. D(sin(x) + cos(x)) 12. D(7 sin(x)− 3 cos(x))

13. D(x2 · cos(x)) 14. D(
√

x · sin(x))

15. D(sin2(x)) 16. D(cos2(x))

17.
d

dx

(
cos(x)

x2

)
18.

d
dt

(
sin(t)

t3

)

19.
d

dx

(
1

1 + x2

)
20.

d
dt

(
t

1 + t3

)

21.
d
dθ

(
1

cos(θ)

)
22.

d
dθ

(
1

sin(θ)

)

23.
d
dθ

(
sin(θ)
cos(θ)

)
24.

d
dθ

(
cos(θ)
sin(θ)

)

25. D
(

8x5 − 3x4 + 2x3 + 7x2 − 12x + 147
)

26. (a) D(sin(x)) (b) D (sin(x) + 7)
(c) D(sin(x)− 8000) (d) D(sin(x) + k)

27. Find values for the constants a, b and c so that
the parabola f (x) = ax2 + bx + c has f (0) = 0,
f ′(0) = 0 and f ′(10) = 30.

28. If f is a differentiable function, how are the:

(a) graphs of y = f (x) and y = f (x) + k related?

(b) derivatives of f (x) and f (x) + k related?

29. If f and g are differentiable functions that always
differ by a constant ( f (x) − g(x) = k for all x)
then what can you conclude about their graphs?
Their derivatives?

30. If f and g are differentiable functions whose sum
is a constant ( f (x) + g(x) = k for all x) then
what can you conclude about their graphs? Their
derivatives?

31. If the product of f and g is a constant (that is,

f (x) · g(x) = k for all x) then how are
D( f (x))

f (x)

and
D(g(x))

g(x)
related?

32. If the quotient of f and g is a constant (
f (x)
g(x)

= k

for all x) then how are g · f ′ and f · g′ related?
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In Problems 33–40:

(a) calculate f ′(1)

(b) determine where f ′(x) = 0.

33. f (x) = x2 − 5x + 13

34. f (x) = 5x2 − 40x + 73

35. f (x) = 3x − 2 cos(x)

36. f (x) = |x + 2|

37. f (x) = x3 + 9x2 + 6

38. f (x) = x3 + 3x2 + 3x − 1

39. f (x) = x3 + 2x2 + 2x − 1

40. f (x) =
7x

x2 + 4
41. f (x) = x · sin(x) and 0 ≤ x ≤ 5. (You may

need to use the Bisection Algorithm or the “trace”
option on a calculator to approximate where
f ′(x) = 0.)

42. f (x) = Ax2 + Bx + C, where B and C are con-
stants and A ̸= 0 is constant.

43. f (x) = x3 + Ax2 + Bx + C with constants A, B
and C. Can you find conditions on the constants
A, B and C that will guarantee that the graph
of y = f (x) has two distinct “turning points”?
(Here a “turning point” means a place where the
curve changes from increasing to decreasing or
from decreasing to increasing, like the vertex of a
parabola.)

In 44–51, where are the functions differentiable?

44. f (x) = |x| cos(x) 45. f (x) = tan(x)

46. f (x) =
x − 5
x + 3 47. f (x) =

x2 + x
x2 − 3x

48. f (x) =
∣∣x2 − 4

∣∣
49. f (x) =

∣∣x3 − 1
∣∣

50. f (x) =

{
0 if x < 0

sin(x) if x ≥ 0

51. f (x) =

{
x if x < 0

sin(x) if x ≥ 0

52. For what value(s) of A is

f (x) =

{
Ax − 4 if x < 2
x2 + x if x ≥ 2

differentiable at x = 2?

53. For what values of A and B is

f (x) =

{
Ax + B if x < 1
x2 + x if x ≥ 1

differentiable at x = 1?

54. An arrow shot straight up from ground level (get
out of the way!) with an initial velocity of 128 feet
per second will be at height h(x) = −16x2 + 128x
feet after x seconds (see figure below).

(a) Determine the velocity of the arrow when
x = 0, 1 and 2 seconds.

(b) What is the velocity of the arrow, v(x), at any
time x?

(c) At what time x will the velocity of the arrow
be 0?

(d) What is the greatest height the arrow reaches?

(e) How long will the arrow be aloft?

(f) Use the answer for the velocity in part (b) to
determine the acceleration, a(x) = v′(x), at
any time x.

55. If an arrow is shot straight up from ground level
on the moon with an initial velocity of 128 feet per
second, its height will be h(x) = −2.65x2 + 128x
feet after x seconds. Redo parts (a)–(e) of problem
40 using this new formula for h(x).
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56. In general, if an arrow is shot straight upward
with an initial velocity of 128 feet per second from
ground level on a planet with a constant gravita-
tional acceleration of g feet per second2 then its
height will be h(x) = − g

2 x2 + 128x feet after x
seconds. Answer the questions in problem 40 for
arrows shot on Mars and Jupiter.

object g (ft/sec2) g (cm/sec2)

Mercury 11.8 358

Venus 20.1 887

Earth 32.2 981

moon 5.3 162

Mars 12.3 374

Jupiter 85.3 2601

Saturn 36.6 1117

Uranus 34.4 1049

Neptune 43.5 1325

Source: CRC Handbook of Chemistry and Physics

57. If an object on Earth is propelled upward from
ground level with an initial velocity of v0 feet per
second, then its height after x seconds will be
h(x) = −16x2 + v0x.

(a) Find the object’s velocity after x seconds.

(b) Find the greatest height the object will reach.

(c) How long will the object remain aloft?

58. In order for a 6-foot-tall basketball player to dunk
the ball, the player must achieve a vertical jump of
about 3 feet. Use the information in the previous
problems to answer the following questions.

(a) What is the smallest initial vertical velocity the
player can have and still dunk the ball?

(b) With the initial velocity achieved in part (a),
how high would the player jump on the moon?

59. The best high jumpers in the world manage to lift
their centers of mass approximately 3.75 feet.

(a) What is the initial vertical velocity these high
jumpers attain?

(b) How long are these high jumpers in the air?

(c) How high would they lift their centers of mass
on the moon?

60. (a) Find an equation for the line L that is tangent

to the curve y =
1
x

at the point (1, 1).

(b) Determine where L intersects the x-axis and
the y-axis.

(c) Determine the area of the region in the first
quadrant bounded by L, the x-axis and the
y-axis (see figure below).

61. (a) Find an equation for the line L that is tangent

to the curve y =
1
x

at the point (2, 1
2 ).

(b) Graph y = 1
x and L and determine where L

intersects the x-axis and the y-axis.

(c) Determine the area of the region in the first
quadrant bounded by L, the x-axis and the
y-axis.

62. (a) Find an equation for the line L that is tan-

gent to the curve y =
1
x

at the point (p, 1
p )

(assuming p ̸= 0).

(b) Determine where L intersects the x-axis and
the y-axis.

(c) Determine the area of the region in the first
quadrant bounded by L, the x-axis and the
y-axis.

(d) How does the area of the triangle in part (c)
depend on the initial point (p, 1

p )?

63. Find values for the coefficients a, b and c so that
the parabola f (x) = ax2 + bx + c goes through
the point (1, 4) and is tangent to the line y =

9x − 13 at the point (3, 14).

64. Find values for the coefficients a, b and c so that
the parabola f (x) = ax2 + bx + c goes through
the point (0, 1) and is also tangent to the line
y = 3x − 2 at the point (2, 4).
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65. (a) Find a function f so that D( f (x)) = 3x2.
(b) Find another function g with D(g(x)) = 3x2.
(c) Can you find more functions whose deriva-

tives are 3x2?

66. (a) Find a function f so that f ′(x) = 6x + cos(x).
(b) Find another function g with g′(x) = f ′(x).

67. The graph of y = f ′(x) appears below.

(a) Assume f (0) = 0 and sketch a graph of
y = f (x).

(b) Assume f (0) = 1 and graph y = f (x).

68. The graph of y = g′(x) appears below. Assume
that g is continuous.

(a) Assume g(0) = 0 and sketch a graph of
y = g(x).

(b) Assume g(0) = 1 and graph y = g(x).

69. Assume that f and g are differentiable functions
and that g(x) ̸= 0. State why each step in the
following proof of the Quotient Rule is valid.

Proof of the Quotient Rule

D
(

f (x)
g(x)

)
= lim

h→0

1
h

[
f (x + h)
g(x + h)

− f (x)
g(x)

]
= lim

h→0

1
h

[
f (x + h)g(x)− g(x + h) f (x)

g(x + h)g(x)

]
= lim

h→0

1
g(x + h)g(x)

[
f (x + h)g(x) + (− f (x)g(x) + f (x)g(x))− g(x + h) f (x)

h

]
= lim

h→0

1
g(x + h)g(x)

[
g(x)

f (x + h)− f (x)
h

+ f (x)
g(x)− g(x + h)

h

]
=

1

[g(x)]2
[
g(x) · f ′(x)− f (x) · g′(x)

]
=

g(x) · f ′(x)− f (x) · g′(x)

[g(x)]2

Practice Answers

1. f is continuous at x = −1, 0, 2, 4, 6 and 7.
f is differentiable at x = −1, 2, 4, and 7.

2. f (x) = 6x + 8 and g(x) = 2 so D( f (x)) = 6 and D(g(x)) = 0.
D(3 · f (x)) = 3 · D( f (x)) = 3(6) = 18
D( f (x) + g(x)) = D( f (x)) + D(g(x)) = 6 + 0 = 6
D( f (x)− g(x)) = D( f (x))− D(g(x)) = 6 − 0 = 6
D( f (x) · g(x)) = f (x)g′(x) + g(x) f ′(x) = (6x + 8)(0) + (2)(6) = 12
D
(

f (x)
g(x)

)
= g(x) f ′(x)− f (x)g′(x)

[g(x)]2
= (2)(6)−(6x+8)(0)

22 = 12
4 = 3
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3. D(x3 − 5 sin(x)) = D(x3)− 5 · D(sin(x)) = 3x2 − 5 cos(x)
d

dx

(
sin(x)− 4x3

)
=

d
dx

sin(x)− 4 · d
dx

x3 = cos(x)− 12x2

4.

D(3 f (x)) D(2 f (x) + g(x)) D(3g(x)− f (x))

−6 −1 11
−3 −2 1

6 5 1

5.

D( f (x) · g(x)) D
(

f (x)
g(x)

)
D
(

g(x)
f (x)

)
3 · 3 + (−4)(−2) = 17 −4(−2)−(3)(3)

(−4)2 = − 1
16

(3)(3)−(−4)(−2)
32 = 1

9

2 · 0 + 1(−1) = −1 1(−1)−(2)(0)
12 = −1 2(0)−1(−1)

22 = 1
4

4 · 1 + 3 · 2 = 10 3(2)−(4)(1)
32 = 2

9
4(1)−3(2)

42 = − 1
8

6. D((x2 + 1)(7x − 3)) = (x2 + 1)D(7x − 3) + (7x − 3)D(x2 + 1)
= (x2 + 1)(7) + (7x − 3)(2x) = 21x2 − 6x + 7

or: D((x2 + 1)(7x − 3)) = D(7x3 − 3x2 + 7x) = 21x2 − 6x + 7
d
dt

(
3t − 2
5t + 1

)
=

(5t + 1)D(3t − 2)− (3t − 2)D(5t + 1)
(5t + 1)2 =

(5t + 1)(3)− (3t − 2)(5)
(5t + 1)2 =

13
(5t + 1)2

D
(

cos(x)
x

)
=

x D(cos(x))− cos(x)D(x)
x2 =

x(− sin(x))− cos(x)(1)
x2 =

−x · sin(x)− cos(x)
x2

7. Mimicking the proof of the Difference Rule:

D( f (x) + g(x)) = lim
h→0

[ f (x + h) + g(x + h)]− [ f (x) + g(x)]
h

= lim
h→0

[ f (x + h)− f (x)] + [g(x + h)− g(x)]
h

= lim
h→0

f (x + h)− f (x)
h

+ lim
h→0

g(x + h)− g(x)
h

= D( f (x)) + D(g(x))

8. (a) difference rule (b) product rule (c) difference rule (d) quotient rule

9. D
(

x2 − 5sin(x)
)
=

sin(x)D(x2 − 5)− (x2 − 5)D(sin(x))
(sin(x))2 =

sin(x)(2x)− (x2 − 5) cos(x)
sin2(x)

d
dt

(
t2 − 5t · sin(t)

)
=

t · sin(t)D(t2 − 5)− (t2 − 5)D(t · sin(t))
(t · sin(t))2 =

t · sin(t)(2t)− (t2 − 5) [t cos(t) + sin(t)]
t2 · sin2(t)

10. h(5) = 5 + sin(5)
1+5 ≈ 4.84 ft.; v(5) = h′(5) = (1+5) cos(5)−sin(5)

(1+5)2 ≈ 0.074 ft/sec.

“long time”: h(t) = 5 + sin(t)
1+t ≈ 5 feet when t is very large;

h′(t) =
(1 + t) cos(t)− sin(t)

(1 + t)2 =
cos(t)
1 + t

− sin(t)
(1 + t)2 ≈ 0 ft/sec when t is very large.

11. f ′(x) = 2x − 10 so f ′(x) = 0 ⇒ 2x − 10 = 0 ⇒ x = 5.
g′(x) = 3x2 − 12 so g′(x) = 0 ⇒ 3x2 − 12 = 0 ⇒ x2 = 4 ⇒ x = ±2.
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2.3 More Differentiation Patterns

Polynomials are very useful, but they are not the only functions we
need. This section uses the ideas of the two previous sections to develop
techniques for differentiating powers of functions, and to determine the
derivatives of some particular functions that occur often in applications:
the trigonometric and exponential functions.

As you focus on learning how to differentiate different types and
combinations of functions, it is important to remember what derivatives
are and what they measure. Calculators and computers are available
to calculate derivatives. Part of your job as a professional will be to
decide which functions need to be differentiated and how to use the
resulting derivatives. You can succeed at that only if you understand
what a derivative is and what it measures.

A Power Rule for Functions: D( f n(x))

If we apply the Product Rule to the product of a function with itself, a
pattern emerges.

D( f 2) = D( f · f ) = f · D( f ) + f · D( f ) = = 2 f · D( f )

D( f 3) = D( f 2 · f ) = f 2 · D( f ) + f · D( f 2) = f 2 · D( f ) + f · 2 f · D( f ) = 3 f 2 · D( f )

D( f 4) = D( f 3 · f ) = f 3 · D( f ) + f · D( f 3) = f 3 · D( f ) + f · 3 f 2 · D( f ) = 4 f 3 · D( f )

Practice 1. What is the pattern here? What do you think the results
will be for D( f 5) and D( f 13)?

We could keep differentiating higher and higher powers of f (x) by
writing them as products of lower powers of f (x) and using the Product
Rule, but the Power Rule for Functions guarantees that the pattern we
just saw for the small integer powers also works for all constant powers
of functions.

Power Rule for Functions:

If p is any constant
then D( f p(x)) = p · f p−1(x) · D( f (x)).

The Power Rule for Functions is a spe-
cial case of a more general theorem, the
Chain Rule, which we will examine in
Section 2.4, so we will wait until then to
prove the Power Rule for Functions.

Remember: sin2(x) = [sin(x)]2

Check that you get the same answer by
first expanding (x3 − 5)2 and then taking
the derivative.

Example 1. Use the Power Rule for Functions to find:

(a) D((x3 − 5)2) (b)
d

dx

(√
2x + 3x5

)
(c) D(sin2(x))

Solution. (a) To match the pattern of the Power Rule for D((x3 − 5)2),
let f (x) = x3 − 5 and p = 2. Then:

D((x3 − 5)2) = D( f p(x)) = p · f p−1(x) · D( f (x))

= 2(x3 − 5)1 D(x3 − 5) = 2(x3 − 5)(3x2) = 6x2(x3 − 5)
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(b) To match the pattern for
d

dx

(√
2x + 3x5

)
=

d
dx

(
(2x + 3x5)

1
2

)
, let

f (x) = 2x + 3x5 and take p = 1
2 . Then:

d
dx

(√
2x + 3x5

)
=

d
dx

( f p(x)) = p · f p−1(x) · d
dx

( f (x))

=
1
2
(2x + 3x5)−

1
2

d
dx

(2x + 3x5)

=
1
2
(2x + 3x5)−

1
2 (2 + 15x4) =

2 + 15x4

2
√

2x + 3x5

(c) To match the pattern for D(sin2(x)), let f (x) = sin(x) and p = 2:

D(sin2(x)) = D( f p(x)) = p · f p−1(x) · D( f (x))

= 2 sin1(x)D(sin(x)) = 2 sin(x) cos(x)

We could also rewrite this last expression as sin(2x). ◀

Practice 2. Use the Power Rule for Functions to find:

(a)
d

dx

(
(2x5 − π)2

)
(b) D

(√
x + 7x2

)
(c) D(cos4(x))

Example 2. Use calculus to show that the line tangent to the circle
x2 + y2 = 25 at the point (3, 4) has slope − 3

4 .

Solution. The top half of the circle is the graph of f (x) =
√

25 − x2 so:

f ′(x) = D
(
(25 − x2)

1
2 )
)
=

1
2
(25 − x2)−

1
2 · D(25 − x2) =

−x√
25 − x2

and f ′(3) =
−3√

25 − 32
= −3

4
. As a check, you can verify that the slope

of the radial line through the center of the circle (0, 0) and the point
(3, 4) has slope 4

3 and is perpendicular to the tangent line that has a
slope of − 3

4 . ◀

Derivatives of Trigonometric Functions

We have some general rules that apply to any elementary combination
of differentiable functions, but in order to use the rules we still need to
know the derivatives of some basic functions. Here we will begin to
add to the list of functions whose derivatives we know.

We already know the derivatives of the sine and cosine functions, and
each of the other four trigonometric functions is just a ratio involving
sines or cosines. Using the Quotient Rule, we can easily differentiate
the rest of the trigonometric functions.

Theorem:

D(tan(x)) = sec2(x) D(sec(x)) = sec(x) · tan(x)
D(cot(x)) = − csc2(x) D(csc(x)) = − csc(x) · cot(x)
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Proof. From trigonometry, we know tan(x) =
sin(x)
cos(x)

, cot(x) =
cos(x)
sin(x)

,

sec(x) =
1

cos(x)
and csc(x) =

1
sin(x)

. From calculus, we already know

D(sin(x)) = cos(x) and D(cos(x)) = − sin(x). So:

D(tan(x)) = D
(

sin(x)
cos(x)

)
=

cos(x) · D(sin(x))− sin(x) · D(cos(x))
(cos(x))2

=
cos(x) · cos(x)− sin(x)(− sin(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)
=

1
cos2(x)

= sec2(x)

Similarly:

D(sec(x)) = D
(

1
cos(x)

)
=

cos(x) · D(1)− 1 · D(cos(x))
(cos(x))2

=
cos(x) · 0 − (− sin(x))

cos2(x)

=
sin(x)

cos2(x)
=

1
cos(x)

· sin(x)
cos(x)

= sec(x) · tan(x)

Instead of the Quotient Rule, we could have used the Power Rule to
calculate D(sec(x)) = D((cos(x))−1).

Practice 3. Use the Quotient Rule on f (x) = cot(x) =
cos(x)
sin(x)

to prove

that f ′(x) = − csc2(x).

Practice 4. Prove that D(csc(x)) = − csc(x) · cot(x). The justification
of this result is very similar to the justification for D(sec(x)).

Practice 5. Find: (a) D(x5 tan(x)) (b)
d
dt

(
sec(t)

t

)
(c) D

(√
cot(x)− x

)

Derivatives of Exponential Functions

We can estimate the value of a derivative of an exponential function (a
function of the form f (x) = ax where a > 0) by estimating the slope of
the line tangent to the graph of such a function, or we can numerically
approximate those slopes.

Example 3. Estimate the value of the derivative of f (x) = 2x at the
point (0, 20) = (0, 1) by approximating the slope of the line tangent to
f (x) = 2x at that point.

Solution. We can get estimates from the graph of f (x) = 2x by care-
fully graphing y = 2x for small values of x (so that x is near 0), sketch-
ing secant lines, and then measuring the slopes of the secant lines (see
margin figure).
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We can also estimate the slope numerically by using the definition
of the derivative:

f ′(0) = lim
h→0

f (0 + h)− f (0)
h

= lim
h→0

20+h − 20

h
= lim

h→0

2h − 1
h

and evaluating
2h − 1

h
for some very small values of h. From the table

below we can see that f ′(0) ≈ 0.693. ◀

h 2h−1
h

3h−1
h

eh−1
h

+0.1 0.717734625
−0.1 0.669670084
+0.01 0.695555006
−0.01 0.690750451
+0.001 0.693387463
−0.001 0.692907009
↓ ↓ ↓ ↓
0 ≈ 0.693 ≈ 1.099 1

Practice 6. Fill in the table for
3h − 1

h
and show that the slope of the

line tangent to g(x) = 3x at (0, 1) is approximately 1.099.

At (0, 1), the slope of the tangent to y = 2x is less than 1 and the
slope of the tangent to y = 3x is slightly greater than 1. You might
expect that there is a number b between 2 and 3 so that the slope of
the tangent to y = bx is exactly 1. Indeed, there is such a number,
e ≈ 2.71828182845904, with

lim
h→0

eh − 1
h

= 1

The number e is irrational and plays a very important role in calculus
and applications.

In fact, e is a “transcendental” number,
which means that it is not the root of
any polynomial equation with rational
coefficients.

We have not proved that this number e with the desired limit prop-
erty actually exists, but if we assume it does, then it becomes relatively
straightforward to calculate D(ex).

Don’t worry — we’ll tie up some of these
loose ends in Chapter 7.

Theorem: D(ex) = ex

Proof. Using the definition of the derivative:

D(ex) = lim
h→0

ex+h − ex

h
= lim

h→0

ex · eh − ex

h

= lim
h→0

ex · eh − 1
h

= lim
h→0

ex · lim
h→0

eh − 1
h

= ex · 1 = ex

The function f (x) = ex is its own derivative: f ′(x) = f (x).
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Graphically: the height of f (x) = ex at any point and the slope of
the tangent to f (x) = ex at that point are the same: as the graph gets
higher, its slope gets steeper.

Notice that the limit property of e that
we assumed was true actually says that
for f (x) = ex , f ′(0) = 1. So knowing
the derivative of f (x) = ex at a single
point (x = 0) allows us to determine its
derivative at every other point. Example 4. Find: (a)

d
dt
(
t · et) (b) D

(
ex

sin(x)

)
(c) D(e5x)

Solution. (a) Using the Product Rule with f (t) = t and g(t) = et:

d
dt
(
t · et) = t · D(et) + et · D(t) = t · et + et · 1 = (t + 1)et

(b) Using the Quotient Rule with f (x) = ex and g(x) = sin(x):

D
(

ex

sin(x)

)
=

sin(x) · D(ex)− ex · D(sin(x))

[sin(x)]2

=
sin(x) · ex − ex(cos(x))

sin2(x)

(c) Using the Power Rule for Functions with f (x) = ex and p = 5:

D((ex)5) = 5(ex)4 · D(ex) = 5e4x · ex = 5e5x

where we have rewritten e5x as (ex)5. ◀

Practice 7. Find: (a) D(x3ex) (b) D((ex)3).

Higher Derivatives: Derivatives of Derivatives

The derivative of a function f is a new function f ′ and if this new
function is differentiable we can calculate the derivative of this new
function to get the derivative of the derivative of f , denoted by f ′′ and
called the second derivative of f .

For example, if f (x) = x5 then f ′(x) = 5x4 and:

f ′′(x) = ( f ′(x))′ = (5x4)′ = 20x3

Definitions: Given a differentiable function f ,

• the first derivative is f ′(x), the rate of change of f .

• the second derivative is f ′′(x) = ( f ′(x))′, the rate of change of f ′.

• the third derivative is f ′′′(x) = ( f ′′(x))′, the rate of change of f ′′.

For y = f (x), we write f ′(x) =
dy
dx

, so we can extend that notation to

write f ′′(x) =
d

dx

(
dy
dx

)
=

d2y
dx2 , f ′′′(x) =

d
dx

(
d2y
dx2

)
=

d3y
dx3 and so on.
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Practice 8. Find f ′, f ′′ and f ′′′ for f (x) = 3x7, f (x) = sin(x) and
f (x) = x · cos(x).

If f (x) represents the position of a particle at time x, then v(x) =
f ′(x) will represent the velocity (rate of change of the position) of the
particle and a(x) = v′(x) = f ′′(x) will represent the acceleration (the
rate of change of the velocity) of the particle.

Example 5. The height (in feet) of a particle at time t seconds is given
by t3 − 4t2 + 8t. Find the height, velocity and acceleration of the particle
when t = 0, 1 and 2 seconds.

Solution. f (t) = t3 − 4t2 + 8t so f (0) = 0 feet, f (1) = 5 feet and
f (2) = 8 feet. The velocity is given by v(t) = f ′(t) = 3t2 − 8t + 8
so v(0) = 8 ft/sec, v(1) = 3 ft/sec and v(2) = 4 ft/sec. At each of
these times the velocity is positive and the particle is moving upward
(increasing in height). The acceleration is a(t) = 6t − 8 so a(0) = −8
ft/sec2, a(1) = −2 ft/sec2 and a(2) = 4 ft/sec2. ◀

We will examine the geometric (graphical) meaning of the second
derivative in the next chapter.

A Really “Bent” Function

In Section 1.2 we saw that the “holey” function

h(x) =

{
2 if x is a rational number
1 if x is an irrational number

is discontinuous at every value of x, so h(x) is not differentiable any-
where. We can create graphs of continuous functions that are not
differentiable at several places just by putting corners at those places,
but how many corners can a continuous function have? How badly can
a continuous function fail to be differentiable?

In the mid-1800s, the German mathematician Karl Weierstrass sur-
prised and even shocked the mathematical world by creating a function
that was continuous everywhere but differentiable nowhere — a func-
tion whose graph was everywhere connected and everywhere bent! He
used techniques we have not investigated yet, but we can begin to see
how such a function could be built.

Start with a function f1 (see margin) that zigzags between the values
1
2 and − 1

2 and has a “corner” at each integer. This starting function f1

is continuous everywhere and is differentiable everywhere except at
the integers. Next create a list of functions f2, f3, f4, . . . , each of which
is “shorter” than the previous one but with many more “corners” than
the previous one. For example, we might make f2 zigzag between the
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values 1
4 and − 1

4 and have “corners” at ± 1
2 , ± 3

2 , ± 5
2 , etc.; f3 zigzag

between 1
9 and − 1

9 and have “corners” at ± 1
3 , ± 2

3 , ± 3
3 = ±1, etc.

If we add f1 and f2, we get a continuous function (because the sum of
two continuous functions is continuous) with corners at 0, ± 1

2 , ±1, ± 3
2 ,

. . . . If we then add f3 to the previous sum, we get a new continuous
function with even more corners. If we continue adding the functions
in our list “indefinitely,” the final result will be a continuous function
that is differentiable nowhere.

We haven’t developed enough mathematics here to precisely describe
what it means to add an infinite number of functions together or
to verify that the resulting function is nowhere differentiable — but
we will. You can at least start to imagine what a strange, totally
“bent” function it must be. Until Weierstrass created his “everywhere
continuous, nowhere differentiable” function, most mathematicians
thought a continuous function could only be “bad” in a few places.
Weierstrass’ function was (and is) considered “pathological,” a great
example of how bad something can be. The mathematician Charles
Hermite expressed a reaction shared by many when they first encounter
the Weierstrass function: “I turn away with fright and horror from this
lamentable evil of functions which do not have derivatives.”

Important Results

Power Rule for Functions: D( f p(x)) = p · f p−1(x) · D( f (x))

Derivatives of the Trigonometric Functions:

D(sin(x)) = cos(x) D(cos(x)) = − sin(x)
D(tan(x)) = sec2(x) D(cot(x)) = − csc2(x)
D(sec(x)) = sec(x) tan(x) D(csc(x)) = − csc(x) cot(x)

Derivative of the Exponential Function: D(ex) = ex

2.3 Problems

1. Let f (1) = 2 and f ′(1) = 3. Find the values of
each of the following derivatives at x = 1.

(a) D( f 2(x))

(b) D( f 5(x))

(c) D(
√

f (x))

2. Let f (2) = −2 and f ′(2) = 5. Find the values of
each of the following derivatives at x = 2.

(a) D( f 2(x))

(b) D( f−3(x))

(c) D(
√

f (x))
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3. For x = 1 and x = 3 estimate the values of f (x)
(whose graph appears below), f ′(x) and

(a)
d

dx

(
f 2(x)

)
(b) D

(
f 3(x)

)
(c) D

(
f 5(x)

)

4. For x = 0 and x = 2 estimate the values of f (x)
(whose graph appears above), f ′(x) and

(a) D
(

f 2(x)
)

(b)
d

dx

(
f 3(x)

)
(c)

d
dx

(
f 5(x)

)
In Problems 5–10, find f ′(x).

5. f (x) = (2x − 8)5

6. f (x) = (6x − x2)10

7. f (x) = x · (3x + 7)5

8. f (x) = (2x + 3)6 · (x − 2)4

9. f (x) =
√

x2 + 6x − 1

10. f (x) =
x − 5

(x + 3)4

11. A mass attached to the end of a spring is at a
height of h(t) = 3 − 2 sin(t) feet above the floor t
seconds after it is released.

(a) Graph h(t).

(b) At what height is the mass when it is released?

(c) How high does above the floor and how close
to the floor does the mass ever get?

(d) Determine the height, velocity and acceleration
at time t. (Be sure to include the correct units.)

(e) Why is this an unrealistic model of the motion
of a mass attached to a real spring?

12. A mass attached to a spring is at a height of

h(t) = 3 − 2 sin(t)
1 + 0.1t2 feet above the floor t sec-

onds after it is released.

(a) Graph h(t).

(b) At what height is the mass when it is released?

(c) Determine the velocity of the mass at time t.

(d) What happens to the height and the velocity
of the mass a “long time” after it is released?

13. The kinetic energy K of an object of mass m and
velocity v is 1

2 mv2.

(a) Find the kinetic energy of an object with mass
m and height h(t) = 5t feet at t = 1 and t = 2
seconds.

(b) Find the kinetic energy of an object with mass
m and height h(t) = t2 feet at t = 1 and t = 2
seconds.

14. An object of mass m is attached to a spring and
has height h(t) = 3+ sin(t) feet at time t seconds.

(a) Find the height and kinetic energy of the object
when t = 1, 2 and 3 seconds.

(b) Find the rate of change in the kinetic energy of
the object when t = 1, 2 and 3 seconds.

(c) Can K ever be negative? Can
dK
dt

ever be nega-
tive? Why?

In Problems 15–20, compute f ′(x).

15. f (x) = x · sin(x)

16. f (x) = sin5(x)

17. f (x) = ex − sec(x)

18. f (x) =
√

cos(x) + 1

19. f (x) = e−x + sin(x)

20. f (x) =
√

x2 − 4x + 3

In Problems 21–26, find an equation for the line
tangent to the graph of y = f (x) at the given point.

21. f (x) = (x − 5)7 at (4,−1)

22. f (x) = ex at (0, 1)
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23. f (x) =
√

25 − x2 at (3, 4)

24. f (x) = sin3(x) at (π, 0)

25. f (x) = (x − a)5 at (a, 0)

26. f (x) = x · cos5(x) at (0, 0)

27. (a) Find an equation for the line tangent to f (x) =
ex at the point (3, e3).

(b) Where will this tangent line intersect the x-
axis?

(c) Where will the tangent line to f (x) = ex at the
point (p, ep) intersect the x-axis?

In Problems 28–33, calculate f ′ and f ′′.

28. f (x) = 7x2 + 5x − 3

29. f (x) = cos(x)

30. f (x) = sin(x)

31. f (x) = x2 · sin(x)

32. f (x) = x · sin(x)

33. f (x) = ex · cos(x)

34. Calculate the first 8 derivatives of f (x) = sin(x).
What is the pattern? What is the 208th derivative
of sin(x)?

35. What will the second derivative of a quadratic
polynomial be? The third derivative? The fourth
derivative?

36. What will the third derivative of a cubic polyno-
mial be? The fourth derivative?

37. What can you say about the n-th and (n + 1)-st
derivatives of a polynomial of degree n?

In Problems 38–42, you are given f ′. Find a function
f with the given derivative.

38. f ′(x) = 4x + 2

39. f ′(x) = 5ex

40. f ′(x) = 3 · sin2(x) · cos(x)

41. f ′(x) = 5(1 + ex)4 · ex

42. f ′(x) = ex + sin(x)

43. The function f (x) defined as

f (x) =

{
x · sin( 1

x ) if x ̸= 0
0 if x = 0

shown below is continuous at 0 because we can
show (using the Squeezing Theorem) that

lim
h→0

f (x) = 0 = f (0)

Is f differentiable at 0? To answer this question,
use the definition of f ′(0) and consider

lim
h→0

f (0 + h)− f (0)
h

44. The function f (x) defined as

f (x) =

{
x2 · sin( 1

x ) if x ̸= 0
0 if x = 0

(shown at the top of the next page) is continuous
at 0 because we can show (using the Squeezing
Theorem) that

lim
h→0

f (x) = 0 = f (0)

Is f differentiable at 0? To answer this question,
use the definition of f ′(0) and consider

lim
h→0

f (0 + h)− f (0)
h
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The number e appears in a variety of unusual situa-
tions. Problems 45–48 illustrate a few of these.

45. Use your calculator to examine the values of

f (x) =
(

1 +
1
x

)x
when x is relatively large (for

example, x = 100, 1000 and 10, 000. Try some
other large values for x. If x is large, the value of
f (x) is close to what number?

46. If you put $1 into a bank account that pays 1%
interest per year and compounds the interest x
times a year, then after one year you will have(

1 + 0.01
x

)x
dollars in the account.

(a) How much money will you have after one year
if the bank calculates the interest once a year?

(b) How much money will you have after one year
if the bank calculates the interest twice a year?

(c) How much money will you have after one year
if the bank calculates the interest 365 times a
year?

(d) How does your answer to part (c) compare
with e0.01?

47. Define n! to be the product of all positive integers
from 1 through n. For example, 2! = 1 · 2 = 2,
3! = 1 · 2 · 3 = 6 and 4! = 1 · 2 · 3 · 4 = 24.

(a) Calculate the value of the sums:

s1 = 1 +
1
1!

s2 = 1 +
1
1!

+
1
2!

s3 = 1 +
1
1!

+
1
2!

+
1
3!

s4 = 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

s5 = 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

s6 = 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

+
1
6!

(b) What value do the sums in part (a) seem to be
approaching?

(c) Calculate s7 and s8.

48. If it is late at night and you are tired of study-
ing calculus, try the following experiment with
a friend. Take the 2 through 10 of hearts from a
regular deck of cards and shuffle these nine cards
well. Have your friend do the same with the 2

through 10 of spades. Now compare your cards
one at a time. If there is a match, for example you
both play a 5, then the game is over and you win.
If you make it through the entire nine cards with
no match, then your friend wins. If you play the
game many times, then the ratio:

total number of games played
number of times your friend wins

will be approximately equal to e.

2.3 Practice Answers

1. The pattern is D( f n(x)) = n · f n−1(x) · D( f (x)):
D( f 5(x)) = 5 f 4(x) · D( f (x)) and D( f 13(x)) = 13 f 12(x) · D( f (x))

2.
d

dx
(2x5 − π)2 = 2(2x5 − π)1 D(2x5 − π) = 2(2x5 − π)(10x4) = 40x9 − 20πx4

D
(
(x + 7x2)

1
2

)
=

1
2
(x + 7x2)−

1
2 D(x + 7x2) =

1 + 14x
2
√

x + 7x2

D
(
(cos(x))4

)
= 4(cos(x))3 D(cos(x)) = 4(cos(x))3(− sin(x)) = −4 cos3(x) sin(x)
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3. Mimicking the proof for the derivative of tan(x):

D
(

cos(x)
sin(x)

)
=

sin(x) · D(cos(x))− cos(x) · D(sin(x))
(sin(x))2

=
sin(x)(− sin(x))− cos(x)(cos(x))

sin2(x)

=
−(sin2(x) + cos2(x))

sin2(x)
=

−1
sin2(x)

= − csc2(x)

4. Mimicking the proof for the derivative of sec(x):

D(csc(x)) = D
(

1
sin(x)

)
=

sin(x) · D(1)− 1 · D(sin(x)
sin2(x)

=
sin(x) · 0 − cos(x)

sin2(x)
= − 1

sin(x)
· cos(x)

sin(x)
= − cot(x) csc(x)

5. D(x5 · tan(x)) = x5 D(tan(x))+ tan(x)D(x5) = x5 sec2(x)+ tan(x)(5x4)

d
dt

(
sec(t)

t

)
=

t D(sec(t))− sec(t)D(t)
t2 =

t sec(t) tan(t)− sec(t)
t2

D
(
(cot(x)− x)

1
2

)
=

1
2
(cot(x)− x)−

1
2 D(cot(x)− x)

=
1
2
(cot(x)− x)−

1
2 (− csc2(x)− 1) =

− csc2(x)− 1
2
√

cot(x)− x

6. Filling in values for both 3x and ex:

h 2h−1
h

3h−1
h

eh−1
h

+0.1 0.717734625 1.161231740 1.0517091808
−0.1 0.669670084 1.040415402 0.9516258196
+0.01 0.695555006 1.104669194 1.0050167084
−0.01 0.690750451 1.092599583 0.9950166251
+0.001 0.693387463 1.099215984 1.0005001667
−0.001 0.692907009 1.098009035 0.9995001666
↓ ↓ ↓ ↓
0 ≈ 0.693 ≈ 1.0986 1

7. D(x3ex) = x3 D(ex) + ex D(x3) = x3ex + ex · 3x2 = x2ex(x + 3)
D
(
(ex)3

)
= 3 (ex)2 D(ex) = 3e2x · ex = 3e3x

8. f (x) = 3x7 ⇒ f ′(x) = 21x6 ⇒ f ′′(x) = 126x5 ⇒ f ′′′(x) = 630x4

f (x) = sin(x) ⇒ f ′(x) = cos(x) ⇒ f ′′(x) = − sin(x)
⇒ f ′′′(x) = − cos(x)

f (x) = x · cos(x) ⇒ f ′(x) = −x sin(x) + cos(x)
⇒ f ′′(x) = −x cos(x)− 2 sin(x) ⇒ f ′′′(x) = x sin(x)− 3 cos(x)
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2.4 The Chain Rule

The Chain Rule is the most important and most often used of the
differentiation patterns. It enables us to differentiate composites of
functions such as y = sin(x2). It is a powerful tool for determining
the derivatives of some new functions such as logarithms and inverse
trigonometric functions. And it leads to important applications in a
variety of fields. You will need the Chain Rule hundreds of times in
this course. Practice with it now will save you time — and points —
later. Fortunately, with practice, the Chain Rule is also easy to use. We
already know how to differentiate the composition of some functions.

Example 1. For f (x) = 5x − 4 and g(x) = 2x + 1, find f ◦ g(x) and
D( f ◦ g(x)).

Solution. Writing f ◦ g(x) = f (g(x)) = 5(2x + 1)− 4 = 10x + 1, we
can compute that D( f ◦ g(x)) = D(10x + 1) = 10. ◀

Practice 1. For f (x) = 5x − 4 and g(x) = x2, find f ◦ g(x), D( f ◦ g(x)),
g ◦ f (x) and D(g ◦ f (x)).

Some compositions, however, are still very difficult to differentiate.
We know the derivatives of g(x) = x2 and h(x) = sin(x), and we know
how to differentiate certain combinations of these functions, such as
x2 + sin(x), x2 · sin(x) and even sin2(x) = (sin(x))2. But the derivative
of the simple composition f (x) = h ◦ g(x) = sin(x2) is hard — until we
know the Chain Rule.

To see just how difficult, try using the
definition of derivative on it.

Example 2. (a) Suppose amplifier Y doubles the strength of the output
signal from amplifier U, and U triples the strength of the original
signal x. How does the final signal out of Y compare with the
original signal x?

(b) Suppose y changes twice as fast as u, and u changes three times as
fast as x. How does the rate of change of y compare with the rate of
change of x?

Solution. In each case we are comparing the result of a composition,
and the answer to each question is 6, the product of the two amplifica-
tions or rates of change. In part (a), we have that:

signal out of Y
signal x

=
signal out of Y
signal out of U

· signal out of U
signal x

= 2 · 3 = 6

In part (b):
∆y
∆x

=
∆y
∆u

· ∆u
∆x

= 2 · 3 = 6

These examples are simple cases of the Chain Rule for differentiating a
composition of functions. ◀
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The Chain Rule

We can express the chain rule using more than one type of notation.
Each will be useful in various situations.

Chain Rule (Leibniz notation form):

If y is a differentiable function of u and
u is a differentiable function of x

then y is a differentiable function of x and
dy
dx

=
dy
du

· du
dx

.

Idea for a proof. If ∆u ̸= 0 then:

dy
dx

= lim
∆x→0

∆y
∆x

= lim
∆x→0

∆y
∆u

· ∆u
∆x

=

(
lim

∆x→0

∆y
∆u

)(
lim

∆x→0

∆u
∆x

)
=

(
lim

∆u→0

∆y
∆u

)(
lim

∆x→0

∆u
∆x

)
=

dy
du

· du
dx

The key step here is to argue that ∆x → 0 implies ∆u → 0, which
follows from the continuity of u as as function of x.

Although this nice short argument gets to the heart of why the Chain
Rule works, it is not quite valid. If du

dx ̸= 0, then it is possible to show
that ∆u ̸= 0 for all “very small” values of ∆x, and the “idea for a
proof” becomes a real proof. There are, however, functions for which
∆u = 0 for infinitely many small values of ∆x (no matter how close to
0 we restrict ∆x) and this creates problems with the simple argument
outlined above.

A justification that holds true for all cases
is more complicated and provides no new
conceptual insight. Problem 84 at the
end of this section guides you through a
rigorous proof of the Chain Rule.

The symbol
dy
du

is a single symbol, as is
du
dx

, so we cannot eliminate

du from the product
dy
du

du
dx

in the Chain Rule by “cancelling” du as we

can with ∆u in the fractions
∆y
∆u

· ∆u
∆x

. It is, however, perfectly fine to
use the idea of cancelling du to help you remember the proper statement
of the Chain Rule.

Example 3. Write y = cos(x2 + 3) as y = cos(u) with u = x2 + 3 and
find dy

dx .

Solution. y = cos(u) ⇒ dy
du

= − sin(u) and u = x2 + 3 ⇒ du
dx = 2x.

Using the Chain Rule:

dy
dx

=
dy
du

· du
dx

= − sin(u) · 2x = −2x · sin(x2 + 3)

Notice that in the last step we have eliminated the intermediate variable
u to express the derivative only in terms of x. ◀

Practice 2. Find dy
dx for y = sin(4x + ex).
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We can also state the Chain Rule in terms of composition of functions.
The notation is different, but the meaning is precisely the same.

Chain Rule (composition form):

If g is differentiable at x and
f is differentiable at g(x)

then the composite f ◦ g is differentiable at x and
( f ◦ g)′(x) = D( f (g(x))) = f ′(g(x)) · g′(x).

You may find it easier to think of the re-
sult of the composition form of the Chain
Rule in words: “the derivative of the out-
side function (evaluated at the original
inside function) times the derivative of
the inside function” where f is the out-
side function and g is the inside function.

Example 4. Differentiate sin(x2).

Solution. We can write the function sin(x2) as the composition f ◦ g
of two simple functions: f (x) = sin(x) and g(x) = x2: f ◦ g(x) =

f (g(x)) = f (x2) = sin(x2). Both f and g are differentiable functions
with derivatives f ′(x) = cos(x) and g′(x) = 2x, so the Chain Rule says:

D(sin(x2)) = ( f ◦ g)′(x) = f ′(g(x)) · g′(x) = cos(g(x)) · 2x

= cos(x2) · 2x = 2x cos(x2)

Check that you get the same answer using the Leibniz notation. ◀

If you tried using the definition of deriva-
tive to calculate the derivative of this
function at the beginning of this section,
you can really appreciate the power of
the Chain Rule for differentiating com-
positions of functions, even simple ones
like these.

Example 5. The table below gives values for f , f ′, g and g′ at various
points. Use these values to determine ( f ◦ g)(x) and ( f ◦ g)′(x) at
x = −1 and x = 0.

x f (x) g(x) f ′(x) g′(x) ( f ◦ g)(x) ( f ◦ g)′(x)

−1 2 3 1 0
0 −1 1 3 2
1 1 0 −1 3
2 3 −1 0 1
3 0 2 2 −1

Solution. ( f ◦ g)(−1) = f (g(−1)) = f (3) = 0, ( f ◦ g)(0) = f (g(0)) =
f (1) = 1, ( f ◦ g)′(−1) = f ′(g(−1)) · g′(−1) = f ′(3) · 0 = 2 · 0 = 0 and
( f ◦ g)′(0) = f ′(g(0)) · g′(0) = f ′(1) · 2 = (−1)(2) = −2. ◀

Practice 3. Fill in the table in Example 5 for ( f ◦ g)(x) and ( f ◦ g)′(x)
at x = 1, 2 and 3.

Neither form of the Chain Rule is inherently superior to the other —
use the one you prefer or the one that appears most useful in a particular
situation. The Chain Rule will be used hundreds of times in the rest of
this book, and it is important that you master its usage. The time you
spend now mastering and understanding how to use the Chain Rule
will be paid back tenfold over the next several chapters.
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Example 6. Determine D
(

ecos(x)
)

using each form of the Chain Rule.

Solution. Using the Leibniz notation: y = eu and u = cos(x) so we
have dy

du = eu and du
dx = − sin(x). Applying the Chain Rule:

dy
dx

=
dy
du

· du
dx

= eu · (− sin(x)) = − sin(x) · ecos(x)

We can also write the function ecos(x) as the composition of f (x) = ex

with g(x) = cos(x), so the Chain Rule says:

D(ecos(x)) = f ′(g(x)) · g′(x) = eg(x) · (− sin(x)) = − sin(x) · ecos(x)

because D(ex) = ex and D (cos(x)) = − sin(x). ◀

Practice 4. Calculate D (sin(7x − 1)),
d

dx
(sin(ax + b)) and

d
dt

(
e3t
)

.

Practice 5. Use the graph of g given in the margin along with the Chain
Rule to estimate D (sin(g(x))) and D (g(sin(x))) at x = π.

The Chain Rule is a general differentiation pattern that can be used
along with other general patterns like the Product and Quotient Rules.

Example 7. Determine D
(
e3x · sin(5x + 7)

)
and

d
dx

(cos(x · ex)).

Solution. The function e3x sin(5x + 7) is a product of two functions so
we need the Product Rule first:

D(e3x · sin(5x + 7)) = e3x · D(sin(5x + 7)) + sin(5x + 7) · D(e3x)

= e3x · cos(5x + 7) · 5 + sin(5x + 7) · e3x · 3

= 5e3x cos(5x + 7) + 3e3x sin(5x + 7)

The function cos(x · ex) is a composition of cosine with a product so we
need the Chain Rule first:

d
dx

(cos(x · ex)) = − sin(x · ex) · d
dx

(x · ex)

= − sin(xex) ·
(

x · d
dx

(ex) + ex · d
dx

(x)
)

= − sin(xex) · (xex + ex)

We could also write this last answer as −(x + 1)ex sin(ex). ◀

Sometimes we want to differentiate a composition of more than two
functions. We can do so if we proceed in a careful, step-by-step way.

Example 8. Find D(sin(
√

x3 + 1)).
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Solution. The function sin(
√

x3 + 1) can be viewed as a composition
f ◦ g of f (x) = sin(x) and g(x) =

√
x3 + 1. Then:

(sin(
√

x3 + 1))′ = f ′(g(x)) · g′(x) = cos(g(x)) · g′(x)

= cos(
√

x3 + 1) · D(
√

x3 + 1)

For the derivative of
√

x3 + 1, we can use the Chain Rule again or its
special case, the Power Rule:

D(
√

x3 + 1) = D((x3 + 1)
1
2 ) =

1
2
(x3 + 1)−

1
2 · D(x3 + 1)

=
1
2
(x3 + 1)−

1
2 · 3x2

Finally, D
(

sin(
√

x3 + 1)
)
= cos(

√
x3 + 1) · 1

2
(x3 + 1)−

1
2 · 3x2, which

can be rewritten as
3x2 cos(

√
x3 + 1)

2
√

x3 + 1
. ◀

This example was more complicated than the earlier ones, but it is
just a matter of applying the Chain Rule twice, to a composition of
a composition. If you proceed step by step and don’t get lost in the
details of the problem, these multiple applications of the Chain Rule
are relatively straightforward.

We can also use the Leibniz form of the Chain Rule for a composition
of more than two functions. If y = sin(

√
x3 + 1), then y = sin(u) with

u =
√

w and w = x3 + 1. The Leibniz form of the Chain Rule says:

dy
dx

=
dy
du

· du
dw

· dw
dx

= cos(u) · 1
2
√

w
· 3x2

= cos(
√

x3 + 1) · 1

2
√

x3 + 1
· 3x2

which agrees with our previous answer.

Practice 6. (a) Find D(sin(cos(5x))). (b) For y = ecos(3x), find dy
dx .

The Chain Rule and Tables of Derivatives

With the Chain Rule, the derivatives of all sorts of strange and won-
derful functions become available. If we know f ′ and g′, then we also
know the derivatives of their composition: ( f (g(x))′ = f ′(g(x)) · g′(x).

We have begun to build a list of derivatives of “basic” functions,
such as xn, sin(x) and ex. We will continue to add to that list later
in the course, but if we peek ahead at the rest of that list — spoiler

alert! — to (for example) see that D(arctan(x)) =
1

1 + x2 , then we can

use the Chain Rule to compute derivatives of compositions of those
functions.
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Example 9. Given that D(arcsin(x)) =
1√

1 − x2
, compute the deriva-

tives D(arcsin(5x)) and
d

dx
(arcsin(ex)).

Solution. Write arcsin(5x) as the composition of f (x) = arcsin(x)

with g(x) = 5x. We know g′(x) = 5 and f ′(x) =
1√

1 − x2
, so we have

f ′(g(x)) =
1√

1 − (g(x))2
=

1√
1 − 25x2

. Then:

D(arcsin(5x)) = f ′(g(x)) · g′(x) =
1√

1 − (5x)2
· 5 =

5√
1 − 25x2

We can write y = arcsin(ex) as y = arcsin(u) with u = ex, and we know

that
dy
du

=
1√

1 − u2
and

du
dx

= ex so:

dy
dx

=
dy
du

· du
dx

=
1√

1 − u2
· ex =

ex
√

1 − e2x

We can generalize this result to say that D(arcsin( f (x))) =
f ′(x)√

1 − ( f (x))2

or, in Leibniz notation,
d

du
(arcsin(u)) =

1√
1 − u2

· du
dx

. ◀

Practice 7. Given that D(arctan(x)) =
1

1 + x2 , compute the derivatives

D(arctan(x3)) and
d

dx
(arctan(ex)).

Appendix D in the back of this book shows the derivative patterns
for a variety of functions. You may not know much about some of the
functions, but with the given differentiation patterns and the Chain
Rule you should be able to calculate derivatives of compositions that
involve these new functions. It is just a matter of following the pattern.

Practice 8. Use the patterns D(sinh(x)) = cosh(x) and D(ln(x)) = 1
x

to determine:

(a) D(sinh(5x − 7)) (b)
d

dx

(
ln(3 + e2x)

)
(c) D(arcsin(1 + 3x))

Example 10. If D(F(x)) = ex · sin(x), find D(F(5x)) and
d
dt

(
F(t3)

)
.

Solution. D(F(5x)) = D(F(g(x)) with g(x) = 5x and we know that
F′(x) = ex · sin(x) so:

D(F(5x)) = F′(g(x)) · g′(x) = eg(x) · sin(g(x)) · 5 = e5x · sin(5x) · 5

With y = F(u) and u = t3 we know
dy
du

= eu · sin(u) and
du
dt

= 3t2 so:

dy
dt

=
dy
du

· du
dt

= eu · sin(u) · 3t2 = et3 · sin(t3) · 3t2

Notice that we have eliminated the intermediate variable u (which
didn’t appear in the original problem) from the final answer. ◀
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Proof of the Power Rule For Functions

We started using the Power Rule For Functions in Section 2.3. Now we
can easily prove it.

Power Rule For Functions:

If p is any constant
then D( f p(x)) = p · f p−1(x) · D( f (x)).

Proof. Write y = f p(x) as y = up with u = f (x). Then
dy
du

= p · up−1

and
du
dx

= f ′(x) so:

dy
dx

=
dy
du

· du
dx

= p · up−1 · f ′(x) = p · f p−1(x) · f ′(x)

by the Chain Rule.

2.4 Problems

In Problems 1–6 , find two functions f and g so that the given function is the composition of f and g.

1. y = (x3 − 7x)5
2. y = sin4(3x − 8) 3. y =

√
(2 + sin(x))5

4. y =
1√

x2 + 9
5. y =

∣∣x2 − 4
∣∣

6. y = tan(
√

x)

7. For each function in Problems 1–6, write y as a function of u for some u that is a function of x.

For Problems 8–9, use the values given in this table to determine the indicated quantities:

x f (x) g(x) f ′(x) g′(x) ( f ◦ g)(x) ( f ◦ g)′(x)

x f (x) g(x) f ′(x) g′(x) ( f ◦ g)(x) ( f ◦ g)′(x)
−2 2 −1 1 1
−1 1 2 0 2

0 −2 1 2 −1
1 0 −2 −1 2
2 1 0 1 −1

8. ( f ◦ g)(x) and ( f ◦ g)′(x) at x = 1 and x = 2.

9. ( f ◦ g)(x) and ( f ◦ g)′(x) at x = −2, −1 and 0.

10. Using the figure in the margin, estimate the values of g(x), g′(x),
( f ◦ g)(x), f ′(g(x)) and ( f ◦ g)′(x) at x = 1.

11. Using the figure in the margin, estimate the values of g(x), g′(x),
( f ◦ g)(x), f ′(g(x)) and ( f ◦ g)′(x) at x = 2.
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In Problems 12–22, compute the derivative.

12. D
(
(x2 + 2x + 3)87)

13. D

((
1 − 3

x

)4
)

14.
d

dx

(
x +

1
x

)5

15. D

(
5√

2 + sin(x)

)

16.
d
dt

(t · sin(3t + 2)) 17.
d

dx

(
x2 · sin(x2 + 3)

)
18.

d
dx

(sin(2x) · cos(5x + 1))

19. D
(

7
cos(x3 − x)

)
20.

d
dt

(
5

3 + et

)
21. D (ex + e−x) 22. D (ex − e−x)

23. An object attached to a spring is at a height of
h(t) = 3 − cos(2t) feet above the floor t seconds
after it is released.

(a) At what height was it released?

(b) Determine its height, velocity and acceleration
at any time t.

(c) If the object has mass m, determine its kinetic
energy K = 1

2 mv2 and dK
dt at any time t.

24. An employee with d days of production expe-
rience will be able to produce approximately
P(d) = 3 + 15(1 − e−0.2d) items per day.

(a) Graph P(d).

(b) Approximately how many items will a begin-
ning employee be able to produce each day?

(c) How many items will a very experienced em-
ployee be able to produce each day?

(d) What is the marginal production rate of an
employee with 5 days of experience? (Include
units for your answer. What does this mean?)

25. The air pressure P(h), in pounds per square inch,
at an altitude of h feet above sea level is approxi-
mately P(h) = 14.7e−0.0000385h.

(a) What is the air pressure at sea level?

(b) What is the air pressure at 30,000 feet?

(c) At what altitude is the air pressure 10 pounds
per square inch?

(d) If you are in a balloon that is 2,000 feet above
the Pacific Ocean and is rising at 500 feet per
minute, how fast is the air pressure on the
balloon changing?

(e) If the temperature of the gas in the balloon
remained constant during this ascent, what
would happen to the volume of the balloon?

Find the indicated derivatives in Problems 26–33.

26. D
(
(2x + 3)2

(5x − 7)3

)
27.

d
dz

√
1 + cos2(z)

28. D (sin(3x + 5))
29.

d
dx

tan(3x + 5)

30.
d
dt

cos(7t2) 31. D
(
sin(

√
x + 1)

)
32. D

(
sec(

√
x + 1)

)
33.

d
dx

(
esin(x)

)
In Problems 34–37 , calculate f ′(x) · x′(t) when t = 3
and use these values to determine the value of
d
dt

( f (x(t))) when t = 3.

34. f (x) = cos(x), x = t2 − t + 5

35. f (x) =
√

x, x = 2 +
21
t

36. f (x) = ex, x = sin(t)

37. f (x) = tan3(x), x = 8

In 38–43, find a function that has the given function
as its derivative. (You are given a function f ′(x) and
are asked to find a corresponding function f (x).)

38. f ′(x) = (3x + 1)4
39. f ′(x) = (7x − 13)10

40. f ′(x) =
√

3x − 4 41. f ′(x) = sin(2x − 3)

42. f ′(x) = 6e3x
43. f ′(x) = cos(x)esin(x)

If two functions are equal, then their derivatives are
also equal. In 44–47 , differentiate each side of the
trigonometric identity to get a new identity.

44. sin2(x) = 1
2 − 1

2 cos(2x)

45. cos(2x) = cos2(x)− sin2(x)

46. sin(2x) = 2 sin(x) · cos(x)

47. sin(3x) = 3 sin(x)− 4 sin3(x)
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Derivatives of Families of Functions
So far we have emphasized derivatives of particular
functions, but sometimes we want to investigate the
derivatives of a whole family of functions all at once.
In 48–71, A, B, C and D represent constants and the
given formulas describe families of functions.

For Problems 48–65, calculate y′ = dy
dx .

48. y = Ax3 − B 49. y = Ax3 + Bx2 + C

50. y = sin(Ax + B) 51. y = sin(Ax2 + B)

52. y = Ax3 + cos(Bx) 53. y =
√

A + Bx2

54. y =
√

A − Bx2
55. y = A − cos(Bx)

56. y = cos(Ax + B) 57. y = cos(Ax2 + B)

58. y = A · eBx
59. y = x · eBx

60. y = eAx + e−Ax
61. y = eAx − e−Ax

62. y =
sin(Ax)

x
63. y =

Ax
sin(Bx)

64. y =
1

Ax + B
65. y =

Ax + B
Cx + D

In 66–71, (a) find y′ (b) find the value(s) of x so that
y′ = 0 and (c) find y′′. Typically your answer in part
(b) will contain A’s, B’s and (sometimes) C’s.

66. y = Ax2 + Bx + C

67. y = Ax(B − x) = ABx − Ax2

68. y = Ax(B − x2) = ABx − Ax3

69. y = Ax2(B − x) = ABx2 − Ax3

70. y = Ax2 + Bx

71. y = Ax3 + Bx2 + C

In Problems 72–83, use the differentiation patterns

D(arctan(x)) =
1

1 + x2 , D(arcsin(x)) =
1√

1 − x2

and D(ln(x)) =
1
x

. We have not derived the deriva-
tives for these functions (yet), but if you are handed
the derivative pattern then you should be able to

use that pattern to compute derivatives of associated
composite functions.

72. D (arctan(7x)) 73. D
(
arctan(x2)

)
74.

d
dt

(arctan(ln(t))) 75.
d

dx
(arctan(ex))

76.
d

dw
(arcsin(4w)) 77.

d
dx

(
arcsin(x3)

)
78. D (arcsin(ln(x))) 79. D

(
arcsin(et)

)
80. D (ln(3x + 1)) 81. D (ln(sin(x)))

82.
d

dx
(ln(arctan(x))) 83.

d
ds

(ln(es))

84. To prove the Chain Rule, assume g(x) is differ-
entiable at x = a and f (x) is differentiable at
x = g(a). We need to show that

lim
x→a

f (g(x))− f (g(a))
x − a

exists and is equal to f ′(g(a)) · g′(a). To do this,
define a new function F as:

F(y) =

{
f (y)− f (g(a))

y−g(a) if y ̸= g(a)

f ′(g(a)) if y = g(a)

and justify each of the following statements.

(a) F(y) is continuous at y = g(a) because:

lim
y→g(a)

F(y) = lim
y→g(a)

f (y)− f (g(a))
y − g(a)

= F(g(a))

(b) By considering separately the cases g(x) =

g(a) and g(x) ̸= g(a):

f (g(x))− f (g(a))
x − a

= F(g(x)) · g(x)− g(a)
x − a

for all x ̸= a.

(c) lim
x→a

f (g(x))− f (g(a))
x − a

= lim
x→a

F(g(x)) · g(x)− g(a)
x − a

(d) lim
x→a

F(g(x)) · g(x)− g(a)
x − a

= F(g(a)) · g′(a)

(e) lim
x→a

f (g(x))− f (g(a))
x − a

= f ′(g(a)) · g′(a)

(f) ( f ◦ g)′ (a) = f ′(g(a)) · g′(a)
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2.4 Practice Answers

1. f (x) = 5x − 4 and g(x) = x2 ⇒ f ′(x) = 5 and g′(x) = 2x, so
f ◦ g(x) = f (g(x)) = f (x2)) = 5x2 − 4 and D(5x2 − 4) = 10x or:

D( f ◦ g(x)) = f ′(g(x)) · g′(x) = 5 · 2x = 10x

g ◦ f (x) = g( f (x)) = g(5x − 4) = (5x − 4)2 = 25x2 − 40x + 16 and
D(25x2 − 40x + 16) = 50x − 40 or:

D(g ◦ f (x)) = g′( f (x)) · f ′(x) = 2(5x − 4) · 5 = 50x − 40

2.
d

dx
(sin(4x + ex)) = cos(4x + ex) · D(4x + ex) = cos(4x + ex) · (4 + ex)

3. To fill in the last column, compute:

f ′(g(1)) · g′(1) = f ′(0) · 3 = (3)(3) = 9

f ′(g(2)) · g′(2) = f ′(−1) · 1 = (1)(1) = 1

f ′(g(3) · g′(3) = f ′(2) · (−1) = (0)(−1) = 0

x f (x) g(x) f ′(x) g′(x) ( f ◦ g)(x) ( f ◦ g)′(x)

1 1 0 −1 3 −1 9
2 3 −1 0 1 2 3
3 0 2 2 −1 3 0

4. D (sin(7x − 1)) = cos(7x − 1) · D(7x − 1) = 7 · cos(7x − 1)
d

dx
(sin(ax + b)) = cos(ax + b) · D(ax + b) = a · cos(ax + b)

d
dt

(
e3t
)
= e3t · d

dt
(3t) = 3 · e3t

5. D (sin(g(x))) = cos(g(x)) · g′(x). At x = π, cos(g(π)) · g′(π) ≈
cos(0.86) · (−1) ≈ −0.65. D (g(sin(x))) = g′(sin(x)) · cos(x). At
x = π, g′(sin(π)) · cos(π) = g′(0) · (−1) ≈ −2

6. D (sin(cos(5x))) = cos(cos(5x)) · D(cos(5x))
= cos(cos(5x)) · (− sin(5x)) · D(5x) = −5 · sin(5x) · cos(cos(5x))

d
dx

(
ecos(3x)

)
= ecos(3x) · D(cos(3x)) = ecos(3x)(− sin(3x))D(3x)

= −3 · sin(3x) · ecos(3x)

7. D
(

arctan(x3)
)
=

1
1 + (x3)2 · D(x3) =

3x2

1 + x6

d
dx

(arctan(ex)) =
1

1 + (ex)2 · D(ex) =
ex

1 + e2x

8. D(sinh(5x − 7)) = cosh(5x − 7) · D(5x − 7) = 5 · cosh(5x − 7)
d

dx

(
ln(3 + e2x

)
=

1
3 + e2x · D(3 + e2x) =

2e2x

3 + e2x

D(arcsin(1 + 3x)) =
1√

1 − (1 + 3x)2
· D(1 + 3x) =

3√
1 − (1 + 3x)2
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2.5 Applications of the Chain Rule

The Chain Rule can help us determine the derivatives of logarithmic
functions like f (x) = ln(x) and general exponential functions like
f (x) = ax. We will also use it to answer some applied questions and to
find slopes of graphs given by parametric equations.

Derivatives of Logarithms

You know from precalculus that the natural logarithm ln(x) is defined
as the inverse of the exponential function ex: eln(x) = x for x > 0.
We can use this identity along with the Chain Rule to determine the
derivative of the natural logarithm.

D(ln(x)) =
1
x

and D (ln(g(x))) =
g′(x)
g(x)

Proof. We know that D(eu) = eu, so using the Chain Rule we have

D
(

e f (x)
)

= e f (x) · f ′(x). Differentiating each side of the identity

eln(x) = x, we get:

D
(

eln(x)
)
= D(x) ⇒ eln(x) · D(ln(x)) = 1

⇒ x · D(ln(x)) = 1 ⇒ D(ln(x)) =
1
x

The function ln(g(x)) is the composition of f (x) = ln(x) with g(x) so
the Chain Rule says:

D (ln(g(x)) = D ( f (g(x))) = f ′(g(x)) · g′(x) =
1

g(x)
· g′(x) =

g′(x)
g(x)

Graph f (x) = ln(x) along with f ′(x) =
1
x

and compare the behavior of
the function at various points with the values of its derivative at those

points. Does y =
1
x

possess the properties you would expect to see

from the derivative of f (x) = ln(x)?

You can remember the differentiation
pattern for the the natural logarithm in
words as: “one over the inside times the
the derivative of the inside.”

Example 1. Find D(ln(sin(x))) and D(ln(x2 + 3)).

Solution. Using the pattern D(ln(g(x)) =
g′(x)
g(x)

with g(x) = sin(x):

D(ln(sin(x))) =
g′(x)
g(x)

=
D(sin(x))

sin(x)
=

cos(x)
sin(x)

= cot(x)

With g(x) = x2 + 3, D(ln(x2 + 3)) =
g′(x)
g(x)

=
2x

x2 + 3
. ◀
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We can use the Change of Base Formula from precalculus to rewrite
any logarithm as a natural logarithm, and then we can differentiate the
resulting natural logarithm.

Change of Base Formula for Logarithms:

loga(x) =
logb(x)
logb(a)

for all positive a, b and x.

Your calculator likely has two logarithm
buttons: ln for the natural logarithm
(base e) and log for the common log-
arithm (base 10). Be careful, however,
as more advanced mathematics texts (as
well as the Web site Wolfram|Alpha) use
log for the (base e) natural logarithm.

Example 2. Use the Change of Base formula and your calculator to
find logπ(7) and log2(8).

Solution. logπ(7) =
ln(7)
ln(π)

≈ 1.946
1.145

≈ 1.700. (Check that π1.7 ≈ 7.)

Likewise, log2(8) =
ln(8)
ln(2)

= 3. ◀

Practice 1. Find the values of log9 20, log3 20 and logπ e.

Putting b = e in the Change of Base Formula, loga(x) =
loge(x)
loge(a)

=

ln(x)
ln(a)

, so any logarithm can be written as a natural logarithm divided

by a constant. This makes any logarithmic function easy to differentiate.

D (loga(x)) =
1

x ln(a)
and D (loga( f (x))) =

f ′(x)
f (x)

· 1
ln(a)

Proof. D (loga(x)) = D
(

ln x
ln a

)
=

1
ln(a)

·D(ln x) =
1

ln(a)
· 1

x
=

1
x ln(a)

.

The second differentiation formula follows from the Chain Rule.

Practice 2. Calculate D
(
log10(sin(x))

)
and D (logπ(e

x)).

The number e might seem like an “unnatural” base for a natural
logarithm, but of all the possible bases, the logarithm with base e has
the nicest and easiest derivative. The natural logarithm is even related
to the distribution of prime numbers. In 1896, the mathematicians
Hadamard and Vallée-Poussin proved the following conjecture of Gauss
(the Prime Number Theorem): For large values of N,

number of primes less than N ≈ N
ln(N)

Derivative of ax

Once we know the derivative of ex and the Chain Rule, it is relatively
easy to determine the derivative of ax for any a > 0.

D(ax) = ax · ln(a) for a > 0.
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Proof. If a > 0, then ax > 0 and ax = eln(ax) = ex·ln(a), so we have:
D(ax) = D

(
eln(ax)

)
= D

(
ex·ln(a)

)
= ex·ln(a) · D(x · ln(a)) = ax · ln(a).

Example 3. Calculate D(7x) and
d
dt

(
2sin(t)

)
.

Solution. D(7x) = 7x · ln(7) ≈ (1.95)7x. We can write y = 2sin(t) as

y = 2u with u = sin(t). Using the Chain Rule:
dy
dt

=
dy
du

· du
dt

=

2u · ln(2) cos(t) = 2sin(t) · ln(2) · cos(t). ◀

Practice 3. Calculate D (sin(2x)) and
d
dt

(
3t2
)

.

Some Applied Problems

Let’s examine some applications involving more complicated functions.

Example 4. A ball at the end of a rubber band (see margin) is oscillating
up and down, and its height (in feet) above the floor at time t seconds

is h(t) = 5 + 2 sin
(

t
2

)
(with t in radians).

(a) How fast is the ball traveling after 2 seconds? After 4 seconds? After
60 seconds?

(b) Is the ball moving up or down after 2 seconds? After 4 seconds?
After 60 seconds?

(c) Is the vertical velocity of the ball ever 0?

Solution. (a) v(t) = h′(t) = D
(

5 + 2 sin
(

t
2

))
= 2 cos

(
t
2

)
· 1

2
so

v(t) = cos
( t

2
)

feet/second: v(2) = cos( 2
2 ) ≈ 0.540 ft/s, v(4) =

cos( 4
2 ) ≈ −0.416 ft/s, and v(60) = cos( 60

2 ) ≈ 0.154 ft/s.

(b) The ball is moving up at t = 2 and t = 60, down when t = 4.

(c) v(t) = cos
(

t
2

)
= 0 when

t
2
=

π

2
± k · π ⇒ t = π ± 2πk for any

integer k. ◀

Example 5. If 2,400 people now have a disease, and the number of
people with the disease appears to double every 3 years, then the
number of people expected to have the disease in t years is y = 2400 · 2

t
3 .

(a) How many people are expected to have the disease in 2 years?

(b) When are 50,000 people expected to have the disease?

(c) How fast is the number of people with the disease growing now?
How fast is it expected to be growing 2 years from now?
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Solution. (a) In 2 years, y = 2400 · 2
2
3 ≈ 3,810 people.

(b) We know y = 50000 and need to solve 50000 = 2400 · 2
t
3 for

t. Taking logarithms of each side of the equation: ln(50000) =

ln
(

2400 · 2
2
3

)
= ln(2400) +

t
3
· ln(2) so 10.819 ≈ 7.783 + 0.231t and

t ≈ 13.14 years. We expect 50,000 people to have the disease about
13 years from now.

(c) This question asks for
dy
dt

when t = 0 and t = 2.

dy
dt

=
d
dt

(
2400 · 2

t
3

)
= 2400 · 2

t
3 · ln(2) · 1

3
≈ 554.5 · 2

t
3

Now, at t = 0, the rate of growth of the disease is approximately
554.5 · 20 ≈ 554.5 people/year. In 2 years, the rate of growth will be
approximately 554.5 · 2

2
3 ≈ 880 people/year. ◀

Example 6. You are riding in a balloon, and at time t (in minutes) you
are h(t) = t + sin(t) thousand feet above sea level. If the temperature

at an elevation h is T(h) =
72

1 + h
degrees Fahrenheit, then how fast is

the temperature changing when t = 5 minutes?

Solution. As t changes, your elevation will change. And, as your
elevation changes, so will the temperature. It is not difficult to write
the temperature as a function of time, and then we could calculate
dT
dt

= T′(t) and evaluate T′(5). Or we could use the Chain Rule:

dT
dt

=
dT
dh

· dh
dt

= − 72
(1 + h)2 · (1 + cos(t))

At t = 5, h(5) = 5 + sin(5) ≈ 4.04 so T′(5) ≈ − 72
(1+4.04)2 · (1 + 0.284) ≈

−3.64 ◦/minute. ◀

Practice 4. Write the temperature T in the previous example as a
function of the variable t alone and then differentiate T to determine
the value of

dT
dt

when t = 5 minutes.

Example 7. A scientist has determined that, under optimum conditions,
an initial population of 40 bacteria will grow “exponentially” to f (t) =
40 · e

t
5 bacteria after t hours.

(a) Graph y = f (t) for 0 ≤ t ≤ 15. Calculate f (0), f (5) and f (10).

(b) How fast is the population increasing at time t? (Find f ′(t).)

(c) Show that the rate of population increase, f ′(t), is proportional to
the population, f (t), at any time t. (Show f ′(t) = K · f (t) for some
constant K.)
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Solution. (a) The graph of y = f (t) appears in the margin. f (0) =

40 · e
0
5 = 40 bacteria, f (5) = 40 · e

5
5 = 40e ≈ 109 bacteria and

f (10) = 40 · e
10
5 ≈ 296 bacteria.

(b) f ′(t) = d
dt ( f (t)) = d

dt

(
40 · e

t
5

)
= 40 · e

t
5 · d

dt
( t

5
)
= 40 · e

t
5 · 1

5 = 8 · e
t
5

bacteria/hour.

(c) f ′(t) = 8 · e
t
5 = 1

5 · 40e
t
5 = 1

5 f (t) so f ′(t) = K · f (t) with K = 1
5 . The

rate of change of the population is proportional to its size. ◀

Parametric Equations

Suppose a robot has been programmed to move in the xy-plane so at
time t its x-coordinate will be sin(t) and its y-coordinate will be t2. Both
x and y are functions of the independent parameter t: x(t) = sin(t) and
y(t) = t2. The path of the robot (see margin) can be found by plotting
(x, y) = (x(t), y(t)) for lots of values of t.

t x(t) = sin(t) y(t) = t2 point

0 0 0 (0, 0)
0.5 0.48 0.25 (0.48, 0.25)
1.0 0.84 1 (0.84, 1)
1.5 1.00 2.25 (1, 2.25)
2.0 0.91 4 (0.91, 4)

Typically we know x(t) and y(t) and need to find
dy
dx

, the slope of

the tangent line to the graph of (x(t), y(t)). The Chain Rule says:

dy
dt

=
dy
dx

· dx
dt

so , algebraically solving for
dy
dx

, we get:

dy
dx

=
dy
dt
dx
dt

If we can calculate
dy
dt

and
dx
dt

, the derivatives of y and x with respect

to the parameter t, then we can determine
dy
dx

, the rate of change of y
with respect to x.

If x = x(t) and y = y(t) are differentiable

with respect to t and
dx
dt

̸= 0

then
dy
dx

=
dy
dt
dx
dt

.
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Example 8. Find the slope of the tangent line to the graph of (x, y) =(
sin(t), t2) when t = 2.

Solution.
dx
dt

= cos(t) and
dy
dt

= 2t. When t = 2, the object is at the

point (sin(2), 22) ≈ (0.91, 4) and the slope of the tangent line is:

dy
dx

=
dy
dt
dx
dt

=
2t

cos(t)
=

2 · 2
cos(2)

≈ 4
−0.42

≈ −9.61

Notice in the figure that the slope of the tangent line to the curve at
(0.91, 4) is negative and very steep. ◀

Practice 5. Graph (x, y) = (3 cos(t), 2 sin(t)) and find the slope of the
tangent line when t = π

2 .

When we calculated
dy
dx

, the slope of the tangent line to the graph of

(x(t), y(t)), we used the derivatives
dx
dt

and
dy
dt

. Each of these also has a

geometric meaning:
dx
dt

measures the rate of change of x(t) with respect
to t: it tells us whether the x-coordinate is increasing or decreasing as

the t-variable increases (and how fast it is changing), while
dy
dt

measures

the rate of change of y(t) with respect to t.

Example 9. For the parametric graph in the margin, determine whether
dx
dt

,
dy
dt

and
dy
dx

are positive or negative when t = 2.

Solution. As we move through the point B (where t = 2) in the di-
rection of increasing values of t, we are moving to the left, so x(t) is

decreasing and
dx
dt

< 0. The values of y(t) are increasing, so
dy
dt

> 0.

Finally, the slope of the tangent line,
dy
dx

, is negative. ◀

As a check on the sign of
dy
dx

in the previous example:

dy
dx

=
dy
dt
dx
dt

=
positive
negative

= negative

Practice 6. For the parametric graph in the previous example, tell

whether
dx
dt

,
dy
dt

and
dy
dx

are positive or negative at t = 1 and t = 3.

Speed

If we know the position of an object at any time, then we can determine
its speed. The formula for speed comes from the distance formula and
looks a lot like it, but involves derivatives.
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If x = x(t) and y = y(t) give the location of an object
at time t and both are differentiable functions of t

then the speed of the object is√(
dx
dt

)2
+

(
dy
dt

)2

Proof. The speed of an object is the limit, as ∆t → 0, of (see margin):

change in position
change in time

=

√
(∆x)2 + (∆y)2

∆t
=

√
(∆x)2 + (∆y)2

(∆t)2

=

√(
∆x
∆t

)2
+

(
∆y
∆t

)2
→

√(
dx
dt

)2
+

(
dy
dt

)2

as ∆t → 0.

Example 10. Find the speed of the object whose location at time t is
(x, y) =

(
sin(t), t2) when t = 0 and t = 1.

Solution.
dx
dt

= cos(t) and
dy
dt

= 2t so:

speed =

√
(cos(t))2 + (2t)2 =

√
cos2(t) + 4t2

When t = 0, speed =
√

cos2(0) + 4(0)2 =
√

1 + 0 = 1. When t = 1,
speed =

√
cos2(1) + 4(1)2 ≈

√
0.29 + 4 ≈ 2.07. ◀

Practice 7. Show that an object located at (x, y) = (3 sin(t), 3 cos(t)) at
time t has a constant speed. (This object is moving on a circular path.)

Practice 8. Is the object at (x, y) = (3 cos(t), 2 sin(t)) at time t traveling
faster at the top of the ellipse (t = π

2 ) or at the right edge (t = 0)?

2.5 Problems

In Problems 1–27, differentiate the given function.

1. ln(5x) 2. ln(x2)

3. ln(xk) 4. ln(xx) = x · ln(x)

5. ln(cos(x)) 6. cos(ln(x))

7. log2(5x) 8. log2(kx)

9. ln(sin(x)) 10. ln(kx)

11. log2(sin(x)) 12. ln(ex)

13. log5(5
x) 14. ln

(
e f (x)

)
15. x · ln(3x) 16. ex · ln(x)

17.
ln(x)

x
18.

√
x + ln(3x)
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19. ln
(√

5x − 3
)

20. ln(cos(t))

21. cos(ln(w)) 22. ln(ax + b)

23. ln
(√

t + 1
)

24. 3x

25. 5sin(x)
26. x · ln(x)− x

27. ln (sec(x) + tan(x))

28. Find the slope of the line tangent to f (x) = ln(x)
at the point (e, 1). Find the slope of the line tan-
gent to g(x) = ex at the point (1, e). How are the
slopes of f and g at these points related?

29. Find a point P on the graph of f (x) = ln(x) so
the tangent line to f at P goes through the origin.

30. You are moving from left to right along the graph
of y = ln(x) (see figure below).

(a) If the x-coordinate of your location at time t
seconds is x(t) = 3t + 2, then how fast is your
elevation increasing?

(b) If the x-coordinate of your location at time t
seconds is x(t) = et, then how fast is your
elevation increasing?

31. The percent of a population, p(t), who have
heard a rumor by time t is often modeled by

p(t) =
100

1 + Ae−t = 100
(
1 + Ae−t)−1 for some

positive constant A. Calculate p′(t), the rate at
which the rumor is spreading.

32. If we start with A atoms of a radioactive material
that has a “half-life” (the time it takes for half
of the material to decay) of 500 years, then the
number of radioactive atoms left after t years is

r(t) = A · e−Kt where K =
ln(2)
500

. Calculate r′(t)

and show that r′(t) is proportional to r(t) (that is,
r′(t) = b · r(t) for some constant b).

In 33–41, find a function with the given derivative.

33. f ′(x) =
8
x

34. h′(x) =
3

3x + 5

35. f ′(x) =
cos(x)

3 + sin(x)
36. g′(x) =

x
1 + x2

37. g′(x) = 3e5x
38. h′(x) = e2

39. f ′(x) = 2x · ex2
40. g′(x) = cos(x)esin(x)

41. h′(x) = cot(x) =
cos(x)
sin(x)

42. Define A(x) to be the area bounded between the
t-axis, the graph of y = f (t) and a vertical line
at t = x (see figure below). The area under each
“hump” of f is 2 square inches.

(a) Graph A(x) for 0 ≤ x ≤ 9.

(b) Graph A′(x) for 0 ≤ x ≤ 9.

Problems 43–48 involve parametric equations.

43. At time t minutes, robot A is at (t, 2t + 1) and
robot B is at (t2, 2t2 + 1).

(a) Where is each robot when t = 0 and t = 1?

(b) Sketch the path each robot follows during the
first minute.

(c) Find the slope of the tangent line,
dy
dx

, to the
path of each robot at t = 1 minute.

(d) Find the speed of each robot at t = 1 minute.

(e) Discuss the motion of a robot that follows the
path (sin(t), 2 sin(t) + 1) for 20 minutes.

44. Let x(t) = t + 1 and y(t) = t2.

(a) Graph (x(t), y(t)) for −1 ≤ t ≤ 4.

(b) Find
dx
dt

,
dy
dt

, the tangent slope
dy
dx

, and speed
when t = 1 and t = 4.
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45. For the parametric graph shown below, determine

whether
dx
dt

,
dy
dt

and
dy
dx

are positive, negative or
0 when t = 1 and t = 3.

46. For the parametric graph shown below, determine

whether
dx
dt

,
dy
dt

and
dy
dx

are positive, negative or
0 when t = 1 and t = 3.

47. The parametric graph (x(t), y(t)) defined by
x(t) = R · (t − sin(t)) and y(t) = R · (1 − cos(t))
is called a cycloid, the path of a light attached to
the edge of a rolling wheel with radius R.

(a) Graph (x(t), y(t)) for 0 ≤ t ≤ 4π.

(b) Find
dx
dt

,
dy
dt

, the tangent slope
dy
dx

, and speed

when t = π
2 and t = π.

48. Describe the motion of particles whose locations
at time t are (cos(t), sin(t)) and (cos(t),− sin(t)).

49. (a) Describe the path of a robot whose location at
time t is (3 · cos(t), 5 · sin(t)).

(b) Describe the path of a robot whose location at
time t is (A · cos(t), B · sin(t)).

(c) Give parametric equations so the robot will
move along the same path as in part (a) but in
the opposite direction.

50. After t seconds, a projectile hurled with initial ve-
locity v and angle θ will be at x(t) = v · cos(θ) · t
feet and y(t) = v · sin(θ) · t − 16t2 feet (see figure
below). (This formula neglects air resistance.)

(a) For an initial velocity of 80 feet/second and an
angle of π

4 , find T > 0 so that y(T) = 0. What
does this value for t represent physically? Eval-
uate x(T).

(b) For v and θ in part (a), calculate
dy
dx

. Find T so

that
dy
dx

= 0 at t = T, and evaluate x(T). What

does x(T) represent physically?

(c) What initial velocity is needed so a ball hit at
an angle of π

4 ≈ 0.7854 will go over a 40-foot-
high fence 350 feet away?

(d) What initial velocity is needed so a ball hit at
an angle of 0.7 radians will go over a 40-foot-
high fence 350 feet away?

51. Use the method from the proof that D(ln(x)) = 1
x

to compute the derivative D(arctan(x)):

(a) Rewrite y = arctan(x) as tan(y) = x.

(b) Differentiate both sides using the Chain Rule
and solve for y′.

(c) Use the identity 1 + tan2(θ) = sec2(θ) and the

fact that tan(y) = x to show that y′ =
1

1 + x2 .

52. Use the method from the proof that D(ln(x)) = 1
x

to compute the derivative D(arcsin(x)):

(a) Rewrite y = arcsin(x) as sin(y) = x.

(b) Differentiate both sides using the Chain Rule
and solve for y′.

(c) Use the identity cos2(θ) + sin2(θ) = 1 and the

fact that sin(y) = x to show that y′ =
1√

1 − x2
.
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2.5 Practice Answers

1. log9(20) =
log(20)
log(9)

≈ 1.3634165 ≈ ln(20)
ln(9)

log3(20) =
log(20)
log(3)

≈ 2.726833 ≈ ln(20)
ln(3)

logπ(e) =
log(e)
log(π)

≈ 0.8735685 ≈ ln(e)
ln(π)

=
1

ln(π)

2. D
(
log10(sin(x))

)
=

1
sin(x) · ln(10)

D(sin(x)) =
cos(x)

sin(x) · ln(10)

D (logπ(e
x)) =

1
ex · ln(π)

D(ex) =
ex

ex · ln(π)
=

1
ln(π)

3. D (sin(2x)) = cos(2x)D (2x) = cos(2x) · 2x · ln(2)
d
dt

(
3t2
)
= 3t2

ln(3)D(t2) = 3t2
ln(3) · 2t

4. T =
72

1 + h
=

72
1 + t + sin(t)

⇒

dT
dt

=
(1 + t + sin(t)) · 0 − 72 · D(1 + t + sin(t))

(1 + t + sin(t))2 =
−72(1 + cos(t))
(1 + t + sin(t))2

When t = 5,
dT
dt

=
−72(1 + cos(5))
(1 + 5 + sin(5))2 ≈ −3.63695.

5. x(t) = 3 cos(t) ⇒ dx
dt

= −3 sin(t), y(t) = 2 sin(t) ⇒ dy
dt = 2 cos(t):

dy
dx

=
dy
dt
dx
dt

=
2 cos(t)
−3 sin(t)

⇒ dy
dx

∣∣∣∣
t= π

2

=
2 cos(π

2 )

−3 sin(π
2 )

=
2 · 0
−3 · 1

= 0

(See margin for graph.)

6. x = 1: positive, positive, positive. x = 3: positive, negative, negative.

7. x(t) = 3 sin(t) ⇒ dx
dt = 3 cos(t) and y(t) = 3 cos(t) ⇒ dy

dt =

−3 sin(t). So:

speed =

√(
dx
dt

)2
+

(
dy
dt

)2
=
√
(3 cos(t))2 + (−3 sin(t))2

=
√

9 · cos2(t) + 9 · sin2(t) =
√

9 = 3 (a constant)

8. x(t) = 3 cos(t) ⇒ dx
dt = −3 sin(t) and y(t) = 2 sin(t) ⇒ dy

dt =

2 cos(t) so:

speed =

√(
dx
dt

)2
+

(
dy
dt

)2
=
√
(−3 sin(t))2 + (2 cos(t))2

=
√

9 · sin2(t) + 4 · cos2(t)

When t = 0, the speed is
√

9 · 02 + 4 · 12 = 2.
When t = π

2 , the speed is
√

9 · 12 + 4 · 02 = 3 (faster).
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2.6 Related Rates

Throughout the next several sections we’ll look at a variety of applica-
tions of derivatives. Probably no single application will be of interest
or use to everyone, but at least some of them should be useful to you.
Applications also reinforce what you have been practicing: they require
that you recall what a derivative means and require you to use the
differentiation techniques covered in the last several sections. Most
people gain a deeper understanding and appreciation of a tool as they
use it, and differentiation is both a powerful concept and a useful tool.

The Derivative as a Rate of Change

In Section 2.1, we discussed several interpretations of the derivative
of a function. Here we will examine the “rate of change of a function”
interpretation. If several variables or quantities are related to each other
and some of the variables are changing at a known rate, then we can
use derivatives to determine how rapidly the other variables must be
changing.

Example 1. The radius of a circle is increasing at a rate of 10 feet each
second (see margin figure) and we want to know how fast the area of
the circle is increasing when the radius is 5 feet. What can we do?

Solution. We could get an approximate answer by calculating the area
of the circle when the radius is 5 feet:

A = πr2 = π(5 feet)2 ≈ 78.6 feet2

and the area 1 second later when the radius is 10 feet larger than before:

A = πr2 = π(15 feet)2 ≈ 706.9 feet2

and then computing:

∆area
∆time

=
706.9 feet2 − 78.6 feet2

1 second
= 628.3

ft2

sec

This approximate answer represents the average change in area during
the 1-second period when the radius increased from 5 feet to 15 feet. It
is also the slope of the secant line through the points P and Q in the
margin figure, and it is clearly not a very good approximation of the
instantaneous rate of change of the area, the slope of the tangent line at
the point P.

We could get a better approximation by calculating
∆A
∆t

over a shorter
time interval, say ∆t = 0.1 seconds. In this scenario, the original area
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is still 78.6 ft2 but the new area (after t = 0.1 seconds has passed) is
A = π(6 feet)2 ≈ 113.1 ft2 (why is the new radius 6 feet?) so:

∆A
∆t

=
113.1 feet2 − 78.6 feet2

0.1 second
= 345

ft2

sec

This is the slope of the secant line through the points P and Q in the
margin figure, which represents a much better approximation of the
slope of the tangent line at P — but it is still only an approximation.
Using derivatives, we can get an exact answer without doing very much
work at all.

We know that the two variables in this problem, the radius r and
the area A, are related to each other by the formula A = πr2. We also
know that both r and A are changing over time, so each of them is a
function of an additional variable t (time, in seconds): r(t) and A(t).

We want to know the rate of change of the area “when the radius is
5 feet” so if t = 0 corresponds to the particular moment in time when
the radius is 5 feet, we can write r(0) = 5.

The statement that “the radius is increasing at a rate of 10 feet each
second” can be translated into a mathematical statement about the
rate of change, the derivative of r (radius) with respect to t (time):
if t = 0 corresponds to the moment when the radius is 5 feet, then

r′(0) =
dr
dt

= 10 ft/sec.
The question about the rate of change of the area is a question about

A′(t) =
dA
dt

.
Collecting all of this information. . .

• variables: r(t) = radius at time t, A(t) = area at time t

• we know: r(0) = 5 feet and r′(0) = 10 ft/sec

• we want to know: A′(0), the rate of change of area with respect to
time at the moment when r = 5 feet

• connecting equation: A = πr2 or A(t) = π [r(t)]2

To find A′(0) we must first find A′(t) and then evaluate this derivative
at t = 0. Differentiating both sides of the connecting equation, we get:

A(t) = π [r(t)]2 ⇒ A′(t) = 2π [r(t)]1 · r′(t) ⇒ A′(t) = 2π · r(t) · r′(t)

Now we can plug in t = 0 and use the information we know:Notice that we have used the Power Rule
for Functions (or, more generally, the
Chain Rule) because the area is a func-
tion of the radius, which is a function of
time.

A′(0) = 2π · r(0) · r′(0) = 2π · 5 · 10 = 100π

When the radius is 5 feet, the area is increasing at 100π ft2/sec ≈ 314.2
square feet per second. ◀
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Before considering other examples, let’s review the solution to the
previous example. The statement “the radius is increasing at a rate of
10 feet each second” implies that this rate of change is the same at t = 0
(the moment in time we were interested in) as at any other time during
this process, say t = 1.5 or t = 98: r′(0) = r′(1.5) = r′(98) = 10. But
we only used the fact that r′(0) = 10 in our solution.

We should take care in future problems to
consider whether the information we are
given about rates of change holds true all
the time or just at a particular moment
in time. That didn’t matter in our first
example, but it might in other situations.

Next, notice that we let t = 0 correspond to the particular moment
in time the question asked about (the moment when r = 5). But this
choice was arbitrary: we could have let this moment correspond to
t = 2.8 or t = 7π and the eventual answer would have been the same.

Finally, notice that we explicitly wrote each variable (and their deriva-
tives) as a function of the time variable, t: A(t), r(t), A′(t) and r′(t).
Consequently, we used the composition form of the Chain Rule:

(A ◦ r)′(t) = A′(r(t)) · r′(t)

Let’s redo the previous example using the Leibniz form of the Chain
Rule, keeping the above observations in mind.

Solution. We know that the two variables in this problem, the radius r
and the area A, are related to each other by the formula A = πr2. We
also know that both r and A are changing over time, so each of them is
a function of an additional variable t (time, in seconds).

We want to know the rate of change of the area “when the radius is

5 feet,” which translates to evaluating
dA
dt

at the moment when r = 5.
We write this in Leibniz notation as:

dA
dt

∣∣∣∣
r=5

The statement that “the radius is increasing at a rate of 10 feet each

second” translates into
dr
dt

= 10. From the connecting equation A = πr2

we know that
dA
dr

= 2πr. Furthermore,the Chain Rule tells us that:

dA
dt

=
dA
dr

· dr
dt

We know that
dA
dr

= 2πr and
dr
dt

= 10 are always true, so we can rewrite
the Chain Rule statement above as:

dA
dt

= 2πr · 10 = 20πr

Finally, we evaluate both sides at the moment in time we are interested
in (the moment when r = 5):

dA
dt

∣∣∣∣
r=5

= 20πr
∣∣∣
r=5

= 20π · 5 = 100π ≈ 314.2

which is the same answer we found in the original solution. ◀
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The key steps in finding the rate of change of the area of the circle were:

• write the known information in a mathematical form, expressing

rates of change as derivatives:
dr
dt

= 10 ft/sec

• write the question in a mathematical form:
dA
dt

= ?

• find an equation connecting or relating the variables: A = πr2

• differentiate both sides of the connecting equation using the Chain

Rule (and other differentiation patterns as necessary):
dA
dt

=
dA
dr

dr
dt

• substitute all of the known values that are always true into the
equation resulting from the previous step and (if necessary) solve

for the desired quantity in the resulting equation:
dA
dt

= 2πr · 10

• substitute all of the known values that are true at the particular
moment in time the question asks about into the equation resulting

from the previous step:
dA
dt

∣∣∣
r=5

= 2πr · 10
∣∣∣
r=5

= 100π

Example 2. Divers’ lives depend on understanding situations involving
related rates. In water, the pressure at a depth of x feet is approx-

imately P(x) = 15
(

1 +
x

33

)
pounds per square inch (compared to

approximately P(0) = 15 pounds per square inch at sea level). Volume

is inversely proportional to the pressure, V =
k
P

, so doubling the pres-
sure will result in half the original volume. Remember that volume is a
function of the pressure: V = V(P).

(a) Suppose a diver’s lungs, at a depth of 66 feet, contained 1 cubic foot
of air and the diver ascended to the surface without releasing any
air. What would happen?

(b) If a diver started at a depth of 66 feet and ascended at a rate of 2 feet
per second, how fast would the pressure be changing?

(Dives deeper than 50 feet also involve a risk of the “bends,” or decom-
pression sickness, if the ascent is too rapid. Tables are available that
show the safe rates of ascent from different depths.)

Solution. (a) The diver would risk rupturing his or her lungs. The
1 cubic foot of air at a depth of 66 feet would be at a pressure of
P(66) = 15

(
1 + 66

33
)
= 45 pounds per square inch (psi). Because the

pressure at sea level, P(0) = 15 psi, is only 1
3 as great, each cubic foot

of air would expand to 3 cubic feet, and the diver’s lungs would be
in danger. Divers are taught to release air as they ascend to avoid
this danger. (b) The diver is ascending at a rate of 2 feet/second
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so the rate of change of the diver’s depth with respect to time is
dx
dt

= −2 ft/s. (Why is this rate of change negative?) The pressure is

P = 15
(
1 + x

33
)
= 15 + 15

33 x, a function of x, so using the Chain Rule:

dP
dt

=
dP
dx

· dx
dt

=
15
33

psi
ft

·
(
−2

ft
sec

)
= −30

33
psi
sec

≈ −0.91
psi
sec

The rates of change in this problem are constant (they hold true at any
moment in time during the ascent) so we are done. ◀

Example 3. The height of a cylinder is increasing at 7 meters per second
and the radius is increasing at 3 meters per second. How fast is the
volume changing when the cylinder is 5 meters high and has a radius
of 6 meters? (See margin.)

Solution. First we need to translate our known information into a
mathematical format. The height and radius are given: at the particular
moment in time the question asks about, h = height = 5 m and r =

radius = 6 m. We are also told how fast h and r are changing at this
moment in time: dh

dt = 7 m/sec and dr
dt = 3 m/sec. Finally, we are asked

to find dV
dt , and we should expect the units of dV

dt to be the same as ∆V
∆t ,

which are m3/sec.

• variables: h(t) = height at time t seconds, r(t) = radius at time t,
V(t) = volume at time t.

• we know: at a particular moment in time, h = 5 m, dh
dt = 7 m/sec,

r = 6 m and dr
dt = 3 m/sec

• we want to know: dV
dt at this particular moment in time

We also need an equation that relates the variables h, r and V (all of
which are functions of time t) to each other:

• connecting equation: V = πr2h

Differentiating each side of this equation with respect to t (remembering
that h, r and V are functions of t), we have:

dV
dt

=
d
dt

(
πr2h

)
= πr2 · dh

dt
+ h · d

dt

(
πr2
)

= πr2 · dh
dt

+ h · 2πr · dr
dt

using the Product Rule (on the product πr2 · h) and the Power Rule for
Functions (on πr2, remembering that r is actually a function of t).

The rest of the solution just involves substituting values and doing
some arithmetic. At the particular moment in time we’re interested in:

dV
dt

= π · 62 m2 · 7
m
sec

+ 5 m · 2π · 6 m · 3
m
sec

= 432π
m3

sec
≈ 1357.2

m3

sec



180 contemporary calculus

The volume of the cylinder is increasing at a rate of 1,357.2 cubic meters
per second. (It is always encouraging when the units of our answer are
the ones we expect.) ◀

Practice 1. How fast is the surface area of the cylinder changing in
the previous example? (Assume that h, r, dh

dt and dr
dt have the same

values as in the example and use the figure in the margin to help you
determine an equation relating the surface area of the cylinder to the
variables h and r. The cylinder includes a top and bottom.)

Practice 2. How fast is the volume of the cylinder in the previous
example changing if the radius is decreasing at a rate of 3 meters per
second? (The height, radius and rate of change of the height are the
same as in the previous example: 5 m, 6 m and 7 m/sec respectively.)

Usually, the most difficult part of Related Rates problems is to find
an equation that relates or connects all of the variables. In the previous
problems, the relating equations required a knowledge of geometry and
formulas for areas and volumes (or knowing where to look them up).
Other Related Rates problems may require information about similar
triangles, the Pythagorean Theorem or trigonometric identities: the
information required varies from problem to problem.

It is a good idea — a very good idea — to draw a picture of the
physical situation whenever possible. It is also a good idea, particularly
if the problem is very important (your next raise depends on getting
the right answer), to calculate at least one approximate answer as a check
of your exact answer.

Example 4. Water is flowing into a conical tank at a rate of 5 m3/sec.
If the radius of the top of the cone is 2 m, the height is 7 m, and the
depth of the water is 4 m, then how fast is the water level rising?

Solution. Let’s define our variables to be h = height (or depth) of the
water in the cone and V = the volume of the water in the cone. Both h
and V are changing, and both of them are functions of time t. We are
told in the problem that h = 4 m and dV

dt = 5 m3/sec, and we are asked
to find dh

dt . We expect that the units of dh
dt will be the same as ∆h

∆t , which
are meters/second.

• variables: h(t) = height at time t seconds, r(t) = radius of the top
surface of the water at time t, V(t) = volume of water at time t

• we know: dV
dt = 5 m3/sec (always true) and h = 4 m (at a particular

moment)

• we want to know: dh
dt at this particular moment
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Unfortunately, the equation for the volume of a cone, V = 1
3 πr2h, also

involves an additional variable r, the radius of the cone at the top of
the water. This is a situation in which a picture can be a great help by
suggesting that we have a pair of similar triangles:

r
h
=

top radius
total height

=
2 m
7 m

=
2
7

⇒ r =
2
7

h

Knowing this, we can rewrite the volume of the water contained in the
cone, V = 1

3 πr2h, as a function of the single variable h:

• connecting equation: V =
1
3

πr2h =
1
3

π

(
2
7

h
)2

h =
4

147
πh3

The rest of the solution is reasonably straightforward.

dV
dt

=
dV
dh

· dh
dt

=
d

dh

(
4

147
πh3

)
· dh

dt

We know
dV
dt

= 5 always holds, and the derivative is easy to compute:

5 =
4
49

πh2 · dh
dt

At the particular moment in time we want to know about (when h = 4):

5 =
4
49

πh2
∣∣∣
h=4

· dh
dt

∣∣∣
h=4

⇒ 5 =
64π

49
· dh

dt

∣∣∣
h=4

and we can now solve for the quantity of interest:

dh
dt

∣∣∣
h=4

=
5

64π
49

=
245
64π

≈ 1.22
m
sec

This example was a bit more challenging because we needed to use
similar triangles to get an equation relating V to h and because we

eventually needed to do some arithmetic to solve for
dh
dt

. ◀

Practice 3. A rainbow trout has taken the fly at the end of a 60-foot
fishing line, and the line is being reeled in at a rate of 30 feet per minute.
If the tip of the rod is 10 feet above the water and the trout is at the
surface of the water, how fast is the trout being pulled toward the
angler? (Hint: Draw a picture and use the Pythagorean Theorem.)

Example 5. When rain is falling vertically, the amount (volume) of rain
collected in a cylinder is proportional to the area of the opening of the
cylinder. If you place a narrow cylindrical glass and a wide cylindrical
glass out in the rain:

(a) which glass will collect water faster?

(b) in which glass will the water level rise faster?
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Solution. Let’s assume that the smaller glass has a radius of r and the
larger glass has a radius of R, so that R > r. The areas of their openings
are πr2 and πR2, respectively. Call the volume of water collected in
each glass v (for the smaller glass) and V (for the larger glass).

(a) The smaller glass will collect water at the rate
dv
dt

= K · πr2 and

the larger at the rate
dV
dt

= K · πR2 so
dV
dt

>
dv
dt

and the larger glass
will collect water faster than the smaller glass.

(b) The volume of water in each glass is a function of the radius
of the glass and the height of the water in the glass: v = πr2h and
V = πR2H where h and H are the heights of the water levels in the
smaller and larger glasses, respectively. The heights h and H vary with
t (in other words, they are each functions of t) while the radii (r and R)
remain constant, so:

dv
dt

=
d
dt

(
πr2h

)
= πr2 dh

dt
⇒ dh

dt
=

dv
dt

πr2 =
Kπr2

πr2 = K

Similarly:

dV
dt

=
d
dt

(
πR2H

)
= πR2 dH

dt
⇒ dH

dt
=

dV
dt

πR2 =
KπR2

πR2 = K

So
dh
dt

= K =
dH
dt

, which tells us the water level in each glass is rising at
the same rate. In a one-minute period, the larger glass will collect more
rain, but the larger glass also requires more rain to raise its water level
by a fixed amount. How do you think the volumes and water levels
would change if we placed a small glass and a large plastic (rectangular)
box side by side in the rain? ◀

2.6 Problems

1. An expandable sphere is being filled with liquid at a constant rate
from a tap (imagine a water balloon connected to a faucet). When
the radius of the sphere is 3 inches, the radius is increasing at 2

inches per minute. How fast is the liquid coming out of the tap?
(V = 4

3 πr3)

2. The 12-inch base of a right triangle is growing at 3 inches per hour,
and the 16-inch height of the triangle is shrinking at 3 inches per
hour (see figure in the margin).

(a) Is the area increasing or decreasing?

(b) Is the perimeter increasing or decreasing?

(c) Is the hypotenuse increasing or decreasing?



the derivative 183

3. One hour later the right triangle in the previous
problem is 15 inches long and 13 inches high
(see figure below) and the base and height are
changing at the same rate as in Problem 2.

(a) Is the area increasing or decreasing now?
(b) Is the hypotenuse increasing or decreasing?
(c) Is the perimeter increasing or decreasing?

4. A young woman and her boyfriend plan to elope,
but she must rescue him from his mother, who
has locked him in his room. The young woman
has placed a 20-foot long ladder against his house
and is knocking on his window when his mother
begins pulling the bottom of the ladder away
from the house at a rate of 3 feet per second (see
figure below). How fast is the top of the ladder
(and the young couple) falling when the bottom
of the ladder is:

(a) 12 feet from the bottom of the wall?
(b) 16 feet from the bottom of the wall?
(c) 19 feet from the bottom of the wall?

5. The length of a 12-foot by 8-foot rectangle is in-
creasing at a rate of 3 feet per second and the
width is decreasing at 2 feet per second (see fig-
ure below).

(a) How fast is the perimeter changing?

(b) How fast is the area changing?

6. A circle of radius 3 inches is inside a square with
12-inch sides (see figure below). How fast is the
area between the circle and square changing if the
radius is increasing at 4 inches per minute and
the sides are increasing at 2 inches per minute?

7. An oil tanker in Puget Sound has sprung a leak,
and a circular oil slick is forming. The oil slick is
4 inches thick everywhere, is 100 feet in diameter,
and the diameter is increasing at 12 feet per hour.
Your job, as the Coast Guard commander or the
tanker’s captain, is to determine how fast the oil
is leaking from the tanker.
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8. A mathematical species of slug has a semicircular
cross section and is always 5 times as long as it is
high (see figure below). When the slug is 5 inches
long, it is growing at 0.2 inches per week.

(a) How fast is its volume increasing?
(b) How fast is the area of its “foot” (the part of the

slug in contact with the ground) increasing?

9. Lava flowing from a hole at the top of a hill is
forming a conical mountain whose height is al-
ways the same as the width of its base (see figure
below). If the mountain is increasing in height at
2 feet per hour when it is 500 feet high, how fast
is the lava flowing (that is, how fast is the volume
of the mountain increasing)? (V = 1

3 πr2h)

10. A 6-foot-tall person is walking away from a 14-
foot lamp post at 3 feet per second. When the
person is 10 feet away from the lamp post:

(a) how fast is the length of the shadow changing?
(b) how fast is the tip of the shadow moving away

from the lamp post?

11. Redo the previous problem if the person is 20 feet
from the lamp post.

12. Water is being poured at a rate of 15 cubic feet
per minute into a conical reservoir that is 20 feet
deep and has a top radius of 10 feet (see below).

(a) How long will it take to fill the empty reser-
voir?

(b) How fast is the water level rising when the
water is 4 feet deep?

(c) How fast is the water level rising when the
water is 16 feet deep?

13. The string of a kite is perfectly taut and always
makes an angle of 35◦ above horizontal.

(a) If the kite flyer has let out 500 feet of string,
how high is the kite?

(b) If the string is let out at a rate of 10 feet per
second, how fast is the kite’s height increasing?
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14. A small tracking telescope is viewing a hot-air
balloon rise from a point 1,000 meters away from
a point directly under the balloon.

(a) When the viewing angle is 20◦, it is increasing
at a rate of 3◦ per minute. How high is the
balloon, and how fast is it rising?

(b) When the viewing angle is 80◦, it is increasing
at a rate of 2◦ per minute. How high is the
balloon, and how fast is it rising?

15. The 8-foot diameter of a spherical gas bubble
is increasing at 2 feet per hour, and the 12-foot-
long edges of a cube containing the bubble are
increasing at 3 feet per hour. Is the volume con-
tained between the spherical bubble and the cube
increasing or decreasing? At what rate?

16. In general, the strength S of an animal is propor-
tional to the cross-sectional area of its muscles,
and this area is proportional to the square of its
height H, so the strength S = aH2. Similarly,
the weight W of the animal is proportional to
the cube of its height, so W = bH3. Finally, the
relative strength R of an animal is the ratio of its
strength to its weight. As the animal grows, show
that its strength and weight increase, but that the
relative strength decreases.

17. The snow in a hemispherical pile melts at a rate
proportional to its exposed surface area (the sur-
face area of the hemisphere). Show that the height
of the snow pile is decreasing at a constant rate.

18. If the rate at which water vapor condenses onto a
spherical raindrop is proportional to the surface
area of the raindrop, show that the radius of the
raindrop will increase at a constant rate.

19. Define A(x) to be the area bounded by the t- and
y-axes, and the lines y = 5 and t = x.

(a) Find a formula for A as a function of x.

(b) Determine A′(x) when x = 1, 2, 4 and 9.

(c) If x is a function of time, x(t) = t2, find a
formula for A as a function of t.

(d) Determine A′(t) when t = 1, 2 and 3.

(e) Suppose instead x(t) = 2 + sin(t). Find a for-
mula for A(t) and determine A′(t).

20. The point P is going around the circle x2 + y2 = 1
twice a minute. How fast is the distance between
the point P and the point (4, 3) changing:

(a) when P = (1, 0)?

(b) when P = (0, 1)?

(c) when P = (0.8, 0.6)?

(Suggestion: Write x and y as parametric func-
tions of time t.)
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21. You are walking along a sidewalk toward a 40-
foot-wide sign adjacent to the sidewalk and per-
pendicular to it. If your viewing angle θ is 10◦:

(a) how far are you from the corner of the sign?

(b) how fast is your viewing angle changing if you
are walking at 25 feet per minute?

(c) how fast are you walking if the angle is increas-
ing at 2◦ per minute?

2.6 Practice Answers

1. The surface area is S = 2πrh + 2πr2. From the Example, we know
that dh

dt = 7 m/sec and dr
dt = 3 m/sec, and we want to know how

fast the surface area is changing when h = 5 m and r = 6 m.

dS
dt

= 2πr · dh
dt

+ 2π
dr
dt

· h + 2π · 2r · dr
dt

= 2π(6 m)
(

7
m
sec

)
+ 2π

(
3

m
sec

)
(5m) + 2π (2 · 6 m)

(
3

m
sec

)
= 186π

m2

sec
≈ 584.34

m2

sec

Note that the units represent a rate of
change of area.

2. The volume is V = πr2h. We know that dr
dt = −3 m/sec and that

h = 5 m, r = 6 m and dh
dt = 7 m/sec.

dV
dt

= πr2 · dh
dt

+ π · 2r · dr
dt

= π(6 m)2
(

7
m
sec

)
+ π(2 · 6 m)

(
−3

m
sec

)
= 72π

m3

sec
≈ 226.19

m3

sec

Note that the units represent a rate of
change of volume.

3. See margin figure. We know dL
dt = −30 ft

min (always true); F rep-
resents the distance from the fish to a point directly below the tip
of the rod, and the distance from that point to the angler remains
constant, so dF

dt will equal the rate at which the fish is moving toward

the angler. We want to know dF
dt

∣∣∣
L=60

. The Pythagorean Theorem

connects F and L: F2 + 102 = L2. Differentiating with respect to t
and using the Power Rule for Functions:

2F · dF
dt

+ 0 = 2L · dL
dt

⇒ dF
dt

=
L
F
· dL

dt
At a particular moment in time, L = 60 ⇒ F2 + 102 = 602 ⇒ F =√

3600 − 100 =
√

3500 = 10
√

35 so:
dF
dt

∣∣∣
L=60

= −30 · 60
10
√

35
= − 180√

35
≈ −30.43

ft
min
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2.7 Newton’s Method

Newton’s method is a process that can find roots of functions whose
graphs cross or just “kiss” the x-axis. Although this method is a bit
harder to apply than the Bisection Algorithm, it often finds roots that
the Bisection Algorithm misses, and it usually finds them faster.

Off on a Tangent

The basic idea of Newton’s Method is remarkably simple and graphical:
at a point (x, f (x)) on the graph of f , the tangent line to the graph
“points toward” a root of f , a place where the graph touches the x-axis.

To find a root of f , we just pick a starting value x0, go to the point
(x0, f (x0)) on the graph of f , build a tangent line there, and follow the
tangent line to where it crosses the x-axis, say at x1.

If x1 is a root of f , we are done. If x1 is not a root of f , then x1 is
usually closer to the root than x0 was, and we can repeat the process,
using x1 as our new starting point. Newton’s method is an iterative
procedure — that is, the output from one application of the method
becomes the starting point for the next application.

Let’s begin with the function f (x) = x2 − 5, whose roots we already
know (x = ±

√
5 ≈ ±2.236067977), to illustrate Newton’s method.

First, pick some value for x0, say x0 = 4, and move to the point
(x0, f (x0)) = (4, 11) on the graph of f . The tangent line to the graph of
f at (4, 11) “points to” a location on the x-axis that is closer to the root
of f than the point we started with. We calculate this location on the
x-axis by finding an equation of the line tangent to the graph of f at
(4, 11) and then finding where this line intersects the x-axis.

At (4, 11), the line tangent to f has slope f ′(4) = 2(4) = 8, so an
equation of the tangent line is y − 11 = 8(x − 4). Setting y = 0, we can
find where this line crosses the x-axis:

0 − 11 = 8(x − 4) ⇒ x = 4 − 11
8

=
21
8

= 2.625

Call this new value x1: The point x1 = 2.625 is closer to the actual
root

√
5, but it certainly does not equal the actual root. So we can use

this new x-value, x1 = 2.625, to repeat the procedure:

• move to the point (x1, f (x1)) = (2.625, 1.890625)

• find an equation of the tangent line at (x1, f (x1)):

y − 1.890625 = 5.25(x − 2.625)

• find x2, the x-value where this new line intersects the x-axis:

y − 1.890625 = 5.25(x − 2.625) ⇒ 0 − 1.890625 = 5.25(x2 − 2.625)

⇒ x2 = 2.264880952
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Repeating this process, each new estimate for the root of f (x) = x2 − 5
becomes the starting point to calculate the next estimate. We get:

x0 = 4 (0 correct digits)
x1 = 2.625 (1 correct digit)
x2 = 2.262880952 (2 correct digits)
x3 = 2.236251252 (4 correct digits)
x4 = 2.236067985 (8 correct digits)

It only took 4 iterations to get an approximation within 0.000000008 of
the exact value of

√
5 . One more iteration gives an approximation x5

that has 16 correct digits. If we start with x0 = −2 (or any negative
number), then the values of xn approach −

√
5 ≈ −2.23606.

Practice 1. Find where the tangent line to f (x) = x3 + 3x − 1 at (1, 3)
intersects the x-axis.

Practice 2. A starting point and a graph of f appear in the margin.
Label the approximate locations of the next two points on the x-axis
that will be found by Newton’s method.

The Algorithm for Newton’s Method

Rather than deal with each particular function and starting point, let’s
find a pattern for a general function f .

The process for Newton’s Method, start-
ing with x0 and graphically finding the
locations on the x-axis of x1, x2 and x3.

For the starting point x0, the slope of the tangent line at the point
(x0, f (x0)) is f ′(x0) so the equation of the tangent line is y − f (x0) =

f ′(x0) · (x − x0). This line intersects the x-axis at a point (x1, 0), so:

0 − f (x0) = f ′(x0) · (x1 − x0) ⇒ x1 = x0 −
f (x0)

f ′(x0)

Starting with x1 and repeating this process we get x2 = x1 −
f (x1)

f ′(x1)
,

x3 = x2 −
f (x2)

f ′(x2)
and so on. In general, starting with xn, the line

tangent to the graph of f at (xn, f (xn)) intersects the x-axis at (xn+1, 0)

with xn+1 = xn −
f (xn)

f ′(xn)
, our new estimate for the root of f .

Algorithm for Newton’s Method:

1. Pick a starting value x0 (preferably close to a root of f (x)).

2. For each xn, calculate a new estimate xn+1 = xn −
f (xn)

f ′(xn)

3. Repeat step 2 until the estimates are “close enough” to a root or
until the method “fails.”
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When we use Newton’s method with f (x) = x2 − 5, the function in
our first example, we have f ′(x) = 2x so

xn+1 = xn −
f (xn)

f ′(xn)
= xn −

xn
2 − 5
2xn

=
2xn

2 − xn
2 + 5

2xn

=
xn

2 + 5
2xn

=
1
2

(
xn +

5
xn

)
The new approximation, xn+1, is the average of the previous approxi-
mation, xn, and 5 divided by the previous approximation, 5

xn
.

Problem 16 helps you show this pattern —
called Heron’s method — approximates
the square root of any positive number:
just replace 5 with the number whose
square root you want to find.

Example 1. Use Newton’s method to approximate the root(s) of f (x) =
2x + x · sin(x + 3)− 5.

Solution. f ′(x) = 2 + x cos(x + 3) + sin(x + 3) so:

xn+1 = xn −
f (xn)

f ′(xn)
= xn −

2xn + xn · sin(xn + 3)− 5
2 + xn · cos(xn + 3) + sin(xn + 3)

The graph of f (x) (see margin) indicates only one root of f , which
is near x = 3, so pick x0 = 3. Then Newton’s method yields the
values x0 = 3, x1 = 2.96484457, x2 = 2.96446277, x3 = 2.96446273 (the
underlined digits agree with the exact answer). ◀

If we had picked x0 = 4 in the previous example, Newton’s method
would have required 4 iterations to get 9 digits of accuracy. For x0 = 5,
7 iterations are needed to get 9 digits of accuracy. If we pick x0 = 5.1,
then the values of xn are not close to the actual root after even 100

iterations: x100 ≈ −49.183. Picking a “good” value for x0 can result in
values of xn that get close to the root quickly. Picking a “poor” value
for x0 can result in xn values that take many more iterations to get close
to the root — or that don’t approach the root at all.

The graph of the function can help you pick a “good” x0.

Practice 3. Put x0 = 3 and use Newton’s method to find the first two
iterates, x1 and x2, for the function f (x) = x3 − 3x2 + x − 1.

Example 2. The function graphed in the margin has roots at x = 3 and
x = 7. If we pick x0 = 1 and apply Newton’s method, which root do
the iterates (the values of xn) approach?

Solution. The iterates of x0 = 1 are labeled in the margin graph. They
are approaching the root at 7. ◀

Practice 4. For the function graphed in the margin, which root do the
iterates of Newton’s method approach if:

(a) x0 = 2? (b) x0 = 3? (c) x0 = 5?
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Iteration

We have been emphasizing the geometric nature of Newton’s method,
but Newton’s method is also an example of iterating a function. If

N(x) = x − f (x)
f ′(x)

, the “pattern” in the algorithm, then:

x1 = x0 −
f (x0)

f ′(x0)
= N(x0)

x2 = x1 −
f (x1)

f ′(x1)
= N(x1) = N(N(x0)) = N ◦ N(x0)

x3 = x2 −
f (x2)

f ′(x2)
= N(x2) = N(N(N(x0))) = N ◦ N ◦ N(x0)

and, in general:

xn = N(xn−1) = nth iteration of N starting with x0

At each step, we use the output from N as the next input into N.

What Can Go Wrong?

When Newton’s method works, it usually works very well and the
values of xn approach a root of f very quickly, often doubling the
number of correct digits with each iteration. There are, however, several
things that can go wrong.

An obvious problem with Newton’s method is that f ′(xn) can be
0. Then the algorithm tells us to divide by 0 and xn+1 is undefined.
Geometrically, if f ′(xn) = 0, the tangent line to the graph of f at xn is
horizontal and does not intersect the x-axis at any point. If f ′(xn) = 0,
just pick another starting value x0 and begin again. In practice, a second
or third choice of x0 usually succeeds.

There are two other less obvious difficulties that are not as easy
to overcome — the values of the iterates xn may become locked into
an infinitely repeating loop (see margin), or they may actually move
farther away from a root (see lower margin figure).

Example 3. Put x0 = 1 and use Newton’s method to find the first two
iterates, x1 and x2, for the function f (x) = x3 − 3x2 + x − 1.

Solution. This is the function from the previous Practice Problem, but
with a different starting value for x0: f ′(x) = 3x2 − 6x + 1 so,

x1 = x0 −
f (x0)

f ′(x0)
= 1 − f (1)

f ′(1)
= 1 − −2

−2
= 0

and x2 = x1 −
f (x1)

f ′(x1)
= 0 − f (0)

f ′(0)
= 0 − −1

1
= 1

which is the same as x0, so x3 = x1 = 0 and x4 = x2 = 1. The values of
xn alternate between 1 and 0 and do not approach a root. ◀
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Newton’s method behaves badly at only a few starting points for this
particular function — for most starting points, Newton’s method con-
verges to the root of this function. There are some functions, however,
that defeat Newton’s method for almost every starting point.

Practice 5. For f (x) = 3
√

x = x
1
3 and x0 = 1, verify that x1 = −2,

x2 = 4 and x3 = −8. Also try x0 = −3 and verify that the same pattern
holds: xn+1 = −2xn. Graph f and explain why the Newton’s method
iterates get farther and farther away from the root at 0.

Newton’s method is powerful and quick and very easy to program
on a calculator or computer. It usually works so well that many people
routinely use it as the first method they apply. If Newton’s method
fails for their particular function, they simply try some other method.

Chaotic Behavior and Newton’s Method

An algorithm leads to chaotic behavior if two starting points that
are close together generate iterates that are sometimes far apart and
sometimes close together: |a0 − b0| is small but |an − bn| is large for lots
(infinitely many) of values of n and |an − bn| is small for lots of values
of n. The iterates of the next simple algorithm exhibit chaotic behavior.

A Simple Chaotic Algorithm: Starting with any number between 0
and 1, double the number and keep the fractional part of the result:
x1 is the fractional part of 2x0, x2 is the fractional part of 2x1, and in
general, xn+1 = 2xn − ⌊2xn⌋.

If x0 = 0.33, then the iterates of this algorithm are 0.66, 0.32 =

fractional part of 2 · 0.66, 0.64, 0.28, 0.56, . . . The iterates for two other
starting values close to 0.33 are given below as well as the iterates of
0.470 and 0.471:

x0 0.32 0.33 0.34 0.470 0.471

x1 0.64 0.66 0.68 0.940 0.942
x2 0.28 0.32 0.36 0.880 0.884
x3 0.56 0.64 0.72 0.760 0.768
x4 0.12 0.28 0.44 0.520 0.536
x5 0.24 0.56 0.88 0.040 0.072
x6 0.48 0.12 0.76 0.080 0.144
x7 0.96 0.24 0.56 0.160 0.288
x8 0.92 0.48 0.12 0.320 0.576
x9 0.84 0.96 0.24 0.640 0.152

There are starting values as close together as we want whose iterates
are far apart infinitely often.

Many physical, biological and financial phenomena exhibit chaotic
behavior. Atoms can start out within inches of each other and several
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weeks later be hundreds of miles apart. The idea that small initial
differences can lead to dramatically diverse outcomes is sometimes
called the “butterfly effect” from the title of a talk (“Predictability: Does
the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?”)
given by Edward Lorenz, one of the first people to investigate chaos.
The “butterfly effect” has important implications about the possibility —
or rather the impossibility — of accurate long-range weather forecasting.
Chaotic behavior is also an important aspect of studying turbulent air
and water flows, the incidence and spread of diseases, and even the
fluctuating behavior of the stock market.

Newton’s method often exhibits chaotic behavior and — because it
is relatively easy to study — is often used as a model to investigate
the properties of chaotic behavior. If we use Newton’s method to
approximate the roots of f (x) = x3 − x (with roots 0, +1 and −1),
then starting points that are very close together can have iterates that
converge to different roots. The iterates of 0.4472 and 0.4473 converge
to the roots 0 and +1, respectively. The iterates of the median value
0.44725 converge to the root −1, and the iterates of another nearby

point,
1√
5
≈ 0.44721, simply cycle between − 1√

5
and +

1√
5

and do

not converge at all.

Practice 6. Find the first four Newton’s method iterates of x0 = 0.997
and x0 = 1.02 for f (x) = x2 + 1. Try two other starting values very
close to 1 (but not equal to 1) and find their first four iterates. Use the
graph of f (x) = x2 + 1 to explain how starting points so close together
can quickly have iterates so far apart.

2.7 Problems

1. The graph of y = f (x) appears below. Estimate
the locations of x1 and x2 when you apply New-
ton’s method with the given starting value x0.

2. The graph of y = g(x) appears below. Estimate
the locations of x1 and x2 when you apply New-
ton’s method starting value with the value x0

shown in the graph.
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3. The function graphed below has several roots.
Which root do the iterates of Newton’s method
converge to if we start with x0 = 1? With x0 = 5?

4. The function graphed below has several roots.
Which root do the iterates of Newton’s method
converge to if we start with x0 = 2? With x0 = 6?

5. What happens to the iterates if we apply New-
ton’s method to the function graphed below and
start with x0 = 1? With x0 = 5?

6. What happens if we apply Newton’s method to a
function f and start with x0 = a root of f ?

7. What happens if we apply Newton’s method to a
function f and start with x0 = a maximum of f ?

In Problems 8–9, a function and a value for x0 are
given. Apply Newton’s method to find x1 and x2.

8. f (x) = x3 + x − 1 and x0 = 1

9. f (x) = x4 − x3 − 5 and x0 = 2

In Problems 10–11, use Newton’s method to find
a root, accurate to 2 decimal places, of the given
functions using the given starting points.

10. f (x) = x3 − 7 and x0 = 2

11. f (x) = x − cos(x) and x0 = 0.7

In Problems 12–15, use Newton’s method to find all
roots or solutions, accurate to 2 decimal places, of
the given equation. It is helpful to examine a graph
to determine a “good” starting value x0.

12. 2 + x = ex

13.
x

x + 3
= x2 − 2

14. x = sin(x)

15. x = 5
√

3

16. Show that if you apply Newton’s method to
f (x) = x2 − A to approximate

√
A, then

xn+1 =
1
2

(
xn +

A
xn

)
so the new estimate of the square root is the aver-
age of the previous estimate and A divided by the
previous estimate. This method of approximating
square roots is called Heron’s method.

17. Use Newton’s method to devise an algorithm for
approximating the cube root of a number A.

18. Use Newton’s method to devise an algorithm for
approximating the n-th root of a number A.

Problems 19–22 involve chaotic behavior.

19. The iterates of numbers using the Simple Chaotic
Algorithm have some interesting properties.

(a) Verify that the iterates starting with x0 = 0 are
all equal to 0.

(b) Verify that if x0 = 1
2 , 1

4 , 1
8 and, in general, 1

2n ,
then the n-th iterate of x0 is 0 (and so are all
iterates beyond the n-th iterate.)

20. When Newton’s method is applied to the func-
tion f (x) = x2 + 1, most starting values for x0

lead to chaotic behavior for xn. Find a value for
x0 so that the iterates alternate: x1 = −x0 and
x2 = −x1 = x0.
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21. The function f (x) defined as:

f (x) =

{
2x if 0 ≤ x < 1

2
2 − 2x if 1

2 ≤ x ≤ 1

is called a “stretch and fold” function.

(a) Describe what f does to the points in the inter-
val [0, 1].

(b) Examine and describe the behavior of the iter-
ates of 2

3 , 2
5 , 2

7 and 2
9 .

(c) Examine and describe the behavior of the iter-
ates of 0.10, 0.105 and 0.11.

(d) Do the iterates of f lead to chaotic behavior?

22. (a) After many iterations (50 is fine) what hap-
pens when you apply Newton’s method start-
ing with x0 = 0.5 to:

i. f (x) = 2x(1 − x)

ii. f (x) = 3.3x(1 − x)

iii. f (x) = 3.83x(1 − x)

(b) What do you think happens to the iterates of
f (x) = 3.7x(1 − x)? What actually happens?

(c) Repeat parts (a)–(b) with some other starting
values x0 between 0 and 1 (0 < x0 < 1). Does
the starting value seem to effect the eventual
behavior of the iterates?

(The behavior of the iterates of f depends in a
strange way on the numerical value of the leading
coefficient. The behavior exhibited in part (b) is
an example of “chaos.”)

2.7 Practice Answers

1. f ′(x) = 3x2 + 3, so the slope of the tangent line at (1, 3) is f ′(1) = 6
and an equation of the tangent line is y − 3 = 6(x − 1) or y = 6x − 3.
The y-coordinate of a point on the x-axis is 0 so putting y = 0 in
this equation: 0 = 6x − 3 ⇒ x = 1

2 . The line tangent to the graph
of f (x) = x3 + 3x + 1 at the point (1, 3) intersects the x-axis at the
point ( 1

2 , 0).

2. The approximate locations of x1 and x2 appear in the margin.

3. Using f ′(x) = 3x2 + 3 and x0 = 3:

x1 = x0 −
f (x0)

f ′(x0)
= 3 − f (3)

f ′(3)
= 3 − 2

10
= 2.8

x2 = x1 −
f (x1)

f ′(x1)
= 2.8 − f (2.8)

f ′(2.8)
= 2.8 − 0.232

7.72
≈ 2.769948187

x3 = x2 −
f (x2)

f ′(x2)
≈ 2.769292663

4. The margin figure shows the first iteration of Newton’s Method for
x0 = 2, 3 and 5: If x0 = 2, the iterates approach the root at a; if
x0 = 3, they approach the root at c; and if x0 = 5, they approach the
root at a.
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5. f (x) = x
1
3 ⇒ f ′(x) = 1

3 x−
2
3 . If x0 = 1, then:

x1 = 1 − f (1)
f ′(1)

= 1 − 1
1
3
= 1 − 3 = −2

x2 = −2 − f (−2)
f ′(−2)

= −2 − (−2)
1
3

1
3 (−2)−

2
3
= −2 − −2

1
3

= 4

x3 = 4 − f (4)
f ′(4)

= 4 − (4)
1
3

1
3 (4)

− 2
3
= 4 − 4

1
3
= −8

and so on. If x0 = −3, then:

x1 = −3 − f (−3)
f ′(−3)

= −3 − (−3)
1
3

1
3 (−3)−

2
3
= −3 + 9 = 6

x2 = 6 − f (6)
f ′(6)

= 6 − (6)
1
3

1
3 (6)

− 2
3
= 6 − 6

1
3
= −12

The graph of f (x) = 3
√

x has a shape similar to the margin figure
and the behavior of the iterates is similar to the pattern shown in that
figure. Unless x0 = 0 (the only root of f ) the iterates alternate in sign
and double in magnitude with each iteration: they get progressively
farther from the root with each iteration.

6. If x0 = 0.997, then x1 ≈ −0.003, x2 ≈ 166.4, x3 ≈ 83.2, x4 ≈ 41.6.
If x0 = 1.02, then x1 ≈ 0.0198, x2 ≈ −25.2376 , x3 ≈ −12.6 and
x4 ≈ −6.26.
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2.8 Linear Approximation and Differentials

Newton’s method used tangent lines to “point toward” a root of a
function. In this section we examine and use another geometric charac-
teristic of tangent lines:

If f is differentiable at a, c is close to a
and y = L(x) is the line tangent to f (x) at x = a

then L(c) is close to f (c).

We can use this idea to approximate the values of some commonly
used functions and to predict the “error” or uncertainty in a compu-
tation if we know the “error” or uncertainty in our original data. At
the end of this section, we will define a related concept called the
differential of a function.

Linear Approximation

Because this section uses tangent lines extensively, it is worthwhile to
recall how we find the equation of the line tangent to f (x) where x = a:
the tangent line goes through the point (a, f (a)) and has slope f ′(a) so,
using the point-slope form y − y0 = m(x − x0) for linear equations, we
have y − f (a) = f ′(a) · (x − a) ⇒ y = f (a) + f ′(a) · (x − a).

If f is differentiable at x = a
then an equation of the line L tangent to f at x = a is:

L(x) = f (a) + f ′(a) · (x − a)

Example 1. Find a formula for L(x), the linear function tangent to the
graph of f (x) =

√
x at the point (9, 3). Evaluate L(9.1) and L(8.88) to

approximate
√

9.1 and
√

8.88.

Solution. f (x) =
√

x = x
1
2 ⇒ f ′(x) = 1

2 x−
1
2 = 1

2
√

x so f (9) = 3 and

f ′(9) = 1
2
√

9
= 1

6 . Thus:

L(x) = f (9) + f ′(9) · (x − 9) = 3 +
1
6
(x − 9)

If x is close to 9, then the value of L(x) should be a good approximation
of the value of x. The number 9.1 is close to 9 so

√
9.1 = f (9.1) ≈

L(9.1) = 3 + 1
6 (9.1 − 9) ≈ 3.016666. Similarly,

√
8.88 = f (8.88) ≈

L(8.88) = 3 + 1
6 (8.88 − 9) = 2.98. In fact,

√
9.1 ≈ 3.016621, so our

estimate using L(9.1) is within 0.000045 of the exact answer;
√

8.88 ≈
2.979933 (accurate to 6 decimal places) and our estimate is within
0.00007 of the exact answer. ◀
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In each case in the previous example, we got a good estimate of a
square root with very little work. The graph in the margin indicates
the graph of the tangent line y = L(x) lies slightly above the graph
of y = f (x); consequently (as we observed), each estimate is slightly
larger than the exact value.

Practice 1. Find a formula for L(x), the linear function tangent to the
graph of f (x) =

√
x at the point (16, 4). Evaluate L(16.1) and L(15.92)

to approximate
√

16.1 and
√

15.92. Are your approximations using L
larger or smaller than the exact values of the square roots?

Practice 2. Find a formula for L(x), the linear function tangent to the
graph of f (x) = x3 at the point (1, 1) and use L(x) to approximate
(1.02)3 and (0.97)3. Do you think your approximations using L are
larger or smaller than the exact values?

The process we have used to approximate square roots and cubics
can be used to approximate values of any differentiable function, and
the main result about the linear approximation follows from the two
statements in the boxes. Putting these two statements together, we have
the process for Linear Approximation.

Linear Approximation Process:

If f is differentiable at a and L(x) = f (a) + f ′(a) · (x − a)
then (geometrically) the graph of L(x) is close to the graph of

f (x) when x is close to a
and (algebraically) the values of the L(x) approximate the

values of f (x) when x is close to a:
f (x) ≈ L(x) = f (a) + f ′(a) · (x − a)

Sometimes we replace “x − a” with “∆x” in the last equation, and
the statement becomes f (x) ≈ f (a) + f ′(a) · ∆x.

Example 2. Use the linear approximation process to approximate the
value of e0.1.

Solution. f (x) = ex ⇒ f ′(x) = ex so we need to pick a value a near
x = 0.1 for which we know the exact value of f (a) = ea and f ′(a) = ea:
a = 0 is an obvious choice. Then:

e0.1 = f (0.1) ≈ L(0.1) = f (0) + f ′(0) · (0.1 − 0)

= e0 + e0 · (0.1) = 1 + 1 · (0.1) = 1.1

You can use your calculator to verify that this approximation is within
0.0052 of the exact value of e0.1. ◀
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Practice 3. Approximate the value of (1.06)4, the amount $1 becomes
after 4 years in a bank account paying 6% interest compounded annually.
(Take f (x) = x4 and a = 1.)

Practice 4. Use the linear approximation process and the values in the
table below to estimate the value of f when x = 1.1, 1.23 and 1.38.

x f (x) f ′(x)

1.0 0.7854 0.5
1.2 0.8761 0.4098
1.4 0.9505 0.3378

We can approximate functions as well as numbers (specific values of
those functions).

Example 3. Find a linear approximation formula L(x) for
√

1 + x when
x is small. Use your result to approximate

√
1.1 and

√
0.96.

Solution. f (x) =
√

1 + x = (1 + x)
1
2 ⇒ f ′(x) = 1

2 (1 + x)−
1
2 = 1

2
√

1+x
,

so because “x is small,” we know that x is close to 0 and we can pick
a = 0. Then f (a) = f (0) = 1 and f ′(a) = f ′(0) = 1

2 so

√
1 + x ≈ L(x) = f (0) + f ′(0) · (x − 0) = 1 +

1
2

x = 1 +
x
2

Taking x = 0.1,
√

1.1 =
√

1 + 0.1 ≈ 1 + 0.1
2 = 1.05; taking x = −0.04,√

0.96 =
√

1 + (−.04) ≈ 1 + −0.04
2 = 0.98. Use your calculator to

determine by how much each estimate differs from the true value. ◀

Applications of Linear Approximation to Measurement “Error”

Most scientific experiments use instruments to take measurements, but
these instruments are not perfect, and the measurements we get from
them are only accurate up to a certain level of precision. If we know
this level of accuracy of our instruments and measurements, we can
use the idea of linear approximation to estimate the level of accuracy
of results we calculate from our measurements.

If we measure the side x of a square to be 8 inches, then we would of
course calculate its area to be 82 = 64 square inches. Suppose, as would
reasonable with a real measurement, that our measuring instrument
could only measure or be read to the nearest 0.05 inches. Then our
measurement of 8 inches would really mean some number between
8− 0.05 = 7.95 inches and 8+ 0.05 = 8.05 inches, so the true area of the
square would be between 7.952 = 63.2025 and 8.052 = 64.8025 square
inches. Our possible “error” or “uncertainty,” because of the limitations
of the instrument, could be as much as 64.8025 − 64 = 0.8025 square
inches, so we could report the area of the square to be 64 ± 0.8025
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square inches. We can also use the linear approximation method to
estimate the “error” or uncertainty of the area. For a function as simple as the area of a

square, this linear approximation method
really isn’t needed, but it serves as a use-
ful and easily understood illustration of
the technique.

For a square with side x, the area is A(x) = x2 and A′(x) = 2x.
If ∆x represents the “error” or uncertainty of our measurement of
the side then, using the linear approximation technique for A(x),
A(x) ≈ A(a) + A′(a) · ∆x so the uncertainty of our calculated area is
A(x)− A(a) ≈ A′(a) · ∆x. In this example, a = 8 inches and ∆x = 0.05
inches, so A(8.05) ≈ A(8) + A′(8) · (0.05) = 64 + 2(8) · (0.05) = 64.8
square inches, and the uncertainty in our calculated area is approxi-
mately A(8 + 0.05)− A(8) ≈ A′(8) · ∆x = 2(8 inches)(0.05 inches) =
0.8 square inches. (Compare this approximation of the biggest pos-
sible error with the exact answer of 0.8025 square inches computed
previously.) This process can be summarized as:

Linear Approximation Error:

If the value of the x-variable is measured to be x = a with
a maximum “error” of ∆x units

then ∆ f , the “error” in estimating f (x), is:
∆ f = f (x)− f (a) ≈ f ′(a) · ∆x.

Practice 5. If we measure the side of a cube to be 4 cm with an uncer-
tainty of 0.1 cm, what is the volume of the cube and the uncertainty of
our calculation of the volume? (Use linear approximation.)

Example 4. We are using a tracking telescope to follow a small rocket.
Suppose we are 3,000 meters from the launch point of the rocket, and, 2

seconds after the launch we measure the angle of the inclination of the
rocket to be 64

◦ with a possible “error” of 2
◦. How high is the rocket

and what is the possible error in this calculated height?

Solution. Our measured angle is x = 1.1170 radians with ∆x = 0.0349
radians (all trigonometric work should be in radians), and the height of
the rocket at an angle x is f (x) = 3000 tan(x) so f (1.1170) ≈ 6151 m.
Our uncertainty in the height is ∆ f ≈ f ′(x) · ∆x ≈ 3000 · sec2(x) · ∆x =

3000 sec2(1.1170) · 0.0349 ≈ 545 m. If our measured angle of 64
◦ can be

in error by as much as 2
◦, then our calculated height of 6,151 m can be

in error by as much as 545 m. The height is 6151 ± 545 meters. ◀

Practice 6. Suppose we measured the angle of inclination in the pre-
vious Example to be 43◦ ± 1◦. Estimate the height of the rocket in the
form “height ± error.”

In some scientific and engineering applications, the calculated result
must be within some given specification. You might need to determine
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how accurate the initial measurements must be in order to guarantee
the final calculation is within that specification. Added precision usu-
ally costs time and money, so it is important to choose a measuring
instrument good enough for the job but which is not too expensive.

Example 5. Your company produces ball bearings (small metal spheres)
with a volume of 10 cm3 and the volume must be accurate to within 0.1
cm3. What radius should the bearings have — and what error can you
tolerate in the radius measurement to meet the accuracy specification
for the volume?

Solution. We want V = 10 and we know that the volume of a sphere
is V = 4

3 πr3, so solve 10 = 4
3 πr3 for r to get r = 1.3365 cm. V(r) =

4
3 πr3 ⇒ V′(r) = 4πr2 so ∆V ≈ V′(r) · ∆r. In this case we know that
∆V = 0.1 cm3 and we have calculated r = 1.3365 cm, so 0.1 cm3 =

V′(1.3365 cm) · ∆r = (22.45 cm2) · ∆r. Solving for ∆r, we get ∆r ≈
0.0045 cm. To meet the specification for allowable error in volume, we
must allow the radius to vary no more than 0.0045 cm. If we instead
measure the diameter of the sphere, then we want the diameter to be
d = 2r = 2(1.3365 ± 0.0045) = 2.673 ± 0.009 cm. ◀

Practice 7. You want to determine the height of a rocket to within 10

meters when it is 4,000 meters high (see margin figure). How accurate
must your angle of measurement be? (Do your calculations in radians.)

Relative Error and Percentage Error

The “error” we’ve been examining is called the absolute error to dis-
tinguish it from two other terms, the relative error and the percentage
error, which compare the absolute error with the magnitude of the
number being measured. An “error” of 6 inches in measuring the
Earth’s circumference would be extremely small, but a 6-inch error in
measuring your head for a hat would result in a very bad fit.

Definitions:

The Relative Error of f is
error of f
value of f

=
∆ f
f

The Percentage Error of f is
∆ f
f

· 100%.

Example 6. If the relative error in the calculation of the area of a circle
must be less than 0.4, then what relative error can we tolerate in the
measurement of the radius?
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Solution. A(r) = πr2 ⇒ A′(r) = 2πr and ∆A ≈ A′(r) · ∆r = 2πr∆r.
The Relative Error of A is:

∆A
A

≈ 2πr∆r
πr2 = 2

∆r
r

We can guarantee that the Relative Error of A,
∆A
A

, is less than 0.4 if

the Relative Error of r,
∆r
r

=
1
2

∆A
A

, is less than 1
2 (0.4) = 0.2. ◀

Practice 8. If you can measure the side of a cube with a percentage error
less than 3%, then what will the percentage error for your calculation
of the surface area of the cube be?

The Differential of f

As shown in the margin, the change in value of the function f near
the point (x, f (x)) is ∆ f = f (x + ∆x) − f (x) and the change along
the tangent line is f ′(x) · ∆x. If ∆x is small, then we have used the
approximation that ∆ f ≈ f ′(x) · ∆x. This leads to the definition of a
new quantity, d f , called the differential of f .

Definition:

The differential of f is d f = f ′(x) · dx where dx is any real number.

The differential of f represents the change in f , as x changes from
x to x + dx, along the tangent line to the graph of f at the point
(x, f (x)). If we take dx to be the number ∆x, then the differential is an
approximation of ∆ f : ∆ f ≈ f ′(x) · ∆x = f ′(x) · dx = d f .

Example 7. Determine the differential for the functions f (x) = x3 − 7x,
g(x) = sin(x) and h(r) = πr2.

Solution. d f = f ′(x) · dx = (3x2 − 7) dx, dg = g′(x) · dx = cos(x) dx,
and dh = h′(r) dr = 2πr dr. ◀

Practice 9. Determine the differentials of f (x) = ln(x), u =
√

1 − 3x
and r = 3 cos(θ).

While we will do very little with differen-
tials for a while, we will use them exten-
sively in integral calculus.

The Linear Approximation “Error” | f (x)− L(x)|

An approximation is most valuable if we also have have some measure
of the size of the “error,” the distance between the approximate value
and the value being approximated. Typically, we will not know the
exact value of the error (why not?), but it is useful to know an upper
bound for the error. For example, if one scale gives the weight of a gold
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pendant as 10.64 grams with an error less than 0.3 grams (10.64 ± 0.3
grams) and another scale gives the weight of the same pendant as 10.53

grams with an error less than 0.02 grams (10.53 ± 0.02 grams), then we
can have more faith in the second approximate weight because of the
smaller “error” guarantee. Before finding a guarantee on the size of the
error of the linear approximation process, we will check how well the
linear approximation process approximates values of some functions
we can compute exactly. Then we will prove one bound on the possible
error and state a somewhat stronger bound.

Example 8. Given the function f (x) = x2, evaluate the expressions
f (2 + ∆x), L(2 + ∆x) and | f (2 + ∆x)− L(2 + ∆x)| for ∆x = 0.1, 0.05,
0.01, 0.001 and for a general value of ∆x.

Solution. f (2+∆x) = (2+∆x)2 = 22 + 4∆x+(∆x)2 and L(2+∆x) =
f (2) + f ′(2) · ∆x = 22 + 4 · ∆x. Then:

∆x f (2 + ∆x) L(2 + ∆x) | f (2 + ∆x)− L(2 + ∆x)|

0.1 4.41 4.4 0.01
0.05 4.2025 4.2 0.0025
0.01 4.0401 4.04 0.0001
0.001 4.004001 4.004 0.000001

Cutting the value of ∆x in half makes the error one fourth as large.
Cutting ∆x to 1

10 as large makes the error 1
100 as large. In general:

| f (2 + ∆x)− L(2 + ∆x)| =
∣∣∣(22 + 4 · ∆x + (∆x)2

)
−
(

22 + 4 · ∆x
)∣∣∣

= (∆x)2

This function and error also have a nice geometric interpretation (see
margin): f (x) = x2 is the area of a square of side x so f (2 + ∆x) is
the area of a square of side 2 + ∆x, and that area is the sum of the
pieces with areas 22, 2 · ∆x, 2 · ∆x and (∆x)2. The linear approximation
L(2 + ∆x) = 22 + 4 · ∆x to the area of the square includes the three
largest pieces, 22, 2 · ∆x and 2 · ∆x, but omits the small square with area
(∆x)2 so the approximation is in error by the amount (∆x)2. ◀

Practice 10. Given f (x) = x3, evaluate f (4 + ∆x), L(4 + ∆x) and
| f (4 + ∆x)− L(4 + ∆x)| for ∆x = 0.1, 0.05, 0.01, 0.001 and for a general
value of ∆x. Use the margin figure to give a geometric interpretation of
f (4 + ∆x), L(4 + ∆x) and | f (4 + ∆x)− L(4 + ∆x)|.

In the previous Example and previous Practice problem, the error
| f (a + ∆x)− L(a + ∆x)| was very small, proportional to (∆x)2, when
∆x was small. In general, this error approaches 0 as ∆x → 0.
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Theorem:

If f (x) is differentiable at a
and L(a + ∆x) = f (a) + f ′(a) · ∆x

then lim
∆x→0

| f (a + ∆x)− L(a + ∆x)| = 0

and lim
∆x→0

| f (a + ∆x)− L(a + ∆x)|
∆x

= 0.

Proof. First rewrite the quantity inside the absolute value as:

f (a + ∆x)− L(a + ∆x) = f (a + ∆x)− f (a)− f ′(a) · ∆x

=

[
f (a + ∆x)− f (a)

∆x
− f ′(a)

]
· ∆x

But f is differentiable at x = a so lim
∆x→0

f (a + ∆x)− f (a)
∆x

= f ′(a),

which we can rewrite as lim
∆x→0

[
f (a + ∆x)− f (a)

∆x
− f ′(a)

]
= 0. Thus:

lim
∆x→0

[ f (a + ∆x)− L(a + ∆x)] = lim
∆x→0

[
f (a + ∆x)− f (a)

∆x
− f ′(a)

]
· lim

∆x→0
∆x = 0 · 0 = 0

Not only does the difference f (a + ∆x)− L(a + ∆x) approach 0, but
this difference approaches 0 so fast that we can divide it by ∆x, another
quantity approaching 0, and the quotient still approaches 0.

In the next chapter we will be able to prove that the error of the
linear approximation process is in fact proportional to (∆x)2. For now,
we just state the result.

Theorem:

If f is differentiable at a
and | f ′′(x)| ≤ M for all x between a and a + ∆x

then |“error”| = | f (a + ∆x)− L(a + ∆x)| ≤ 1
2 M · (∆x)2.

2.8 Problems

1. The figure in the margin shows the tangent line to a function g at
the point (2, 2) and a line segment ∆x units long.

(a) On the figure, label the locations of

i. 2 + ∆x on the x-axis

ii. the point (2 + ∆x, g(2 + ∆x))

iii. the point (2 + ∆x, g(2) + g′(2) · ∆x)

(b) How large is the “error,” (g(2) + g′(2) · ∆x)− (g(2 + ∆x))?
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2. In the figure below, is the linear approximation
L(a + ∆x) larger or smaller than the value of
f (a + ∆x) when:

(a) a = 1 and ∆x = 0.2?

(b) a = 2 and ∆x = −0.1?

(c) a = 3 and ∆x = 0.1?

(d) a = 4 and ∆x = 0.2?

(e) a = 4 and ∆x = −0.2?

In Problems 3–4, find a formula for the linear func-
tion L(x) tangent to the given function f at the given
point (a, f (a)). Use the value L(a + ∆x) to approxi-
mate the value of f (a + ∆x).

3. (a) f (x) =
√

x, a = 4, ∆x = 0.2

(b) f (x) =
√

x, a = 81, ∆x = −1

(c) f (x) = sin(x), a = 0, ∆x = 0.3

4. (a) f (x) = ln(x), a = 1, ∆x = 0.3

(b) f (x) = ex, a = 0, ∆x = 0.1

(c) f (x) = x5, a = 1, ∆x = 0.03

5. Show that (1 + x)n ≈ 1 + nx if x is “close to” 0.
(Suggestion: Put f (x) = (1 + x)n and a = 0 and
then replace ∆x with x.)

In 6–7, use the linear approximation process to ob-
tain each formula for x “close to” 0.

6. (a) (1 − x)n ≈ 1 − nx

(b) sin(x) ≈ x

(c) ex ≈ 1 + x

7. (a) ln(1 + x) ≈ x

(b) cos(x) ≈ 1

(c) tan(x) ≈ x

(d) sin
(

π
2 + x

)
≈ 1

8. The height of a triangle is exactly 4 inches, and the
base is measured to be 7±0.5 inches (see figure
below). Shade a part of the figure that represents
the “error” in the calculation of the area of the
triangle.

9. A rectangle has one side on the x-axis, one side on
the y-axis and a corner on the graph of y = x2 + 1
(see figure below).

(a) Use Linear Approximation of the area formula
to estimate the increase in the area of the rect-
angle if the base grows from 2 to 2.3 inches.

(b) Calculate exactly the increase in the area of
the rectangle as the base grows from 2 to 2.3
inches.
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10. You know that you can measure the diameter of
a circle to within 0.3 cm of the exact value.

(a) How large is the “error” in the calculated area
of a circle with a measured diameter of 7.4 cm?

(b) How large is the “error” with a measured di-
ameter of 13.6 cm?

(c) How large is the percentage error in the calcu-
lated area with a measured diameter of d?

11. You are minting gold coins that must have a vol-
ume of 47.3±0.1 cm3. If you can manufacture the
coins to be exactly 2 cm high, how much variation
can you allow for the radius?

12. If F is the fraction of carbon-14 remaining in
a plant sample Y years after it died, then Y =

5700 ln(0.5) · ln(F).

(a) Estimate the age of a plant sample in which
83±2% (0.83 ± 0.02) of the carbon-14 remains.

(b) Estimate the age of a plant sample in which
13±2% (0.13 ± 0.02) of the carbon-14 remains.

13. Your company is making dice (cubes) and speci-
fications require that their volume be 87±2 cm3.
How long should each side be and how much
variation can be allowed?

14. If the specifications require a cube with a surface
area of 43±0.2 cm2, how long should each side be
and how much variation can be allowed in order
to meet the specifications?

15. The period P, in seconds, for a pendulum to make
one complete swing and return to the release

point is P = 2π

√
L
g

where L is the length of the

pendulum in feet and g is 32 feet/sec2.

(a) If L = 2 feet, what is the period?
(b) If P = 1 second, how long is the pendulum?
(c) Estimate the change in P if L increases from 2

feet to 2.1 feet.
(d) The length of a 24-foot pendulum is increasing

2 inches per hour. Is the period getting longer
or shorter? How fast is the period changing?

16. A ball thrown at an angle θ (with the horizontal)
with an initial velocity v will land v2

g · sin(2θ) feet
from the thrower.

(a) How far away will the ball land if θ = π
4 and

v = 80 feet/second?

(b) Which will result in a greater change in the
distance: a 5% error in the angle θ or a 5%
error in the initial velocity v?

17. For the function graphed below, estimate the
value of d f when

(a) x = 2 and dx = 1

(b) x = 4 and dx = −1

(c) x = 3 and dx = 2

18. For the function graphed below, estimate the
value of d f when

(a) x = 1 and dx = 2

(b) x = 2 and dx = −1

(c) x = 3 and dx = 1

19. Calculate the differentials d f for the following
functions:

(a) f (x) = x2 − 3x

(b) f (x) = ex

(c) f (x) = sin(5x)

(d) f (x) = x3 + 2x with x = 1 and dx = 0.2

(e) f (x) = ln(x) with x = e and dx = −0.1

(f) f (x) =
√

2x + 5 with x = 22 and dx = 3.
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2.8 Practice Answers

1. f (x) = x
1
2 ⇒ f ′(x) = 1

2
√

x . At the point (16, 4) on the graph of f ,

the slope of the tangent line is f ′(16) = 1
2
√

16
= 1

8 . An equation of

the tangent line is y − 4 = 1
8 (x − 16) or y = 1

8 x + 2: L(x) = 1
8 x + 2.

So:
√

16.1 ≈ L(16.1) =
1
8
(16.1) + 2 = 4.0125

√
15.92 ≈ L(15.92) =

1
8
(15.92) + 2 = 3.99

2. f (x) = x3 ⇒ f ′(x) = 3x2. At (1, 1), the slope of the tangent line is
f ′(1) = 3. An equation of the tangent line is y − 1 = 3(x − 1) or
y = 3x − 2: L(x) = 3x − 2. So:

(1.02)3 ≈ L(1.02) = 3(1.02)− 2 = 1.06

(0.97)3 ≈ L(0.97) = 3(0.97)− 2 = 0.91

3. f (x) = x4 ⇒ f ′(x) = 4x3. Taking a = 1 and ∆x = 0.06:

(1.06)4 = f (1.06) ≈ L(1.06) = f (1) + f ′(1) · (0.06)

= 14 + 4(13)(0.06) = 1.24

4. Using values given in the table:

f (1.1) ≈ f (1) + f ′(1) · (0.1)

= 0.7854 + (0.5)(0.1) = 0.8354

f (1.23) ≈ f (1.2) + f ′(1.2) · (0.03)

= 0.8761 + (0.4098)(0.03) = 0.888394

f (1.38) ≈ f (1.4) + f ′(1.4) · (−0.02)

= 0.9505 + (0.3378)(−0.02) = 0.943744

5. f (x) = x3 ⇒ f ′(x) = 3x2 so f (4) = 43 = 64 cm3 and the “error” is:

∆ f ≈ f ′(x) · ∆x = 3x2 · ∆x

When x = 4 and ∆x = 0.1, ∆ f ≈ 3(4)2(0.1) = 4.8 cm3.

6. 43◦ ± 1◦ is equivalent to 0.75049 ± 0.01745 radians, so with f (x) =
3000 tan(x) we have f (0.75049) = 3000 tan(0.75049) ≈ 2797.5 m and
f ′(x) = 3000 sec2(x). So:

∆ f ≈ f ′(x) · ∆x = 3000 sec2(x) · ∆x

= 3000 sec2(0.75049) · (0.01745) = 97.9 m

The height of the rocket is 2797.5 ± 97.9 m.
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7. f (θ) = 2000 tan(θ) ⇒ f ′(θ) = 2000 sec2(θ) and we know f (θ) =

4000, so:

4000 = 2000 tan(θ) ⇒ tan(θ) = 2 ⇒ θ ≈ 1.10715 (radians)

and thus f ′(1.10715) = 2000 sec2(1.10715) ≈ 10000. Finally, the
“error” is given by ∆ f ≈ f ′(θ) · ∆θ so:

10 ≈ 10000 · ∆θ ⇒ ∆θ ≈ 10
10000

= 0.001 (radians) ≈ 0.057◦

8. A(r) = 6r2 ⇒ A′(r) = 12r ⇒ ∆A ≈ A′(r) · ∆r = 12r · ∆r and we
also know that ∆r

r < 0.03, so the percentage error is:

∆A
A

· 100% =
12r · ∆r

6r2 · 100% =
2∆r

r
· 100% < 200(0.03)% = 6%

9. Computing differentials:

d f = f ′(x) · dx =
1
x

dx

du =
du
dx

· dx =
−3

2
√

1 − 3x
dx

dr =
dr
dθ

dθ = −3 sin(θ) dθ

10. f (x) = x3 ⇒ f ′(x) = 3x2 so:

L(4 + ∆x) = f (4) + f ′(4)∆x = 43 + 3(4)2∆x = 64 + 48∆x

Evaluating the various quantities at the indicated points:

∆x f (4 + ∆x) L(4 + ∆x) | f (4 + ∆x)− L(4 + ∆x)|

0.1 68.921 68.8 0.121
0.05 66.430125 66.4 0.030125
0.01 64.481201 64.48 0.001201
0.001 64.048012 64.048 0.000012

f (4 + ∆x) is the actual volume of the cube with side length 4 + ∆x.
L(4 + ∆x) is the volume of the cube with side length 4 (V = 64) plus
the volume of the three “slabs” (V = 3 · 42 · ∆x).
| f (4 + ∆x)− L(4 + ∆x)| is the volume of the “leftover” pieces from
L: the three “rods” (V = 3 · 4 · (∆x)2) and the tiny cube (V = (∆x)3).
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2.9 Implicit and Logarithmic Differentiation

This short section presents two more differentiation techniques, both
more specialized than the ones we have already seen — and conse-
quently used on a smaller class of functions. For some functions,
however, one of these techniques may be the only method that works.
The idea of each method is straightforward, but actually using each of
them requires that you proceed carefully and practice.

Implicit Differentiation

In our work up until now, the functions we needed to differentiate were
either given explicitly as a function of x, such as y = f (x) = x2 + sin(x),
or it was fairly straightforward to find an explicit formula, such as
solving y3 − 3x2 = 5 to get y = 3

√
5 + 3x2. Sometimes, however, we will

have an equation relating x and y that is either difficult or impossible
to solve explicitly for y, such as y2 + 2y = sin(x) + 4 (difficult) or
y + sin(y) = x3 − x (impossible). In each case, we can still find y′ =
f ′(x) by using implicit differentiation.

The key idea behind implicit differentiation is to assume that y is a
function of x even if we cannot explicitly solve for y. This assumption
does not require any work, but we need to be very careful to treat y
as a function when we differentiate and to use the Chain Rule or the
Power Rule for Functions.

Example 1. Assume y is a function of x and compute each derivative:

(a) D(y3) (b)
d

dx

(
x3y2

)
(c) (sin(y))′

Solution. (a) We need the Power Rule for Functions because y is a
function of x:

D(y3) = 3y2 · D(y) = 3y2 · y′

(b) We need to use the Product Rule and the Chain Rule:

d
dx

(
x3y2

)
= x3 · d

dx

(
y2
)
+ y2 · d

dx

(
x3
)
= x3 · 2y · dy

dx
+ y2 · 3x2

(c) We just need to remember that D(sin(u)) = cos(u) and then use
the Chain Rule: (sin(y))′ = cos(y) · y′. ◀

Practice 1. Assume that y is a function of x. Calculate:

(a) D
(

x2 + y2) (b)
d

dx
(sin(2 + 3y)).

Implicit Differentiation:

To determine y′, differentiate each side of the defining equation,
treating y as a function of x, and then algebraically solve for y′.
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Example 2. Find the slope of the tangent line to the circle x2 + y2 = 25
at the point (3, 4) with and without implicit differentiation.

Solution. Explicitly: We can solve x2 + y2 = 25 for y: y = ±
√

25 − x2

but because the point (3, 4) is on the top half of the circle, we just need
y =

√
25 − x2 so:

D(y) = D
(√

25 − x2
)
=

1
2

(
25 − x2

)− 1
2 · (−2x) =

−x√
25 − x2

Replacing x with 3, we have y′ = −3√
25−32 = − 3

4 .

Implicitly: We differentiate each side of the equation x2 + y2 = 25
treating y as a function of x and then solve for y′:

D
(

x2 + y2
)
= D(25) ⇒ 2x + 2y · y′ = 0 ⇒ y′ =

−2x
2y

= − x
y

so at the point (3, 4), y′ = − 3
4 , the same answer we found explicitly. ◀

Practice 2. Find the slope of the tangent line to y3 − 3x2 = 15 at the
point (2, 3) with and without implicit differentiation.

In the previous Example and Practice problem, it was easy to explic-
itly solve for y, and then we could differentiate y to get y′. Because we
could explicitly solve for y, we had a choice of methods for calculating
y′. Sometimes, however, we cannot explicitly solve for y and the only
way to determine y′ is with implicit differentiation.

Example 3. Determine y′ at (0, 2) for y2 + 2y = sin(x) + 8.

Solution. Assuming that y is a function of x and differentiating each
side of the equation, we get:

D
(

y2 + 2y
)
= D (sin(x) + 8) ⇒ 2y · y′ + 2y′ = cos(x)

⇒ (2y + 2)y′ = cos(x) ⇒ y′ =
cos(x)
2y + 2

so, at the point (0, 2), y′ =
cos(0)

2(2) + 2
=

1
6

. ◀

We could have first solved the equation
explicitly for y using the quadratic for-
mula. Do you see how? Would that make
the problem easier or harder than using
implicit differentiation?

Practice 3. Determine y′ at (1, 0) for y + sin(y) = x3 − x.

In practice, the equations may be rather complicated, but if you pro-
ceed carefully and step by step, implicit differentiation is not difficult.
Just remember that y must be treated as a function so every time you
differentiate a term containing a y you should use the Chain Rule and
get something that has a y′. The algebra needed to solve for y′ is always
easy — if you differentiated correctly, the resulting equation will be a
linear equation in the variable y′.
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Example 4. Find an equation of the tangent line L to the “tilted”
parabola graphed below at the point (1, 2).

Solution. The line goes through the point (1, 2) so we need to find the
slope there. Differentiating each side of the equation, we get:

D
(

x2 + 2xy + y2 + 3x − 7y + 2
)
= D(0)

which yields:

2x + 2x · y′ + 2y + 2y · y′ + 3 − 7y′ = 0

⇒ (2x + 2y − 7)y′ = −2x − 2y − 3

⇒ y′ =
−2x − 2y − 3
2x + 2y − 7

so the slope at (1, 2) is m = y′ =
−2 − 4 − 3
2 + 4 − 7

= 9. Finally, an equation

for the line is y − 2 = 9(x − 1) so y = 9x − 7. ◀

Practice 4. Find the points where the parabola graphed above crosses
the y-axis, and find the slopes of the tangent lines at those points.

Implicit differentiation provides an alternate method for differenti-
ating equations that can be solved explicitly for the function we want,
and it is the only method for finding the derivative of a function that
we cannot describe explicitly.

Logarithmic Differentiation

In Section 2.5 we saw that D (ln( f (x))) =
f ′(x)
f (x)

. If we simply multiply

each side by f (x), we have: f ′(x) = f (x) · D (ln( f (x))). When the
logarithm of a function is simpler than the function itself, it is often
easier to differentiate the logarithm of f than to differentiate f itself.
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Logarithmic Differentiation:

f ′(x) = f (x) · D (ln( f (x)))

In words: The derivative of f is f times the derivative of the natural
logarithm of f . Usually it is easiest to proceed in three steps:

• Calculate ln ( f (x)) and simplify.

• Calculate D (ln( f (x))) and simplify

• Multiply the result in the previous step by f (x).

Let’s examine what happens when we use this process on an “easy”
function, f (x) = x2, and a “hard” one, f (x) = 2x. Certainly we
don’t need to use logarithmic differentiation to find the derivative of
f (x) = x2, but sometimes it is instructive to try a new algorithm on
a familiar function. Logarithmic differentiation is the easiest way to
find the derivative of f (x) = 2x (if we don’t remember the pattern for
differentiating ax from Section 2.5).

f (x) = x2

ln ( f (x)) = ln(x2) = 2 · ln(x)
D (ln ( f (x))) = D (2 · ln(x)) = 2

x
f ′(x) = f (x) · D (ln ( f (x))) = x2 · 2

x = 2x

f (x) = 2x

ln ( f (x)) = ln(2x) = x · ln(2)
D (ln ( f (x))) = D (x · ln(2)) = ln(2)
f ′(x) = f (x) · D (ln ( f (x))) = 2x · ln(2)

Example 5. Use the pattern f ′(x) = f (x) · D (ln( f (x))) to find the
derivative of f (x) = (3x + 7)5 sin(2x).

Solution. Apply the natural logarithm to both sides and rewrite:

ln ( f (x)) = ln
(
(3x + 7)5 · sin(2x)

)
= 5 ln(3x + 7) + ln (sin(2x))

so:

D (ln( f (x))) = D (5 ln(3x + 7) + ln (sin(2x)))

= 5 · 3
3x + 7

+ 2 · cos(2x)
sin(2x)

Then:

f ′(x) = f (x) · D (ln( f (x)))

= (3x + 7)5 sin(2x)
(

15
3x + 7

+ 2 · cos(2x)
sin(2x)

)
= 15(3x + 7)4 sin(2x) + 2(3x + 7)5 cos(2x)

the same result we would obtain using the Product Rule. ◀
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Practice 5. Use logarithmic differentiation to find the derivative of
f (x) = (2x + 1)3(3x2 − 4)7(x + 7)4.

We could have differentiated the functions in the previous Example
and Practice problem without logarithmic differentiation. There are,
however, functions for which logarithmic differentiation is the only
method we can use. We know how to differentiate x raised to a constant
power, D (xp) = p · xp−1, and a constant to a variable power, D (bx) =

bx ln(b), but the function f (x) = xx has both a variable base and a
variable power, so neither differentiation rule applies. We need to use
logarithmic differentiation.

Example 6. Find D (xx), assuming that x > 0.

Solution. Apply the natural logarithm to both sides and rewrite:

ln ( f (x)) = ln (xx) = x · ln(x)

so:

D (ln ( f (x))) = D (x · ln(x)) = x · D (ln(x)) + ln(x) · D(x)

= x · 1
x
+ ln(x) · 1 = 1 + ln(x)

Then D (xx) = f ′(x) = f (x)D (ln ( f (x))) = xx (1 + ln(x)). ◀

Practice 6. Find D
(

xsin(x)
)

assuming that x > 0.

Logarithmic differentiation is an alternate method for differentiating
some functions such as products and quotients, and it is the only
method we’ve seen for differentiating some other functions such as
variable bases to variable exponents.

2.9 Problems

In Problems 1–10 find dy
dx in two ways: (a) by differ-

entiating implicitly and (b) by explicitly solving for
y and then differentiating. Then find the value of dy

dx
at the given point using your results from both the
implicit and the explicit differentiation.

1. x2 + y2 = 100, point: (6, 8)

2. x2 + 5y2 = 45, point: (5, 2)

3. x2 − 3xy + 7y = 5, point: (2, 1)

4.
√

x +
√

y = 5, point: (4, 9)

5.
x2

9
+

y2

16
= 1, point: (0, 4)

6.
x2

9
+

y2

16
= 1, point: (3, 0)

7. ln(y) + 3x − 7 = 0, point: (2, e)

8. x2 − y2 = 16, point: (5, 3)

9. x2 − y2 = 16, point: (5,−3)

10. y2 + 7x3 − 3x = 8, point: (1, 2)
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11. Find the slopes of the lines tangent to the graph
below at the points (3, 1), (3, 3) and (4, 2).

12. Find the slopes of the lines tangent to the graph
in the figure above at the points where the graph
crosses the y-axis.

13. Find the slopes of the lines tangent to the graph
below at the points (5, 0), (5, 6) and (−4, 3).

14. Find the slopes of the lines tangent to the graph
in the figure above at the points where the graph
crosses the y-axis.

In Problems 15–22 , find dy
dx using implicit differenti-

ation and then find the slope of the line tangent to
the graph of the equation at the given point.

15. y3 − 5y = 5x2 + 7, point: (1, 3)

16. y2 − 5xy + x2 + 21 = 0, point: (2, 5)

17. y2 + sin(y) = 2x − 6, point: (3, 0)

18. y + 2x2y3 = 4x + 7, point: (3, 1)

19. ey + sin(y) = x2 − 3, point: (2, 0)

20.
(

x2 + y2 + 1
)2

− 4x2 = 81, point: (0, 2
√

2)

21. x
2
3 + y

2
3 = 5, point: (8, 1)

22. x + cos(xy) = y + 3, point: (2, 0)

23. Find the slope of the line tangent to the ellipse
shown in the figure below at the point (1, 2).

24. Find the slopes of the tangent lines at the points
where the ellipse shown above crosses the y-axis.

25. Find y′ for y = Ax2 + Bx+C and for the equation
x = Ay2 + By + C.

26. Find y′ for y = Ax3 + B and for x = Ay3 + B.

27. Find y′ for Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

28. In Chapter 1 we assumed that the tangent line to
a circle at a point was perpendicular to the radial
line passing through that point and the center of
the circle. Use implicit differentiation to prove
that the line tangent to the circle x2 + y2 = r2 (see
below) at an arbitrary point (x, y) is perpendicu-
lar to the line passing through (0, 0) and (x, y).
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Problems 29–31 use the figure from Problems 23–24.

29. Find the coordinates of point A where the tangent
line to the ellipse is horizontal.

30. Find the coordinates of point B where the tangent
line to the ellipse is vertical.

31. Find the coordinates of points C and D.

In 32–40, find dy
dx in two ways: (a) by using the

“usual” differentiation patterns and (b) by using log-
arithmic differentiation.

32. y = x · sin(3x) 33. y = (x2 + 5)7(x3 − 1)4

34. y =
sin(3x − 1)

x + 7
35. y = x5 · (3x + 2)4

36. y = 7x
37. y = esin(x)

38. y = cos7(2x + 5) 39. y =
√

25 − x2

40. y =
x · cos(x)

x2 + 1

In 41–46, use logarithmic differentiation to find dy
dx .

41. y = xcos(x)

42. y = (cos(x))x

43. y = x4 · (x − 2)7 · sin(3x)

44. y =

√
x + 10

(2x + 3)3 · (5x − 1)7

45. y = (3 + sin(x))x

46. y =

√
x2 + 1
x2 − 1

In 47–50, use the values in each table to calculate the
values of the derivative in the last column.

47.

x f (x) ln ( f (x)) D (ln ( f (x))) f ′(x)

1 1 0.0 1.2
2 9 2.2 1.8
3 64 4.2 2.1

48.

x g(x) ln (g(x)) D (ln (g(x))) g′(x)

1 5 1.6 0.6
2 10 2.3 0.7
3 20 3.0 0.8

49.

x f (x) ln ( f (x)) D (ln ( f (x))) f ′(x)

1 5 1.6 −1
2 2 0.7 0
3 7 1.9 2

50.

x g(x) ln (g(x)) D (ln (g(x))) g′(x)

2 1.4 0.3 1.2
3 3.3 1.2 0.6
7 13.6 2.6 0.2

Problems 51–55 illustrate how logarithmic differen-
tiation can be used to verify some differentiation
patterns we already know (51–52, 54) and to derive
some new patterns (53, 55). Assume that all of the
functions are differentiable and that the function
combinations are defined.

51. Use logarithmic differentiation on f · g to re-
derive the Product Rule: D ( f · g) = f · g′ + g · f ′.

52. Use logarithmic differentiation on
f
g

to re-derive

the quotient rule: D
(

f
g

)
=

g · f ′ − f · g′

g2 .

53. Use logarithmic differentiation to obtain a prod-
uct rule for three functions: D ( f · g · h) = ?.

54. Use logarithmic differentiation on the exponential
function ax (with a > 0) to show that its deriva-
tive is ax ln(a).

55. Use logarithmic differentiation to determine a
pattern for the derivative of f g: D ( f g) = ?.

56. In Section 2.1 we proved the Power Rule D(xn) =

n · xn−1 for any positive integer n.

(a) Why does this formula hold for n = 0?
(b) Use the Quotient Rule to prove that D(x−m) =

−m · x−m−1 for any positive integer m and con-
clude that the Power Rule holds for all integers.

(c) Now let y = x
p
q where p and q are integers so

that yq = xp. Use implicit differentiation to
show that the Power Rule holds for all rational
exponents. (We still have not considered the
case where y = xa with a an irrational num-
ber, because we haven’t actually defined what
xa means for a irrational. We will take care of
that — and the extension of the Power Rule to
all real exponents — in Chapter 7.)
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2.9 Practice Answers

1. D(x2 + y2) = 2x + 2y · y′
d

dx (sin(2 + 3y)) = cos(2 + 3y) · D(2 + 3y) = cos(2 + 3y) · 3y′

2. Explicitly: y′ =
1
3

(
3x2 + 15

)− 2
3 D

(
3x2 + 15

)
=

1
3

(
3x2 + 15

)− 2
3
(6x).

When (x, y) = (2, 3), y′ = 1
3
(
3(2)2 + 15

) 2
3 (6 · 2) = 4 (27)−

2
3 = 4

9 .

Implicitly: D
(

y3 − 3x2
)
= D(15) ⇒ 3y2 · y′ − 6x = 0 so y′ = 2x

y2 .

When (x, y) = (2, 3), y′ =
2 · 2
32 =

4
9

.

3. D (y + sin(y)) = D
(

x3 − x
)
⇒ y′ + cos(y) · y′ = 3x2 − 1 ⇒ y′ ·

(1 + cos(y)) = 3x2 − 1, so we have y′ = 3x2−1
1+cos(y) . When (x, y) =

(1, 0), y′ =
3(1)2 − 1
1 + cos(0)

= 1.

4. To find where the parabola crosses the y-axis, we can set x = 0 and

solve for the values of y: y2 − 7y + 2 = 0 ⇒ y =
7±
√

(−7)2−4(1)(2)
2(1) =

7±
√

41
2 ≈ 0.3 and 6.7. The parabola crosses the y-axis (approximately)

at the points (0, 0.3) and (0, 6.7). From Example 4, we know that

y′ =
−2x − 2y − 3
2x + 2y − 7

, so at the point (0, 0.3), the slope is approxi-

mately
0 − 0.6 − 3
0 + 0.6 − 7

≈ 0.56, and at the point (0, 6.7), the slope is

approximately
0 − 13.4 − 3
0 + 13.4 − 7

≈ −2.56.

5. Applying the formula f ′(x) = f (x) · D (ln ( f (x))) to the function
f (x) = (2x + 1)3(3x2 − 4)7(x + 7)4, we have:

ln ( f (x)) = 3 · ln(2x + 1) + 7 · ln(3x2 − 4) + 4 · ln(x + 7)

so:
D (ln ( f (x))) =

3
2x + 1

(2) +
7

3x2 − 4
(6x) +

4
x + 7

(1)

and thus:

f ′(x) = f (x) ·D (ln ( f (x))) = (2x+ 1)3(3x2 − 4)7(x+ 7)4 ·
[

6
2x + 1

+
42x

3x2 − 4
+

4
x + 7

]
6. Using f ′(x) = f (x) · D (ln ( f (x))) with f (x) = xsin(x):

ln ( f (x)) = ln
(

xsin(x)
)
= sin(x) · ln(x)

so:

D (ln ( f (x))) = D (sin(x) · ln(x)) = sin(x) ·D (ln(x))+ ln(x) ·D(sin(x)) = sin(x) · 1
x
+ ln(x) · cos(x)

and thus:

f ′(x) = f (x) · D (ln ( f (x))) = xsin(x) ·
[

sin(x)
x

+ ln(x) · cos(x)
]
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