
3
Derivatives and Graphs

In this chapter, we explore what the first and second derivatives of a
function tell us about the graph of that function and apply this graphical
knowledge to locate the extreme values of a function.

3.1 Finding Maximums and Minimums

In theory and applications, we often want to maximize or minimize
some quantity. An engineer may want to maximize the speed of a
new computer or minimize the heat produced by an appliance. A
manufacturer may want to maximize profits and market share or mini-
mize waste. A student may want to maximize a grade in calculus or
minimize the hours of study needed to earn a particular grade.

Many natural objects follow minimum or maximum principles, so
if we want to model natural phenomena we may need to maximize or
minimize. A light ray travels along a “minimum time” path. The shape
and surface texture of some animals tend to minimize or maximize
heat loss. Systems reach equilibrium when their potential energy is
minimized. A basic tenet of evolution is that a genetic characteristic
that maximizes the reproductive success of an individual will become
more common in a species.

Calculus provides tools for analyzing functions and their behavior
and for finding maximums and minimums.

Methods for Finding Maximums and Minimums

We can try to find where a function f is largest or smallest by evaluating
f at lots of values of x, a method that is not very efficient and may
not find the exact place where f achieves its extreme value. If we try
hundreds or thousands of values for x, however, then we can often find
a value of f that is close to the maximum or minimum. In general, this
type of exhaustive search is only practical if you have a computer do
the work.
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The graph of a function provides a visual way of examining lots
of values of f , and it is a good method, particularly if you have a
computer to do the work for you. It is still inefficient, however, as
you (or a computer) still need to evaluate the function at hundreds or
thousands of inputs in order to create the graph — and we still may not
find the exact location of the maximum or minimum.

Calculus provides ways to drastically narrow the number of points
we need to examine to find the exact locations of maximums and
minimums. Instead of examining f at thousands of values of x, calculus
can often guarantee that the maximum or minimum must occur at one
of three or four values of x, a substantial improvement in efficiency.

A Little Terminology

Before we examine how calculus can help us find maximums and
minimums, we need to carefully define these concepts.

Definitions:

• f has a maximum or global maximum at x = a
if f (a) ≥ f (x) for all x in the domain of f .

• The maximum value of f is then f (a)
and this maximum value of f occurs at a.

• The maximum point on the graph of f is (a, f (a)).

The previous definition involves the overall biggest value a function
attains on its entire domain. We are sometimes interested in how a
function behaves locally rather than globally.

Definition: f has a local or relative maximum at x = a if f (a) ≥ f (x)

for all x “near” a, (that is, in some open interval that contains a).

Global and local minimums are defined similarly by replacing the
≥ symbol with ≤ in the previous definitions.

Definition:

f has a global extreme at x = a
if f (a) is a global maximum or minimum.

See the margin figure for graphical examples of local and global
extremes of a function.
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You should notice that every global extreme is also a local extreme,
but there are local extremes that are not global extremes. If h(x) is the
height of the earth above sea level at location x, then the global max-
imum of h is h(summit of Mt. Everest) = 29,028 feet. The local maxi-
mum of h for the United States is h(summit of Mt. McKinley) = 20,320

feet. The local minimum of h for the United States is h(Death Valley) =
-282 feet.

Finding Maximums and Minimums of a Function

One way to narrow our search for a maximum value of a function f is
to eliminate those values of x that, for some reason, cannot possibly
make f maximum.

Theorem:

If f ′(a) > 0 or f ′(a) < 0
then f (a) is not a local maximum or minimum.

Proof. Assume that f ′(a) > 0. By definition:

f ′(a) = lim
∆x→0

f (a + ∆x)− f (a)
∆x

so f ′(a) = lim
∆x→0

f (a + ∆x)− f (a)
∆x

> 0. This means that the right and

left limits are both positive: f ′(a) = lim
∆x→0+

f (a + ∆x)− f (a)
∆x

> 0 and

f ′(a) = lim
∆x→0−

f (a + ∆x)− f (a)
∆x

> 0.

Considering the right limit, we know that if we restrict ∆x > 0 to

be sufficiently small, we can guarantee that
f (a + ∆x)− f (a)

∆x
> 0 so,

multiplying each side of this last inequality by the positive number ∆x,
we have f (a + ∆x)− f (a) > 0 ⇒ f (a + ∆x) > f (a) for all sufficiently
small values of ∆x > 0, so any open interval containing x = a will also
contain values of x with f (x) > f (a). This tell us that f (a) is not a
maximum.

Considering the left limit, we know that if we restrict ∆x < 0 to

be sufficiently small, we can guarantee that
f (a + ∆x)− f (a)

∆x
> 0 so,

multiplying each side of this last inequality by the negative number ∆x,
we have f (a + ∆x)− f (a) < 0 ⇒ f (a + ∆x) < f (a) for all sufficiently
small values of ∆x < 0, so any open interval containing x = a will also
contain values of x with f (x) < f (a). This tell us that f (a) is not a
minimum.

The argument for the “ f ′(a) < 0” case is similar.
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When we evaluate the derivative of a function f at a point x = a,
there are only four possible outcomes: f ′(a) > 0, f ′(a) < 0, f ′(a) = 0
or f ′(a) is undefined. If we are looking for extreme values of f , then
we can eliminate those points at which f ′ is positive or negative, and
only two possibilities remain: f ′(a) = 0 or f ′(a) is undefined.

Theorem:

If f is defined on an open interval
and f (a) is a local extreme of f

then either f ′(a) = 0 or f is not differentiable at a.

Example 1. Find the local extremes of f (x) = x3 − 6x2 + 9x + 2.

Solution. An extreme value of f can occur only where f ′(x) = 0 or
where f is not differentiable; f (x) is a polynomial, so it is differentiable
for all values of x, and we can restrict our attention to points where
f ′(x) = 0.

f ′(x) = 3x2 − 12x + 9 = 3(x2 − 4x + 3) = 3(x − 1)(x − 3)

so f ′(x) = 0 only at x = 1 and x = 3.
The only possible locations of local extremes of f are at x = 1 and

x = 3. We don’t know yet whether f (1) or f (3) is a local extreme of
f , but we can be certain that no other point is a local extreme. The
graph of f (see margin) shows that (1, f (1)) = (1, 6) appears to be a
local maximum and (3, f (3)) = (3, 2) appears to be a local minimum.
This function does not have a global maximum or minimum. ◀

Practice 1. Find the local extremes of f (x) = x2 + 4x − 5 and of g(x) =
2x3 − 12x2 + 7.

It is important to recognize that the two conditions “ f ′(a) = 0” or “ f
not differentiable at a” do not guarantee that f (a) is a local maximum
or minimum. They only say that f (a) might be a local extreme or that
f (a) is a candidate for being a local extreme.

Example 2. Find all local extremes of f (x) = x3.

Solution. f (x) = x3 is differentiable for all x, and f ′(x) = 3x2 equals
0 only at x = 0, so the only candidate is the point (0, 0). But if x > 0
then f (x) = x3 > 0 = f (0), so f (0) is not a local maximum. Similarly,
if x < 0 then f (x) = x3 < 0 = f (0) so f (0) is not a local minimum.
The point (0, 0) is the only candidate to be a local extreme of f , but
this candidate did not turn out to be a local extreme of f . The function
f (x) = x3 does not have any local extremes. ◀
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If f ′(a) = 0 or f is not differentiable at a
then the point (a, f (a)) is a candidate to be a local extreme

but may not actually be a local extreme.

Practice 2. Sketch the graph of a differentiable function f that satisfies
the conditions: f (1) = 5, f (3) = 1, f (4) = 3 and f (6) = 7; f ′(1) = 0,
f ′(3) = 0, f ′(4) = 0 and f ′(6) = 0; the only local maximums of f are
at (1, 5) and (6, 7); and the only local minimum is at (3, 1).

Is f (a) a Maximum or Minimum or Neither?

Once we have found the candidates (a, f (a)) for extreme points of f , we
still have the problem of determining whether the point is a maximum,
a minimum or neither.

One method involves graphing (or letting a calculator graph) the
function near a, and then drawing a conclusion from the graph. All
of the graphs in the margin have f (2) = 3, and on each of the graphs
f ′(2) either equals 0 or is undefined. It is clear from the graphs that the
point (2, 3) is: a local maximum in (a) and (d); a local minimum in (b)
and (e); and not a local extreme in (c) and (f).

In Sections 3.3 and 3.4, we will investigate how information about
the first and second derivatives of f can help determine whether the
candidate (a, f (a)) is a maximum, a minimum or neither.

Endpoint Extremes

So far we have discussed finding extreme values of functions over the
entire real number line or on an open interval, but in practice we may
need to find the extreme of a function over some closed interval [c, d].
If an extreme value of f occurs at x = a between c and d (c < a < d)
then the previous reasoning and results still apply: either f ′(a) = 0 or
f is not differentiable at a. On a closed interval, however, there is one
more possibility: an extreme can occur at an endpoint of the closed
interval (see margin): at x = c or x = d.

We can extend our definition of a local extreme at x = a (which
requires f (a) ≥ f (x) [or f (a) ≤ f (x)] for all x in some open interval
containing a) to include x = a being the endpoint of a closed interval:
f (a) ≥ f (x) [or f (a) ≤ f (x)] for all x in an interval of the form [a, a+ h)
(for left endpoints) or (a − h, a] (for right endpoints), where h > 0 is a
number small enough to guarantee the “half-open” interval is in the
domain of f (x). Using this extended definition, the function in the
margin has a local maximum (which is also a global maximum) at x = c
and a local minimum (also a global minimum) at x = d.
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Practice 3. List all of the extremes (a, f (a)) of the function in the
margin figure on the interval [1, 4] and state whether f ′(a) = 0, f is not
differentiable at a, or a is an endpoint.

Example 3. Find the extreme values of f (x) = x3 − 3x2 − 9x + 5 for
−2 ≤ x ≤ 6.

Solution. We need to find investigate points where f ′(x) = 0, points
where f is not differentiable, and the endpoints:

• f ′(x) = 3x2 − 6x − 9 = 3(x + 1)(x − 3), so f ′(x) = 0 only at x = −1
and x = 3.

• f is a polynomial, so it is differentiable everywhere.

• The endpoints of the interval are x = −2 and x = 6.

Altogether we have four points in the interval to examine, and any
extreme values of f can only occur when x is one of those four points:
f (−2) = 3, f (−1) = 10, f (3) = −22 and f (6) = 59. The (global)
minimum of f on [−2, 6] is −22 when x = 3, and the (global) maximum
of f on [−2, 6] is 59 when x = 6. ◀

Sometimes the function we need to maximize or minimize is more
complicated, but the same methods work.

Example 4. Find the extreme values of f (x) = 1
3

√
64 + x2 + 1

5 (10 − x)
for 0 ≤ x ≤ 10.

Solution. This function comes from an application we will examine in
section 3.5. The only possible locations of extremes are where f ′(x) = 0
or f ′(x) is undefined or where x is an endpoint of the interval [0, 10].

f ′(x) = D
(

1
3

(
64 + x2

) 1
2
+

1
5
(10 − x)

)
=

1
3
· 1

2
(64 + x2)−

1
2 · 2x − 1

5

=
x

3
√

64 + x2
− 1

5

To find where f ′(x) = 0, set the derivative equal to 0 and solve for x:

x
3
√

64 + x2
− 1

5
= 0 ⇒ x

3
√

64 + x2
=

1
5

⇒ x2

576 + 9x2 =
1

25

⇒ 16x2 = 576 ⇒ x = ±6

but only x = 6 is in the interval [0, 10]. Evaluating f at this point gives
f (6) ≈ 4.13.

We can evaluate the formula for f ′(x) for any value of x, so the
derivative is always defined.



derivatives and graphs 223

Finally, the interval [0, 10] has two endpoints, x = 0 and x = 10, and
f (0) ≈ 4.67 while f (10) ≈ 4.27.

The maximum of f on [0, 10] must occur at one of the points (0, 4.67),
(6, 4.13) and (10, 4.27), and the minimum must occur at one of these
three points as well.

The maximum value of f is 4.67 at x = 0, and the minimum value
of f is 4.13 at x = 6. ◀

Practice 4. Rework the previous Example to find the extreme values of
f (x) = 1

3

√
64 + x2 + 1

5 (10 − x) for 0 ≤ x ≤ 5.

Critical Numbers

The points at which a function might have an extreme value are called
critical numbers.

Definitions: A critical number for a function f is a value x = a

in the domain of f so that:

• f ′(a) = 0 or

• f is not differentiable at a or

• a is an endpoint of a closed interval to which f is restricted.

If we are trying to find the extreme values of f on an open interval
c < x < d or on the entire number line, then the set of inputs to which
f is restricted will not include any endpoints, so we will not need to
worry about any endpoint critical numbers.

We can now give a very succinct description of where to look for
extreme values of a function.

An extreme value of f can only occur at a critical number.

The critical numbers only give possible locations of extremes; some
critical numbers are not locations of extremes. In other words, criti-
cal numbers are the candidates for the locations of maximums and
minimums. Section 3.5 is devoted entirely to translat-

ing and solving maximum and minimum
problems.
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Which Functions Have Extremes?

Some functions don’t have extreme values: Example 2 showed that
f (x) = x3 (defined on the entire number line) did not have a maximum
or minimum.

Example 5. Find the extreme values of f (x) = x.

Solution. Because f ′(x) = 1 > 0 for all x, the first theorem in this
section guarantees that f has no extreme values. The function f (x) = x
does not have a maximum or minimum on the real number line. ◀

With the previous function, the domain was so large that we could
always make the function output larger or smaller than any given value
by choosing an appropriate input x. The next example shows that we
can encounter the same difficulty even on a “small” interval.

Example 6. Show that f (x) =
1
x

does not have a maximum or minimum

on the interval (0, 1).

Solution. f is continuous for all x ̸= 0 so f is continuous on the

interval (0, 1). For 0 < x < 1, f (x) =
1
x
> 0 and for any number a

strictly between 0 and 1, we can show that f (a) is neither a maximum
nor a minimum of f on (0, 1), as follows.

Pick b to be any number between 0 and a: 0 < b < a. Then

f (b) =
1
b
>

1
a
= f (a), so f (a) is not a maximum. Similarly, pick c to be

any number between a and 1: a < c < 1. Then f (a) =
1
a
>

1
c
= f (c),

so f (a) is not a minimum. The interval (0, 1) is not “large,” yet f does
not attain an extreme value anywhere in (0, 1). ◀

How would the situation change if we
changed the interval in this example to
(0, 1]? To [1, 2]?

The Extreme Value Theorem provides conditions that guarantee a
function to have a maximum and a minimum.

Extreme Value Theorem:

If f is continuous on a closed interval [a, b]
then f attains both a maximum and minimum on [a, b].

The proof of this theorem is difficult, so we omit it. The margin figure
illustrates some of the possibilities for continuous and discontinuous
functions on open and closed intervals.

The Extreme Value Theorem guarantees that certain functions (con-
tinuous ones) on certain intervals (closed ones) must have maximums
and minimums. Other functions on other intervals may or may not
have maximums and minimums.



derivatives and graphs 225

3.1 Problems

1. Label all of the local maximums and minimums
of the function in the figure below. Also label all
of the critical points.

2. Label the local extremes and critical points of the
function graphed below.

In Problems 3–22, find all of the critical points and
local maximums and minimums of each function.

3. f (x) = x2 + 8x + 7 4. f (x) = 2x2 − 12x + 7

5. f (x) = sin(x) 6. f (x) = x3 − 6x2 + 5

7. f (x) = 3
√

x 8. f (x) = 5x − 2

9. f (x) = xe5x
10. f (x) = 3

√
1 + x2

11. f (x) = (x − 1)2(x − 3)

12. f (x) = ln(x2 − 6x + 11)

13. f (x) = 2x3 − 96x + 42

14. f (x) = 5x + cos(2x + 1)

15. f (x) = e−(x−2)2
16. f (x) = |x + 5|

17. f (x) =
x

1 + x2 18. f (x) =
x3

1 + x4

19. f (x) = (x − 2)
2
3

20. f (x) =
(

x2 − 1
) 2

3

21. f (x) = 3
√

x2 − 4 22. f (x) = 3
√

x − 2

23. Sketch the graph of a continuous function f with:

(a) f (1) = 3, f ′(1) = 0 and the point (1, 3) a rela-
tive maximum of f .

(b) f (2) = 1, f ′(2) = 0 and the point (2, 1) a rela-
tive minimum of f .

(c) f (3) = 5, f is not differentiable at x = 3, and
the point (3, 5) a relative maximum of f .

(d) f (4) = 7, f is not differentiable at x = 4, and
the point (4, 7) a relative minimum of f .

(e) f (5) = 4, f ′(5) = 0 and the point (5, 4) not a
relative minimum or maximum of f .

(f) f (6) = 3, f not differentiable at 6, and (6, 3)
not a relative minimum or maximum of f .

In Problems 24–37, find all critical points and local
extremes of each function on the given intervals.

24. f (x) = x2 − 6x + 5 on the entire real number line

25. f (x) = x2 − 6x + 5 on [−2, 5]

26. f (x) = 2 − x3 on the entire real number line

27. f (x) = 2 − x3 on [−2, 1]

28. f (x) = x3 − 3x + 5 on the entire real number line

29. f (x) = x3 − 3x + 5 on [−2, 1]

30. f (x) = x5 − 5x4 + 5x3 + 7 on (−∞, ∞)

31. f (x) = x5 − 5x4 + 5x3 + 7 on [0, 2]

32. f (x) =
1

x2 + 1
on (−∞, ∞)

33. f (x) =
1

x2 + 1
on [1, 3]

34. f (x) = 3
√

x2 + 4 − x on (−∞, ∞)

35. f (x) = 3
√

x2 + 4 − x on [0, 2]

36. f (x) = xe−5x on (−∞, ∞)

37. f (x) = x3 − ln(x) on
[

1
2 , 2

]
38. (a) Find two numbers whose sum is 22 and whose

product is as large as possible. (Suggestion:
call the numbers x and 22 − x).

(b) Find two numbers whose sum is A > 0 and
whose product is as large as possible.



226 contemporary calculus

39. Find the coordinates of the point in the first quad-
rant on the circle x2 + y2 = 1 so that the rectangle
in the figure below has the largest possible area.

40. Find the coordinates of the point in the first quad-
rant on the ellipse 9x2 + 16y2 = 144 so that the
rectangle in the figure below has:

(a) the largest possible area.
(b) The smallest possible area.

41. Find the value for x so the box shown below has:

(a) the largest possible volume.
(b) The smallest possible volume.

42. Find the radius and height of the cylinder that
has the largest volume (V = πr2h) if the sum of
the radius and height is 9.

43. Suppose you are working with a polynomial of
degree 3 on a closed interval.

(a) What is the largest number of critical points
the function can have on the interval?

(b) What is the smallest number of critical points
it can have?

(c) What are the patterns for the most and fewest
critical points a polynomial of degree n on a
closed interval can have?

44. Suppose you have a polynomial of degree 3 di-
vided by a polynomial of degree 2 on a closed
interval.

(a) What is the largest number of critical points
the function can have on the interval?

(b) What is the smallest number of critical points
it can have?

45. Suppose f (1) = 5 and f ′(1) = 0. What can we
conclude about the point (1, 5) if:

(a) f ′(x) < 0 for x < 1 and f ′(x) > 0 for x > 1?

(b) f ′(x) < 0 for x < 1 and f ′(x) < 0 for x > 1?

(c) f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1?

(d) f ′(x) > 0 for x < 1 and f ′(x) > 0 for x > 1?

46. Suppose f (2) = 3 and f is continuous but not
differentiable at x = 2. What can we conclude
about the point (2, 3) if:

(a) f ′(x) < 0 for x < 2 and f ′(x) > 0 for x > 2?

(b) f ′(x) < 0 for x < 2 and f ′(x) < 0 for x > 2?

(c) f ′(x) > 0 for x < 2 and f ′(x) < 0 for x > 2?

(d) f ′(x) > 0 for x < 2 and f ′(x) > 0 for x > 2?
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47. The figure below shows the graph of f ′(x), which
is continuous on (0, 12) except at x = 8.

(a) Which values of x are critical points of f (x)?
(b) At which values of x does f attain a local max-

imum?

(c) At which values of x does f attain a local min-
imum?

48. The figure below shows the graph of f ′(x), which
is continuous on (0, 13) except at x = 7.

(a) Which values of x are critical points?

(b) At which values of x does f attain a local max-
imum?

(c) At which values of x does f attain a local min-
imum?

49. State the contrapositive form of the Extreme Value
Theorem.

50. Imagine the graph of f (x) = 1 − x. Does f have
a maximum value for x in the given interval?

(a) [0, 2] (b) [0, 2) (c) (0, 2]

(d) (0, 2) (e) (1, π]

51. Imagine the graph of f (x) = 1 − x. Does f have
a minimum value for x in the given interval?

(a) [0, 2] (b) [0, 2) (c) (0, 2]

(d) (0, 2) (e) (1, π]

52. Imagine the graph of f (x) = x2. Does f have a
maximum value for x in the given interval?

(a) [−2, 3] (b) [−2, 3) (c) (−2, 3]

(d) [−2, 1) (e) (−2, 1]

53. Imagine the graph of f (x) = x2. Does f have a
minimum value for x in the interval I?

(a) [−2, 3] (b) [−2, 3) (c) (−2, 3]

(d) [−2, 1) (e) (−2, 1]

54. Define A(x) to be the area bounded between the
t-axis, the graph of y = f (t) and a vertical line at
t = x (see figure below).

(a) At what value of x is A(x) minimum?

(b) At what value of x is A(x) maximum?

55. Define S(x) to be the slope of the line through
the points (0, 0) and (x, f (x)) in the figure below.

(a) At what value of x is S(x) minimum?

(b) At what value of x is S(x) maximum?
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3.1 Practice Answers

1. f (x) = x2 + 4x − 5 is a polynomial so f is differentiable for all x
and f ′(x) = 2x + 4; f ′(x) = 0 when x = −2 so the only candidate
for a local extreme is x = −2. Because the graph of f is a parabola
opening up, the point (−2, f (−2)) = (−2,−9) is a local minimum.

g(x) = 2x3 − 12x2 + 7 is a polynomial so g is differentiable for all
x and g′(x) = 6x2 − 24x = 6x(x − 4) so g′(x) = 0 when x = 0 or
4, so the only candidates for a local extreme are x = 0 and x = 4.
The graph of g (see margin) indicates that g has a local maximum at
(0, 7) and a local minimum at (4,−57).

2. See the margin figure.

x f (x) f ′(x) max/min

1 5 0 local max
3 1 0 local min
4 3 0 neither
6 7 0 local max

3. (1, f (1)) is a global minimum; x = 1 is an endpoint
(2, f (2)) is a local maximum; f ′(2) = 0
(3, f (3)) is a local/global minimum; f is not differentiable at x = 3
(4, f (4)) is a global maximum; x = 4 is an endpoint

4. This is the same function used in Example 4, but now the interval is
[0, 5] instead of [0, 10]. See the Example for the calculations.

Critical points:

• endpoints: x = 0 and x = 5

• f is differentiable for all 0 < x < 5: none

• f ′(x) = 0: none in [0, 5]

f (0) ≈ 4.67 is the maximum of f on [0, 5];
f (5) ≈ 4.14 is the minimum of f on [0, 5].
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3.2 Mean Value Theorem

If you averaged 30 miles per hour during a trip, then at some instant
during the trip you were traveling exactly 30 miles per hour.

That relatively obvious statement is the Mean Value Theorem as it
applies to a particular trip. It may seem strange that such a simple
statement would be important or useful to anyone, but the Mean Value
Theorem is important and some of its consequences are very useful in
a variety of areas. Many of the results in the rest of this chapter depend
on the Mean Value Theorem, and one of the corollaries of the Mean
Value Theorem will be used every time we calculate an “integral” in
later chapters. A truly delightful aspect of mathematics is that an idea
as simple and obvious as the Mean Value Theorem can be so powerful.

Before we state and prove the Mean Value Theorem and examine
some of its consequences, we will consider a simplified version called
Rolle’s Theorem.

Rolle’s Theorem

Pick any two points on the x-axis and think about all of the differ-
entiable functions that pass through those two points. Because our
functions are differentiable, they must be continuous and their graphs
cannot have any holes or breaks. Also, since these functions are dif-
ferentiable, their derivatives are defined everywhere between our two
points and their graphs can not have any “corners” or vertical tangents.

The graphs of the functions in the margin figure can still have all
sorts of shapes, and it may seem unlikely that they have any common
properties other than the ones we have stated, but Michel Rolle (1652–
1719) found one. He noticed that every one of these functions has one
or more points where the tangent line is horizontal (see margin), and
this result is named after him.

Rolle’s Theorem:

If f (a) = f (b)
and f (x) is continuous for a ≤ x ≤ b
and differentiable for a < x < b

then there is at least one number c between a and b so that
f ′(c) = 0.

Proof. We consider three cases: when f (x) = f (a) for all x in (a, b),
when f (x) > f (a) for some x in (a, b), and when f (x) < f (a) for some
x in (a, b).

Case I: If f (x) = f (a) for all x between a and b, then the graph of
f is a horizontal line segment and f ′(c) = 0 for all values of c strictly
between a and b.



230 contemporary calculus

Case II: Suppose f (x) > f (a) for some x in (a, b). Because f is
continuous on the closed interval [a, b], we know from the Extreme
Value Theorem that f must attain a maximum value on the closed
interval [a, b]. Because f (x) > f (a) for some value of x in [a, b], then
the maximum of f must occur at some value c strictly between a and
b: a < c < b. (Why can’t the maximum be at a or b?) Because f (c) is a
local maximum of f , c is a critical number of f , meaning f ′(c) = 0 or
f ′(c) is undefined. But f is differentiable at all x between a and b, so
the only possibility is that f ′(c) = 0.

Notice that Rolle’s Theorem tells us that
(at least one) number c with the required
properties exists, but does not tell us how
to find c.

Case III: Suppose f (x) < f (a) for some x in (a, b). Then, arguing
as we did in Case II, f attains a minimum at some value x = c strictly
between a and b, and so f ′(c) = 0.

In each case, there is at least one value of c between a and b so that
f ′(c) = 0.

Example 1. Show that f (x) = x3 − 6x2 + 9x + 2 satisfies the hypotheses
of Rolle’s Theorem on the interval [0, 3] and find a value of c that the
theorem tells you must exist.

Solution. Because f is a polynomial, it is continuous and differentiable
everywhere. Furthermore, f (0) = 2 = f (3), so Rolle’s Theorem applies.
Differentiating:

f ′(x) = 3x2 − 12x + 9 = 3(x − 1)(x − 3)

so f ′(x) = 0 when x = 1 and when x = 3. The value c = 1 is between
0 and 3. The margin figure shows a graph of f . ◀

Practice 1. Find the value(s) of c for Rolle’s Theorem for the functions
graphed below.

The Mean Value Theorem

Geometrically, the Mean Value Theorem is a “tilted” version of Rolle’s
Theorem (see margin). In each theorem we conclude that there is a
number c so that the slope of the tangent line to f at x = c is the same
as the slope of the line connecting the two ends of the graph of f on the
interval [a, b]. In Rolle’s Theorem, the two ends of the graph of f are
at the same height, f (a) = f (b), so the slope of the line connecting the
ends is zero. In the Mean Value Theorem, the two ends of the graph
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of f do not have to be at the same height, so the line through the two
ends does not have to have a slope of zero.

Mean Value Theorem:

If f (x) is continuous for a ≤ x ≤ b
and differentiable for a < x < b

then there is at least one number c between a and b so the
line tangent to the graph of f at x = c is parallel to
the secant line through (a, f (a)) and (b, f (b)):

f ′(c) =
f (b)− f (a)

b − a

Proof. The proof of the Mean Value Theorem uses a tactic common in
mathematics: introduce a new function that satisfies the hypotheses of
some theorem we already know and then use the conclusion of that
previously proven theorem. For the Mean Value Theorem we introduce
a new function, h(x), which satisfies the hypotheses of Rolle’s Theorem.
Then we can be certain that the conclusion of Rolle’s Theorem is true for
h(x) and the Mean Value Theorem for f will follow from the conclusion
of Rolle’s Theorem for h.

First, let g(x) be the linear function passing through the points
(a, f (a)) and (b, f (b)) of the graph of f . The function g goes through
the point (a, f (a)) so g(a) = f (a). Similarly, g(b) = f (b). The slope of

the linear function g(x) is
f (b)− f (a)

b − a
so g′(x) =

f (b)− f (a)
b − a

for all x

between a and b, and g is continuous and differentiable. (The formula
for g is g(x) = f (a) + m(x − a) with m = f (b)− f (a)

b−a .)
Define h(x) = f (x)− g(x) for a ≤ x ≤ b (see margin). The function

h satisfies the hypotheses of Rolle’s theorem:

• h(a) = f (a)− g(a) = 0 and h(b) = f (b)− g(b) = 0

• h(x) is continuous for a ≤ x ≤ b because both f and g are continuous
there

• h(x) is differentiable for a < x < b because both f and g are differ-
entiable there

so the conclusion of Rolle’s Theorem applies to h: there is a c between
a and b so that h′(c) = 0.

The derivative of h(x) = f (x)− g(x) is h′(x) = f ′(x)− g′(x) so we
know that there is a number c between a and b with h′(c) = 0. But:

0 = h′(c) = f ′(c)− g′(c) ⇒ f ′(c) = g′(c) =
f (b)− f (a)

b − a

which is exactly what we needed to prove.
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Graphically, the Mean Value Theorem says that there is at least one
point c where the slope of the tangent line, f ′(c), equals the slope of
the line through the end points of the graph segment, (a, f (a)) and
(b, f (b)). The margin figure shows the locations of the parallel tangent
lines for several functions and intervals.

The Mean Value Theorem also has a very natural interpretation
if f (x) represents the position of an object at time x: f ′(x) repre-

sents the velocity of the object at the instant x and
f (b)− f (a)

b − a
=

change in position
change in time

represents the average (mean) velocity of the ob-

ject during the time interval from time a to time b. The Mean Value
Theorem says that there is a time c (between a and b) when the instan-
taneous velocity, f ′(c), is equal to the average velocity for the entire

trip,
f (b)− f (a)

b − a
. If your average velocity during a trip is 30 miles per

hour, then at some instant during the trip you were traveling exactly 30

miles per hour.

Practice 2. For f (x) = 5x2 − 4x + 3 on the interval [1, 3], calculate

m =
f (b)− f (a)

b − a
and find the value(s) of c so that f ′(c) = m.

Some Consequences of the Mean Value Theorem

If the Mean Value Theorem was just an isolated result about the exis-
tence of a particular point c, it would not be very important or useful.
However, the Mean Value Theorem is the basis of several results about
the behavior of functions over entire intervals, and it is these conse-
quences that give it an important place in calculus for both theoretical
and applied uses.

The next two corollaries are just the first of many results that follow
from the Mean Value Theorem.

We already know, from the Main Differentiation Theorem, that the
derivative of a constant function f (x) = K is always 0, but can a non-
constant function have a derivative that is always 0? The first corollary
says no.

Corollary 1:

If f ′(x) = 0 for all x in an interval I
then f (x) = K, a constant, for all x in I.

Proof. Assume f ′(x) = 0 for all x in an interval I. Pick any two points
a and b (with a ̸= b) in the interval. Then, by the Mean Value Theorem,

there is a number c between a and b so that f ′(c) =
f (b)− f (a)

b − a
. By

our assumption, f ′(x) = 0 for all x in I, so we know that 0 = f ′(c) =
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f (b)− f (a)
b − a

and thus f (b)− f (a) = 0 ⇒ f (b) = f (a). But a and b were

two arbitrary points in I, so the value of f (x) is the same for any two
values of x in I, and f is a constant function on the interval I.

We already know that if two functions are “parallel” (differ by a
constant), then their derivatives are equal, but can two non-parallel
functions have the same derivative? The second corollary says no.

Corollary 2:

If f ′(x) = g′(x) for all x in an interval I
then f (x) − g(x) = K, a constant, for all x in I, so the

graphs of f and g are “parallel” on the interval I.

Proof. This corollary involves two functions instead of just one, but
we can imitate the proof of the Mean Value Theorem and introduce
a new function h(x) = f (x)− g(x). The function h is differentiable
and h′(x) = f ′(x)− g′(x) = 0 for all x in I so, by Corollary 1, h(x) is a
constant function and K = h(x) = f (x)− g(x) for all x in the interval.
Thus f (x) = g(x) + K.

We will use Corollary 2 hundreds of times in Chapters 4 and 5 when
we work with “integrals.” Typically you will be given the derivative
of a function, f ′(x), and be asked to find all functions f that have that
derivative. Corollary 2 tells us that if we can find one function f that
has the derivative we want, then the only other functions that have the
same derivative are of the form f (x) + K where K is a constant: once
you find one function with the right derivative, you have essentially
found all of them.

Example 2. (a) Find all functions whose derivatives equal 2x. (b) Find
a function g(x) with g′(x) = 2x and g(3) = 5.

Solution. (a) Observe that f (x) = x2 ⇒ f ′(x) = 2x, so one func-
tion with the derivative we want is f (x) = x2. Corollary 2 guar-
antees that every function g whose derivative is 2x has the form
g(x) = f (x) + K = x2 + K. (b) Because g′(x) = 2x, we know that
g must have the form g(x) = x2 + K, but this gives a whole “family”
of functions (see margin) and we want to find one member of that
family. We also know that g(3) = 5 so we want to find the member
of the family that passes through the point (3, 5). Replacing g(x) with
5 and x with 3 in the formula g(x) = x2 + K, we can solve for the
value of K: 5 = g(3) = (3)2 + K ⇒ K = −4. The function we want is
g(x) = x2 − 4. ◀

Practice 3. Restate Corollary 2 as a statement about the positions and
velocities of two cars.
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3.2 Problems

1. In the figure below, find the number(s) “c” that
Rolle’s Theorem promises (guarantees).

For Problems 2–4, verify that the hypotheses of
Rolle’s Theorem are satisfied for each of the func-
tions on the given intervals, and find the value of
the number(s) “c” that Rolle’s Theorem promises.

2. (a) f (x) = x2 on [−2, 2]
(b) f (x) = x2 − 5x + 8 on [0, 5]

3. (a) f (x) = sin(x) on [0, π]

(b) f (x) = sin(x) on [π, 5π]

4. (a) f (x) = x3 − x + 3 on [−1, 1]
(b) f (x) = x · cos(x) on [0, π

2 ]

5. Suppose you toss a ball straight up and catch it
when it comes down. If h(t) is the height of the
ball t seconds after you toss it, what does Rolle’s
Theorem say about the velocity of the ball? Why
is it easier to catch a ball that someone on the
ground tosses up to you on a balcony, than for
you to be on the ground and catch a ball that
someone on a balcony tosses down to you?

6. If f (x) =
1
x2 , then f (−1) = 1 and f (1) = 1 but

f ′(x) = − 2
x3 is never equal to 0. Why doesn’t

this function violate Rolle’s Theorem?

7. If f (x) = |x|, then f (−1) = 1 and f (1) = 1 but
f ′(x) is never equal to 0. Why doesn’t this func-
tion violate Rolle’s Theorem?

8. If f (x) = x2, then f ′(x) = 2x is never 0 on the
interval [1, 3]. Why doesn’t this function violate
Rolle’s Theorem?

9. If I take off in an airplane, fly around for a while
and land at the same place I took off from, then
my starting and stopping heights are the same
but the airplane is always moving. Why doesn’t
this violate Rolle’s theorem, which says there is
an instant when my velocity is 0?

10. Prove the following corollary of Rolle’s Theorem:
If P(x) is a polynomial, then between any two
roots of P there is a root of P′.

11. Use the corollary in Problem 10 to justify the con-
clusion that the only root of f (x) = x3 + 5x − 18
is 2. (Suggestion: What could you conclude about
f ′ if f had another root?)

12. In the figure below, find the location(s) of the “c”
that the Mean Value Theorem promises.

In Problems 13–15, verify that the hypotheses of the
Mean Value Theorem are satisfied for each of the
functions on the given intervals, and find the num-
ber(s) “c” that the Mean Value Theorem guarantees.

13. (a) f (x) = x2 on [0, 2]

(b) f (x) = x2 − 5x + 8 on [1, 5]

14. (a) f (x) = sin(x) on [0, π
2 ]

(b) f (x) = x3 on [−1, 3]

15. (a) f (x) = 5 −
√

x on [1, 9]

(b) f (x) = 2x + 1 on [1, 7]
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16. For the quadratic functions in parts (a) and (b) of
Problem 13, the number c turned out to be the
midpoint of the interval: c = a+b

2 .

(a) For f (x) = 3x2 + x − 7 on [1, 3], show that

f ′(2) =
f (3)− f (1)

3 − 1
.

(b) For f (x) = x2 − 5x + 3 on [2, 5], show that

f ′
(

7
2

)
=

f (5)− f (2)
5 − 2

.

(c) For f (x) = Ax2 + Bx + C on [a, b], show that

f ′
(

a + b
2

)
=

f (b)− f (a)
b − a

.

17. If f (x) = |x|, then f (−1) = 1 and f (3) = 3 but

f ′(x) is never equal to
f (3)− f (−1)

3 − (−1)
=

1
2

. Why

doesn’t this violate the Mean Value Theorem?

In Problems 18–19, you are a traffic-court judge. In
each case, a driver has challenged a speeding ticket
and you need to decide if the ticket is appropriate.

18. A tolltaker says, “Your Honor, based on the
elapsed time from when the car entered the toll
road until the car stopped at my booth, I know
the average speed of the car was 83 miles per
hour. I did not actually see the car speeding, but
I know it was and I gave the driver a ticket.”

19. The driver in the next case says, “Your Honor, my
average velocity on that portion of the toll road
was only 17 miles per hour, so I could not have
been speeding.”

20. Find three different functions ( f , g and h) so that
f ′(x) = g′(x) = h′(x) = cos(x).

21. Find a function f so that f ′(x) = 3x2 + 2x + 5
and f (1) = 10.

22. Find g(x) so that g′(x) = x2 + 3 and g(0) = 2.

23. Find values for A and B so that the graph of the
parabola f (x) = Ax2 + B is:

(a) tangent to y = 4x + 5 at the point (1, 9).

(b) tangent to y = 7 − 2x at the point (2, 3).

(c) tangent to y = x2 + 3x − 2 at the point (0, 2).

24. Sketch the graphs of several members of the “fam-
ily” of functions whose derivatives always equal
3. Give a formula that defines every function in
this family.

25. Sketch the graphs of several members of the “fam-
ily” of functions whose derivatives always equal
3x2. Give a formula that defines every function
in this family.

26. At t seconds after takeoff, the upward velocity
of a helicopter was v(t) = 3t2 + 2t feet/second.
Two seconds after takeoff, the helicopter was 80

feet above sea level. Find a formula for the height
of the helicopter at every time t.

27. Assume that a rocket is fired from the ground
and has the upward velocity shown in the figure
below. Estimate the height of the rocket when
t = 1, 2 and 5 seconds.

28. The figure below shows the upward velocity of
a rocket. Use the information in the graph to
estimate the height of the rocket when t = 1, 2
and 5 seconds.
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29. Determine a formula for f (x) if you know:
f ′′(x) = 6, f ′(0) = 4 and f (0) = −5.

30. Determine a formula for g(x) if you know:
g′′(x) = 12x, g′(1) = 9 and g(2) = 30.

31. Define A(x) to be the area bounded by the t-axis,
the line y = 3 and a vertical line at t = x.

(a) Find a formula for A(x).
(b) Determine A′(x).

32. Define A(x) to be the area bounded by the t-axis,
the line y = 2t and a vertical line at t = x.

(a) Find a formula for A(x).
(b) Determine A′(x).

33. Define A(x) to be the area bounded by the t-axis,
the line y = 2t + 1 and a vertical line at t = x.

(a) Find a formula for A(x).

(b) Determine A′(x).

In Problems 34–36, given a list of numbers a1, a2, a3,
a4, . . . , the consecutive differences between num-
bers in the list are: a2 − a1, a3 − a2, a4 − a3, . . .

34. If a1 = 5 and the consecutive difference is always
0, what can you conclude about the numbers in
the list?

35. If a1 = 5 and the consecutive difference is always
3, find a formula for an.

36. Suppose the “a” list starts with 3, 4, 7, 8, 6, 10,
13,. . . , and there is a “b” list that has the same
consecutive differences as the “a” list.

(a) If b1 = 5, find the next six numbers in the “b”
list. How is bn related to an?

(b) If b1 = 2, find the next six numbers in the “b”
list. How is bn related to an?

(c) If b1 = B, find the next six numbers in the “b”
list. How is bn related to an?
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3.2 Practice Answers

1. f ′(x) = 0 when x = 2 and 6, so c = 2 and c = 6.
g′(x) = 0 when x = 2, 4 and 6, so c = 2, c = 4 and c = 6.

2. With f (x) = 5x2 − 4x + 3 on [1, 3], f (1) = 4 and f (3) = 36 so:

m =
f (b)− f (a)

b − a
=

36 − 4
3 − 1

= 16

f ′(x) = 10x − 4 so f ′(c) = 10c − 4 = 16 ⇒ 10c = 20 ⇒ c = 2. The
graph of f showing the location of c appears below.

3. If two cars have the same velocities during an interval of time (so that
f ′(t) = g′(t) for t in I) then the cars are always a constant distance
apart during that time interval. (Note: “Same velocity” means same
speed and same direction. If two cars are traveling at the same
speed but in different directions, then the distance between them
changes and is not constant.)
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3.3 The First Derivative and the Shape of f

This section examines some of the interplay between the shape of the
graph of a function f and the behavior of its derivative, f ′. If we have a
graph of f , we will investigate what we can conclude about the values
of f ′. And if we know values of f ′, we will investigate what we can
conclude about the graph of f .

Definitions: Given any interval I, a function f is . . .

increasing on I if, for all x1 and x2 in I, x1 < x2 ⇒ f (x1) < f (x2)

decreasing on I if, for all x1 and x2 in I, x1 < x2 ⇒ f (x1) > f (x2)

monotonic on I if f is increasing or decreasing on I

In this definition, I can be of the form
(a, b), [a, b), (a, b], [a, b], (−∞, b), (−∞, b],
(a, ∞), [a, ∞) or (−∞, ∞), where a < b.

Graphically, f is increasing (decreasing) if, as we move from left to
right along the graph of f , the height of the graph increases (decreases).

These same ideas make sense if we consider h(t) to be the height (in
feet) of a rocket at time t seconds. We naturally say that the rocket is
rising or that its height is increasing if the height h(t) increases over a
period of time, as t increases.

Example 1. List the intervals on which the function graphed below is
increasing or decreasing.

Solution. f is increasing on the intervals [0, 0.3] (approximately), [2, 3]
and [4, 6]. f is decreasing on (approximately) [0.3, 2] and [6, 8]. On
the interval [3, 4] the function is not increasing or decreasing — it is
constant. It is also valid to say that f is increasing on the intervals
[0.5, 0.8] and (0.5, 0.8) as well as many others, but we usually talk about
the longest intervals on which f is monotonic. ◀

Practice 1. List the intervals on which the function graphed below is
increasing or decreasing.
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If we have an accurate graph of a function, then it is relatively easy
to determine where f is monotonic, but if the function is defined by a
formula, then a little more work is required. The next two theorems
relate the values of the derivative of f to the monotonicity of f . The
first theorem says that if we know where f is monotonic, then we also
know something about the values of f ′. The second theorem says that
if we know about the values of f ′ then we can draw conclusions about
where f is monotonic.

First Shape Theorem:
For a function f that is differentiable on an interval (a, b):

• if f is increasing on (a, b) then f ′(x) ≥ 0 for all x in (a, b)

• if f is decreasing on (a, b) then f ′(x) ≤ 0 for all x in (a, b)

• if f is constant on (a, b), then f ′(x) = 0 for all x in (a, b)

Proof. Most people find a picture such as the one in the margin to be
a convincing justification of this theorem: if the graph of f increases
near a point (x, f (x)), then the tangent line is also increasing, and the
slope of the tangent line is positive (or perhaps zero at a few places). A
more precise proof, however, requires that we use the definitions of the
derivative of f and of “increasing” (given above).

Case I: Assume that f is increasing on (a, b). We know that f is
differentiable, so if x is any number in the interval (a, b) then

f ′(x) = lim
h→0

f (x + h)− f (x)
h

and this limit exists and is a finite value. If h is any small enough
positive number so that x + h is also in the interval (a, b), then x <

x + h ⇒ f (x) < f (x + h) (by the definition of “increasing”). We know
that the numerator, f (x + h)− f (x), and the denominator, h, are both
positive, so the limiting value, f ′(x), must be positive or zero: f ′(x) ≥ 0.

The proof of this part is very similar to
the “increasing” proof.

Case II: Assume that f is decreasing on (a, b). If x < x + h, then
f (x) > f (x + h) (by the definition of “decreasing”). So the numerator
of the limit, f (x + h)− f (x), will be negative but the denominator, h,
will still be positive, so the limiting value, f ′(x), must be negative or
zero: f ′(x) ≤ 0.

Case III: The derivative of a constant is 0, so if f is constant on (a, b)
then f ′(x) = 0 for all x in (a, b).

The previous theorem is easy to understand, but you need to pay
attention to exactly what it says and what it does not say. It is possible
for a differentiable function that is increasing on an interval to have
horizontal tangent lines at some places in the interval (see margin). It is
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also possible for a continuous function that is increasing on an interval
to have an undefined derivative at some places in the interval. Finally,
it is possible for a function that is increasing on an interval to fail to be
continuous at some places in the interval (see margin).

The First Shape Theorem has a natural interpretation in terms of the
height h(t) and upward velocity h′(t) of a helicopter at time t. If the
height of the helicopter is increasing (h(t) is an increasing function),
then the helicopter has a positive or zero upward velocity: h′(t) ≥ 0. If
the height of the helicopter is not changing, then its upward velocity is
0: h′(t) = 0.

Example 2. A figure in the margin shows the height of a helicopter
during a period of time. Sketch the graph of the upward velocity of the

helicopter,
dh
dt

.

Solution. The graph of v(t) =
dh
dt

appears in the margin. Notice that

h(t) has a local maximum when t = 2 and t = 5, and that v(2) = 0
and v(5) = 0. Similarly, h(t) has a local minimum when t = 3, and
v(3) = 0. When h is increasing, v is positive. When h is decreasing, v is
negative. ◀

Practice 2. A figure in the margin shows the population of rabbits
on an island during a 6-year period. Sketch the graph of the rate of

population change,
dR
dt

, during those years.

Example 3. A graph of f appears in the margin; sketch a graph of f ′.

Solution. It is a good idea to look first for the points where f ′(x) = 0
or where f is not differentiable (the critical points of f ). These locations
are usually easy to spot, and they naturally break the problem into
several smaller pieces. The only numbers at which f ′(x) = 0 are x = −1
and x = 2, so the only places the graph of f ′(x) will cross the x-axis
are at x = −1 and x = 2: we can therefore plot the points (−1, 0) and
(2, 0) on the graph of f ′. The only place where f is not differentiable is
at the “corner” above x = 5, so the graph of f ′ will not be defined for
x = 5. The rest of the graph of f is relatively easy to sketch:

• if x < −1 then f (x) is decreasing so f ′(x) is negative

• if −1 < x < 2 then f (x) is increasing so f ′(x) is positive

• if 2 < x < 5 then f (x) is decreasing so f ′(x) is negative

• if 5 < x then f (x) is decreasing so f ′(x) is negative
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A graph of f ′ appears on the previous page: f (x) is continuous at
x = 5, but not differentiable at x = 5 (indicated by the “hole”). ◀

Practice 3. A graph of f appears in the margin. Sketch a graph of f ′.
(The graph of f has a “corner” at x = 5.)

The next theorem is almost the converse of the First Shape Theorem
and explains the relationship between the values of the derivative and
the graph of a function from a different perspective. It says that if
we know something about the values of f ′, then we can draw some
conclusions about the shape of the graph of f .

Second Shape Theorem:
For a function f that is differentiable on an interval I:

• if f ′(x) > 0 for all x in the interval I, then f is increasing on I

• if f ′(x) < 0 for all x in the interval I, then f is decreasing on I

• if f ′(x) = 0 for all x in the interval I, then f is constant on I

Proof. This theorem follows directly from the Mean Value Theorem,
and the last part is just a restatement of the First Corollary of the Mean
Value Theorem.

Case I: Assume that f ′(x) > 0 for all x in I and pick any points a
and b in I with a < b. Then, by the Mean Value Theorem, there is a

point c between a and b so that
f (b)− f (a)

b − a
= f ′(c) > 0 and we can

conclude that f (b)− f (a) > 0, which means that f (b) > f (a). Because
a < b ⇒ f (a) < f (b), we know that f is increasing on I.

Case II: Assume that f ′(x) < 0 for all x in I and pick any points
a and b in I with a < b. Then there is a point c between a and b so

that
f (b)− f (a)

b − a
= f ′(c) < 0, and we can conclude that f (b)− f (a) =

(b − a) f ′(c) < 0 so f (b) < f (a). Because a < b ⇒ f (a) > f (b), we
know f is decreasing on I.

Practice 4. Rewrite the Second Shape Theorem as a statement about the
height h(t) and upward velocity h′(t) of a helicopter at time t seconds.

The value of a function f at a number x tells us the height of the
graph of f above or below the point (x, 0) on the x-axis. The value
of f ′ at a number x tells us whether the graph of f is increasing or
decreasing (or neither) as the graph passes through the point (x, f (x))
on the graph of f . If f (x) is positive, it is possible for f ′(x) to be
positive, negative, zero or undefined: the value of f (x) has absolutely
nothing to do with the value of f ′. The margin figure illustrates some
of the possible combinations of values for f and f ′.
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Practice 5. Graph a continuous function that satisfies the conditions on
f and f ′ given below:

x −2 −1 0 1 2 3

f (x) 1 −1 −2 −1 0 2
f ′(x) −1 0 1 2 −1 1

The Second Shape Theorem can be particularly useful if we need to
graph a function f defined by a formula. Between any two consecutive
critical numbers of f , the graph of f is monotonic (why?). If we can
find all of the critical numbers of f , then the domain of f will be broken
naturally into a number of pieces on which f will be monotonic.

Example 4. Use information about the values of f ′ to help graph
f (x) = x3 − 6x2 + 9x + 1.

Solution. f ′(x) = 3x2 − 12x + 9 = 3(x − 1)(x − 3) so f ′(x) = 0 only
when x = 1 or x = 3; f ′ is a polynomial, so it is always defined. The
only critical numbers, x = 1 and x = 3, break the real number line into
three pieces on which f is monotonic: (−∞, 1), (1, 3) and (3, ∞).

• x < 1 ⇒ f ′(x) = 3(negative)(negative) > 0 ⇒ f increasing

• 1 < x < 3 ⇒ f ′(x) = 3(positive)(negative) < 0 ⇒ f is decreasing

• 3 < x ⇒ f ′(x) = 3(positive)(positive) > 0 ⇒ f is increasing

Although we don’t yet know the value of f anywhere, we do know a lot
about the shape of the graph of f : as we move from left to right along
the x-axis, the graph of f increases until x = 1, then decreases until
x = 3, after which the graph increases again (see margin). The graph
of f “turns” when x = 1 and x = 3. To plot the graph of f , we still
need to evaluate f at a few values of x, but only at a very few values:
f (1) = 5, and (1, 5) is a local maximum of f ; f (3) = 1, and (3, 1) is a
local minimum of f . A graph of f appears in the margin. ◀

Practice 6. Use information about the values of f ′ to help graph the
function f (x) = x3 − 3x2 − 24x + 5.

Example 5. Use the graph of f ′ in the margin to sketch the shape of the
graph of f . Why isn’t the graph of f ′ enough to completely determine
the graph of f ?

Solution. Several functions that have the derivative we want appear
in the margin, and each provides a correct answer. By the Second
Corollary to the Mean Value Theorem, we know there is a whole family
of “parallel” functions that share the derivative we want, and each
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of these functions provides a correct answer. If we had additional
information about the function — such as a point it passes through —
then only one member of the family would satisfy the extra condition
and there would be only one correct answer. ◀

Practice 7. Use the graph of g′ provided in the margin to sketch the
shape of a graph of g.

Practice 8. A weather balloon is released from the ground and sends
back its upward velocity measurements (see margin). Sketch a graph
of the height of the balloon. When was the balloon highest?

Using the Derivative to Test for Extremes

The first derivative of a function tells about the general shape of the
function, and we can use that shape information to determine whether
an extreme point is a (local) maximum or minimum or neither.

First Derivative Test for Local Extremes:
Let f be a continuous function with f ′(c) = 0 or f ′(c) undefined.

• If f ′(left of c) > 0 and f ′(right of c) < 0
then (c, f (c)) is a local maximum.

• If f ′(left of c) < 0 and f ′(right of c) > 0
then (c, f (c)) is a local minimum.

• If f ′(left of c) > 0 and f ′(right of c) > 0
then (c, f (c)) is not a local extreme.

• If f ′(left of c) < 0 and f ′(right of c) < 0
then (c, f (c)) is not a local extreme.

Practice 9. Find all extremes of f (x) = 3x2 − 12x + 7 and use the First
Derivative Test to classify them as maximums, minimums or neither.

3.3 Problems

In Problems 1–3, sketch the graph of the derivative of each function.

1. 2. 3.
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Problems 4–6 show the graph of the height of a helicopter; sketch a graph of its upward velocity.

4. 5. 6.

7. In the figure below, match the graphs of the func-
tions with those of their derivatives.

8. Match the graphs showing the heights of rockets
with those showing their velocities.

9. Use the Second Shape Theorem to show that
f (x) = ln(x) is monotonic increasing on the in-
terval (0, ∞).

10. Use the Second Shape Theorem to show that
g(x) = ex is monotonic increasing on the entire
real number line.

11. A student is working with a complicated function
f and has shown that the derivative of f is always
positive. A minute later the student also claims
that f (x) = 2 when x = 1 and when x = π. With-
out checking the student’s work, how can you be
certain that it contains an error?
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12. The figure below shows the graph of the deriva-
tive of a continuous function f .

(a) List the critical numbers of f .

(b) What values of x result in a local maximum?

(c) What values of x result in a local minimum?

13. The figure below shows the graph of the deriva-
tive of a continuous function g.

(a) List the critical numbers of g.

(b) What values of x result in a local maximum?

(c) What values of x result in a local minimum?

Problems 14–16 show the graphs of the upward velocities of three helicopters. Use the graphs to determine
when each helicopter was at a (relative) maximum or minimum height.

14. 15. 16.

In 17–22, use information from the derivative of each
function to help you graph the function. Find all
local maximums and minimums of each function.

17. f (x) = x3 − 3x2 − 9x − 5

18. g(x) = 2x3 − 15x2 + 6

19. h(x) = x4 − 8x2 + 3

20. s(t) = t + sin(t)

21. r(t) =
2

t2 + 1

22. f (x) =
x2 + 3

x
23. f (x) = 2x + cos(x) so f (0) = 1. Without graph-

ing the function, you can be certain that f has
how many positive roots?

24. g(x) = 2x − cos(x) so g(0) = −1. Without graph-
ing the function, you can be certain that g has how
many positive roots?

25. h(x) = x3 + 9x − 10 has a root at x = 1. Without
graphing h, show that h has no other roots.

26. Sketch the graphs of monotonic decreasing func-
tions that have exactly (a) no roots (b) one root
and (c) two roots.

27. Each of the following statements is false. Give (or
sketch) a counterexample for each statement.

(a) If f is increasing on an interval I, then f ′(x) >
0 for all x in I.

(b) If f is increasing and differentiable on I, then
f ′(x) > 0 for all x in I.

(c) If cars A and B always have the same speed,
then they will always be the same distance
apart.
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28. (a) Find several different functions f that all have
the same derivative f ′(x) = 2.

(b) Determine a function f with derivative
f ′(x) = 2 that also satisfies f (1) = 5.

(c) Determine a function g with g′(x) = 2 for
which the graph of g goes through (2, 1).

29. (a) Find several different functions h that all have
the same derivative h′(x) = 2x.

(b) Determine a function f with derivative
f ′(x) = 2x that also satisfies f (3) = 20.

(c) Determine a function g with g′(x) = 2x for
which the graph of g goes through (2, 7).

30. Sketch functions with the given properties to help
determine whether each statement is true or false.

(a) If f ′(7) > 0 and f ′(x) > 0 for all x near 7, then
f (7) is a local maximum of f on [1, 7].

(b) If g′(7) < 0 and g′(x) < 0 for all x near 7, then
g(7) is a local minimum of g on [1, 7].

(c) If h′(1) > 0 and h′(x) > 0 for all x near 1, then
h(1) is a local minimum of h on [1, 7].

(d) If r′(1) < 0 and r′(x) < 0 for all x near 1, then
r(1) is a local maximum of r on [1, 7].

(e) If s′(7) = 0, then s(7) is a local maximum of s
on [1, 7].

3.3 Practice Answers

1. g is increasing on [2, 4] and [6, 8]; g is decreasing on [0, 2] and [4, 5];
g is constant on [5, 6].

2. The graph in the margin shows the rate of population change,
dR
dt

.

3. A graph of f ′ appears below. Notice how the graph of f ′ is 0 where
f has a maximum or minimum.

4. The Second Shape Theorem for helicopters:

• If the upward velocity h′ is positive during time interval I then
the height h is increasing during time interval I.

• If the upward velocity h′ is negative during time interval I then
the height h is decreasing during time interval I.

• If the upward velocity h′ is zero during time interval I then the
height h is constant during time interval I.
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5. A graph satisfying the conditions in the table appears in the margin.

x −2 −1 0 1 2 3

f (x) 1 −1 −2 −1 0 2
f ′(x) −1 0 1 2 −1 1

6. f ′(x) = 3x2 − 6x − 24 = 3(x − 4)(x + 2) so f ′(x) = 0 if x = −2 or
x = 4.

• x < −2 ⇒ f ′(x) = 3(negative)(negative) > 0 ⇒ f increasing

• −2 < x < 4 ⇒ f ′(x) = 3(negative)(positive) < 0 ⇒ f decreasing

• x > 4 ⇒ f ′(x) = 3(positive)(positive) > 0 ⇒ f increasing

Thus f has a relative maximum at x = −2 and a relative minimum
at x = 4. A graph of f appears in the margin.

7. The figure below left shows several possible graphs for g. Each has
the correct shape to give the graph of g′. Notice that the graphs of g
are “parallel” (differ by a constant).

8. The figure above right shows the height graph for the balloon. The
balloon was highest at 4 p.m. and had a local minimum at 6 p.m.

9. f ′(x) = 6x − 12 so f ′(x) = 0 only if x = 2.

• x < 2 ⇒ f ′(x) < 0 ⇒ f decreasing

• x > 2 ⇒ f ′(x) > 0 ⇒ f increasing

From this we can conclude that f has a minimum when x = 2 and
has a shape similar to graph provided in the margin.

We could also have noticed that the graph of the quadratic function
f (x) = 3x2 − 12x + 7 must be an upward-opening parabola.
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3.4 The Second Derivative and the Shape of f

The first derivative of a function provides information about the shape
of the function, so the second derivative of a function provides informa-
tion about the shape of the first derivative, which in turn will provide
additional information about the shape of the original function f .

In this section we investigate how to use the second derivative (and
the shape of the first derivative) to reach conclusions about the shape of
the original function. The first derivative tells us whether the graph of
f is increasing or decreasing. The second derivative will tell us about
the “concavity” of f : whether f is curving upward or downward.

Concavity

Graphically, a function is concave up if its graph is curved with the
opening upward (see margin); similarly, a function is concave down if
its graph opens downward. The concavity of a function can be impor-
tant in applied problems and can even affect billion-dollar decisions.

An Epidemic: Suppose you, as an official at the CDC, must decide
whether current methods are effectively fighting the spread of a dis-
ease — or whether more drastic measures are required. In the margin
figure, f (x) represents the number of people infected with the disease
at time x in two different situations. In both cases the number of people
with the disease, f (now), and the rate at which new people are getting
sick, f ′(now), are the same. The difference is the concavity of f , and
that difference might have a big effect on your decision. In (a), f is
concave down at “now,” and it appears that the current methods are
starting to bring the epidemic under control; in (b), f is concave up,
and it appears that the epidemic is growing out of control.

Usually it is easy to determine the concavity of a function by exam-
ining its graph, but we also need a definition that does not require a
graph of the function, a definition we can apply to a function described
by a formula alone.

Definition: Let f be a differentiable function.

• f is concave up at a if the graph of f is above the tangent line L
to f for all x close to (but not equal to) a:

f (x) > L(x) = f (a) + f ′(a)(x − a)

• f is concave down at a if the graph of f is below the tangent line
L to f for all x close to (but not equal to) a:

f (x) < L(x) = f (a) + f ′(a)(x − a)
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The margin figure shows the concavity of a function at several points.
The next theorem provides an easily applied test for the concavity of a
function given by a formula.

The Second Derivative Condition for Concavity:
Let f be a twice differentiable function on an interval I.

(a) f ′′(x) > 0 on I ⇒ f ′(x) increasing on I ⇒ f concave up on I

(b) f ′′(x) < 0 on I ⇒ f ′(x) decreasing on I ⇒ f concave down on I

(c) f ′′(a) = 0 ⇒ no information
( f (x) may be concave up or concave down or neither at a)

Proof. (a) Assume that f ′′(x) > 0 for all x in I, and let a be any point
in I. We want to show that f is concave up at a, so we need to prove
that the graph of f (see margin) is above the tangent line to f at a:
f (x) > L(x) = f (a) + f ′(a)(x − a) for x close to a. Assume that x
is in I and apply the Mean Value Theorem to f on the interval with
endpoints a and x: there is a number c between a and x so that

f ′(c) =
f (x)− f (a)

x − a
⇒ f (x) = f (a) + f ′(c)(x − a)

Because f ′′ > 0 on I, we know that f ′′ > 0 between a and x, so the
Second Shape Theorem tells us that f ′ is increasing between a and
x. We will consider two cases: x > a and x < a.

• If x > a then x − a > 0 and c is in the interval [a, x] so a < c.
Because f ′ is increasing, a < c ⇒ f ′(a) < f ′(c). Multiplying each
side of this last inequality by the positive quantity x − a yields
f ′(a)(x − a) < f ′(c)(x − a). Adding f (a) to each side of this last
inequality, we have:

L(x) = f (a) + f ′(a)(x − a) < f (a) + f ′(c)(x − a) = f (x)

• If x < a then x − a < 0 and c is in the interval [x, a] so c < a.
Because f ′ is increasing, c < a ⇒ f ′(c) < f ′(a). Multiplying each
side of this last inequality by the negative quantity x − a yields
f ′(c)(x − a) > f ′(a)(x − a) so:

f (x) = f (a) + f ′(c)(x − a) > f (a) + f ′(a)(x − a) = L(x)

In each case we see that f (x) is above the tangent line L(x).

(b) The proof of this part is similar.
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(c) Let f (x) = x4, g(x) = −x4 and h(x) = x3 (see margin). The second
derivative of each of these functions is zero at a = 0, and at (0, 0)
they all have the same tangent line: L(x) = 0 (the x-axis). However,
at (0, 0) they all have different concavity: f is concave up, while g is
concave down and h is neither concave up nor concave down.

Practice 1. Use the graph of f in the lower margin figure to finish filling
in the table with “+” for positive, “−” for negative or “0.”

x f (x) f ′(x) f ′′(x) concavity

1 + + − down
2 +

3 −
4

“Feeling” the Second Derivative

Earlier we saw that if a function f (t) represents the position of a car at
time t, then f ′(t) gives the velocity and f ′′(t) the acceleration of the car
at the instant t.

If we are driving along a straight, smooth road, then what we feel is
the acceleration of the car:

• a large positive acceleration feels like a “push” toward the back of
the car

• a large negative acceleration (a deceleration) feels like a “push”
toward the front of the car

• an acceleration of 0 for a period of time means the velocity is constant
and we do not feel pushed in either direction

In a moving vehicle it is possible to measure these “pushes,” the
acceleration, and from that information to determine the velocity of the
vehicle, and from the velocity information to determine the position.
Inertial guidance systems in airplanes use this tactic: they measure
front–back, left–right and up–down acceleration several times a second
and then calculate the position of the plane. They also use computers
to keep track of time and the rotation of the earth under the plane.
After all, in six hours the Earth has made a quarter of a revolution, and
Dallas has rotated more than 5,000 miles!

Example 1. The upward acceleration of a rocket was a(t) = 30 m/sec2

during the first six seconds of flight, 0 ≤ t ≤ 6. The velocity of the
rocket at t = 0 was 0 m/sec and the height of the rocket above the
ground at t = 0 was 25 m. Find a formula for the height of the rocket
at time t and determine the height at t = 6 seconds.
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Solution. v′(t) = a(t) = 30 ⇒ v(t) = 30t + K for some constant K. We
also know v(0) = 0 so 30(0) + K = 0 ⇒ K = 0 and this v(t) = 30t.

Similarly, h′(t) = v(t) = 30t ⇒ h(t) = 15t2 + C for some constant
C. We know that h(0) = 25 so 15(0)2 + C = 25 ⇒ C = 25. Thus
h(t) = 15t2 + 25 so h(6) = 15(6)2 + 25 = 565 m. ◀

f ′′ and Extreme Values of f

The concavity of a function can also help us determine whether a critical
point is a maximum or minimum or neither. For example, if a point is
at the bottom of a concave-up function then that point is a minimum.

The Second Derivative Test for Extremes:
Let f be a twice differentiable function.

(a) If f ′(c) = 0 and f ′′(c) < 0
then f is concave down and has a local maximum at x = c.

(b) If f ′(c) = 0 and f ′′(c) > 0
then f is concave up and has a local minimum at x = c.

(c) If f ′(c) = 0 and f ′′(c) = 0 then f may have a local maximum,
a local minimum or neither at x = c.

Proof. (a) Assume that f ′(c) = 0. If f ′′(c) < 0 then f is concave
down at x = c so the graph of f will be below the tangent line
L(x) for values of x near c. The tangent line, however, is given by
L(x) = f (c) + f ′(c)(x − c) = f (c) + 0(x − c) = f (c), so if x is close
to c then f (x) < L(x) = f (c) and f has a local maximum at x = c.

(b) The proof for a local minimum of f is similar.

(c) If f ′(c) = 0 and f ′′(c) = 0, then we cannot immediately conclude
anything about local maximums or minimums of f at x = c. The
functions f (x) = x4, g(x) = −x4 and h(x) = x3 all have their first
and second derivatives equal to zero at x = 0, but f has a local
minimum at 0, g has a local maximum at 0, and h has neither a local
maximum nor a local minimum at x = 0.

The Second Derivative Test for Extremes is very useful when f ′′ is
easy to calculate and evaluate. Sometimes, however, the First Derivative
Test — or simply a graph of the function — provides an easier way to
determine if the function has a local maximum or a local minimum: it
depends on the function and on which tools you have available.

Practice 2. f (x) = 2x3 − 15x2 + 24x − 7 has critical numbers x = 1
and x = 4. Use the Second Derivative Test for Extremes to determine
whether f (1) and f (4) are maximums or minimums or neither.
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Inflection Points

Maximums and minimums typically occur at places where the second
derivative of a function is positive or negative, but the places where the
second derivative is 0 are also of interest.

Definition:

An inflection point is a point on the graph of a function
where the concavity of the function changes, from concave up

to concave down or from concave down to concave up.

Practice 3. Which of the labeled points in the margin figure are inflec-
tion points?

To find the inflection points of a function we can use the second
derivative of the function. If f ′′(x) > 0, then the graph of f is concave
up at the point (x, f (x)) so (x, f (x)) is not an inflection point. Similarly,
if f ′′(x) < 0 then the graph of f is concave down at the point (x, f (x))
and the point is not an inflection point. The only points left that can
possibly be inflection points are the places where f ′′(x) = 0 or where
f ′′(x) does not exist (in other words, where f ′ is not differentiable). To
find the inflection points of a function we need only check the points
where f ′′(x) is 0 or undefined. If f ′′(c) = 0 or is undefined, then the
point (c, f (c)) may or may not be an inflection point — we need to
check the concavity of f on each side of x = c. The functions in the
next example illustrate what can happen at such a point.

Example 2. Let f (x) = x3, g(x) = x4 and h(x) = 3
√

x (see margin). For
which of these functions is the point (0, 0) an inflection point?

Solution. Graphically, it is clear that the concavity of f (x) = x3 and
h(x) = 3

√
x changes at (0, 0), so (0, 0) is an inflection point for f and h.

The function g(x) = x4 is concave up everywhere, so (0, 0) is not an
inflection point of g.

f (x) = x3 ⇒ f ′(x) = 3x2 ⇒ f ′′(x) = 6x so the only point at which
f ′′(x) = 0 or is undefined ( f ′ is not differentiable) is at x = 0. If x < 0
then f ′′(x) < 0 so f is concave down; if x > 0 then f ′′(x) > 0 so f
is concave up. Thus at x = 0 the concavity of f changes so the point
(0, f (0)) = (0, 0) is an inflection point of f (x) = x3.

g(x) = x4 ⇒ g′(x) = 4x3 ⇒ g′′(x) = 12x2 so the only point at
which g′′(x) = 0 or is undefined is at x = 0. But g′′(x) > 0 (so g is
concave up) for any x ̸= 0. Thus the concavity of g never changes, so
the point (0, g(0)) = (0, 0) is not an inflection point of g(x) = x4.

h(x) = 3
√

x = x
1
3 ⇒ h′(x) =

1
3

x−
2
3 ⇒ h′′(x) = −2

9
x−

5
3 so h′′ is not

defined if x = 0 (and h′′(x) ̸= 0 elsewhere); h′′(negative number) > 0
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and h′′(positive number) < 0, so h changes concavity at (0, 0) and (0, 0)
is an inflection point of h(x) = 3

√
x. ◀

Practice 4. Find all inflection points of f (x) = x4 − 12x3 + 30x2 + 5x − 7.

Example 3. Sketch a graph of a function with f (2) = 3, f ′(2) = 1 and
an inflection point at (2, 3).

Solution. Two solutions appear in the margin. ◀

Using f ′ and f ′′ to Graph f

Today you can easily graph most functions of interest using a graphing
calculator — and create even nicer graphs using an app on your phone
or a Web-based graphing utility. Earlier generations of calculus students
did not have these tools, so they relied on calculus to help them draw
graphs of unfamiliar functions by hand. While you can create a graph in
seconds that your predecessors may have labored over for half an hour
or longer, you can still use calculus to help you select an appropriate
graphing “window,” and to be confident that your window has not
missed any points of interest on the graph of a function.

Example 4. Create a graph of f (x) = xe−9x2
that shows all local and

global extrema and all inflection points.

Solution. If you graph f (x) on a calculator using the standard window
(−10 ≤ x ≤ 10 and −10 ≤ y ≤ 10) you will likely see nothing other
than the coordinate axes (see margin). You might consult a table of
values for the function to help adjust the window, but this trial-and-
error technique will still not guarantee that you have displayed all
points of interest. Computing the first derivative of f , we get:

f ′(x) = x
[
−18xe−9x2

]
+ e−9x2 · 1 =

[
1 − 18x2

]
e−9x2

which is defined for all values of x; f ′(x) = 0 ⇒ 1 − 18x2 = 0 ⇒
x2 = 1

18 ⇒ x = ± 1
3
√

2
, so the only critical numbers are x = − 1

3
√

2
and

x = 1
3
√

2
. Computing the second derivative of f , we get:

f ′′(x) =
[
1 − 18x2

]
·
[
−18xe−9x2

]
+ e−9x2 · [−36x]

=
[
324x3 − 54x

]
e−9x2

= 54x
[
6x2 − 1

]
e−9x2

We can check that f ′′
(
− 1

3
√

2

)
= 12

√
2
e > 0, so f must have a local

minimum at x = − 1
3
√

2
; similarly, f ′′

(
1

3
√

2

)
= −12

√
2
e < 0, so f must

have a local maximum at x = 1
3
√

2
.
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Furthermore, f ′′(x) = 0 only when x = 0 or when 6x2 − 1 = 0 ⇒
x = ± 1√

6
, so these three values are candidates for locations of inflection

points of f . Noting that:

−1 < − 1√
6
< − 1

3
√

2
< 0 <

1
3
√

2
<

1√
6
< 1

and that f ′′(−1) = −270e−9 < 0 and f ′′
(
− 1

3
√

2

)
= 12

√
2
e > 0, we

observe that f is concave down to the left of x = − 1√
6

and concave up

to the right of x = − 1√
6
, so f does in fact have an inflection point at

x = − 1√
6

. Likewise, f ′′
(

1
3
√

2

)
= −12

√
2
e < 0 and f ′′(1) = 270e−9 > 0,

so f ′′(x) switches sign at x = 0 and at x = 1√
6
, and therefore f (x)

changes concavity at those points as well.
We have now identified two local extrema of f and three inflection

points of f . Equally important, we have used calculus to show that these
five points of interest are the only places where extrema or inflection
points can occur. If we create a graph of f that includes these five points,
our graph is guaranteed to include all “interesting” features of the graph
of f . A window with −1 ≤ x ≤ 1 and −0.2 < y < 0.2 (because the
local extreme values are f

(
± 1

2
√

3

)
≈ ±0.14) should provide a graph

(see margin) that includes all five points of interest. ◀

Practice 5. Compute the first and second derivatives of the function
g(x) = x4 + 4x3 − 90x2 + 13, locate all extrema and inflection points of
g(x), and create a graph of g(x) that shows these points of interest.

Most problems in calculus textbooks are
set up to make solving these equations
relatively straightforward, but in general
this will not be the case.

Even with calculus, we will typically need calculators or computers
to help solve the equations f ′(x) = 0 and f ′′(x) = 0 that we use to find
critical numbers and candidates for inflection points.

3.4 Problems

In Problems 1–2, each statement describes a quan-
tity f (t) changing over time. For each statement, tell
what f represents and whether the first and second
derivatives of f are positive or negative.

1. (a) “Unemployment rose again, but the rate of
increase is smaller than last month.”

(b) “Our profits declined again, but at a slower
rate than last month.”

(c) “The population is still rising and at a faster
rate than last year.”

2. (a) “The child’s temperature is still rising, but
more slowly than it was a few hours ago.”

(b) “The number of whales is decreasing, but at a
slower rate than last year.”

(c) “The number of people with the flu is rising
and at a faster rate than last month.”

3. Sketch the graphs of functions that are defined
and concave up everywhere and have exactly:
(a) no roots. (b) 1 root. (c) 2 roots. (d) 3 roots.
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4. On which intervals is the function graphed below:

(a) concave up? (b) concave down?

5. On which intervals is the function graphed below:

(a) concave up? (b) concave down?

Problems 6–10 give a function and values of x so
that f ′(x) = 0. Use the Second Derivative Test to
determine whether each point (x, f (x)) is a local
maximum, a local minimum or neither.

6. f (x) = 2x3 − 15x2 + 6; x = 0, 5

7. g(x) = x3 − 3x2 − 9x + 7; x = −1, 3

8. h(x) = x4 − 8x2 − 2; x = −2, 0, 2

9. f (x) = sin5(x); x = π
2 , π, 3π

2

10. f (x) = x · ln(x); x = 1
e

11. At which values of x labeled in the figure below
is the point (x, f (x)) an inflection point?

12. At which values of x labeled in the figure below
is the point (x, g(x)) an inflection point?

13. How many inflection points can a:

(a) quadratic polynomial have?

(b) cubic polynomial have?

(c) polynomial of degree n have?

14. Fill in the table with “+,” “−,”or “0” for the func-
tion graphed below.

x f (x) f ′(x) f ′′(x)

0
1
2
3

15. Fill in the table with “+,” “−,”or “0” for the func-
tion graphed below.

x g(x) g′(x) g′′(x)

0
1
2
3
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16. Sketch functions f for x-values near 1 so that
f (1) = 2 and:

(a) f ′(1) > 0, f ′′(1) > 0
(b) f ′(1) > 0, f ′′(1) < 0
(c) f ′(1) < 0, f ′′(1) > 0
(d) f ′(1) > 0, f ′′(1) = 0, f ′′(1−) < 0, f ′′(1+) > 0
(e) f ′(1) > 0, f ′′(1) = 0, f ′′(1−) > 0, f ′′(1+) < 0

17. Some people like to think of a concave-up graph
as one that will “hold water” and of a concave-
down graph as one which will “spill water.” That
description is accurate for a concave-down graph,
but it can fail for a concave-up graph. Sketch
the graph of a function that is concave up on an
interval but will not “hold water.”

18. The function f (x) =
1

2π
e−

(x−c)2

2b2 defines the Gaus-
sian distribution used extensively in statistics
and probability; its graph (see below) is a “bell-
shaped” curve.

(a) Show that f has a maximum at x = c. (The
value c is called the mean of this distribution.)

(b) Show that f has inflection points where x =

c + b and x = c − b. (The value b is called the
standard deviation of this distribution.)

In Problems 19–36, locate all critical numbers, local
extrema and inflection points of the given function,
and use these results to sketch a graph of the func-
tion showing all points of interest.

19. f (x) = x3 − 21x2 + 144x − 350

20. g(x) =
1
6

x3 + x2 − 45
2

x + 100

21. f (x) = e7x − 5x

22. g(x) = e7x − 5x

23. f (x) = e−3x + x

24. g(x) = e−3x − x

25. f (x) = xe−3x

26. g(x) = xe5x

27. f (x) = x
4
3 − x

1
3

28. g(x) = 6x
4
3 + 3x

1
3

29. f (x) = ln
(

1 + x2
)

30. g(x) = ln
(

x2 − 6x + 10
)

31. f (x) = 3
√

x2 + 2x + 2

32. g(x) =
√

x2 + 2x + 2

33. f (x) = x
2
3 (1 − x)

1
3

34. g(x) = x
1
3 (1 − x)

2
3

35. f (θ) = sin(θ) + sin2(θ)

36. g(θ) = cos(θ)− sin2(θ)

3.4 Practice Answers

1. See the margin figure for reference.

x f (x) f ′(x) f ′′(x) concavity

1 + + − down
2 + − − down
3 − − + up
4 − 0 − down
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2. f ′(x) = 6x2 − 30x + 24, which is defined for all x. f ′(x) = 0 if x = 1
or x = 4 (critical values). f ′′(x) = 12x − 30 so f ′′(1) = −18 < 0 tells
us that f is concave down at the critical value x = 1, so (1, f (1)) =
(1, 4) is a relative maximum; and f ′′(4) = 18 > 0 tells us that f is
concave up at the critical value x = 4, so (4, f (4)) = (4,−23) is a
relative minimum. A graph of f appears in the margin.

3. The points labeled b and g are inflection points.

4. f ′(x) = 4x3 − 36x2 + 60x + 5 ⇒ f ′′(x) = 12x2 − 72x + 60 = 12(x2 −
6x + 5) = 12(x − 1)(x − 5) so the only candidates to be inflection
points are x = 1 and x = 5.

• If x < 1 then f ′′(x) = 12(neg)(neg) > 0

• If 1 < x < 5 then f ′′(x) = 12(pos)(neg) < 0

• If 5 < x then f ′′(x) = 12(pos)(pos) > 0

f changes concavity at x = 1 and x = 5, so x = 1 and x = 5 are both
inflection points. A graph of f appears in the margin.

5. g(x) = x4 + 4x3 − 90x2 + 13 ⇒ g′(x) = 4x3 + 12x2 − 180x ⇒
g′′(x) = 12x2 + 24x − 180; because g′(x) and g′′(x) are polyno-
mials, they exist everywhere. The critical numbers for g(x) oc-
cur where g′(x) = 0 ⇒ 4x3 + 12x2 − 180x = 4x(x2 + 3x − 45) =

4x(x + 9)(x − 5) = 0 ⇒ x = −9, x = 0 or x = 5. Using the Second
Derivative Test: g′′(−9) = 576 > 0, so g(x) has a local minimum at
x = −9; g′′(0) = −180 < 0, so g(x) has a local maximum at x = 0;
and g′′(5) = 240 > 0, so g(x) has a local minimum at x = 5.

Candidates for inflection points occur where g′′(x) = 0:

12x2 + 24x − 180 = 12(x2 + 2x − 15) = 12(x − 3)(x + 5) = 0

⇒ x = −5 or x = 3

Observing that g′′(x) > 0 for x < −5, g′′(x) < 0 for −5 < x < 3
and g′′(x) > 0 for x > 3 confirms that both candidates are in
fact inflection points. A graphing window with −12 ≤ x ≤ 8
(this is only one reasonable possibility) should include all points
of interest. Checking that g(−9) = −3632, g(0) = 13 and g(5) =

−1112 suggests that a graphing window with −4000 ≤ y ≤ 1000
should work (see margin).
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3.5 Applied Maximum and Minimum Problems

We have used derivatives to find maximums and minimums of functions
given by formulas, but it is very unlikely that someone will simply
hand you a function and ask you to find its extreme value(s). Typically,
someone will describe a problem and ask your help to maximize or
minimize a quantity: “What is the largest volume of a package that the
post office will accept?”; “What is the quickest way to get from here
to there?”; or “What is the least expensive way to accomplish some
task?” These problems often involve restrictions — or constraints — and
sometimes neither the problem nor the constraints are clearly stated.

Before we can use calculus or other mathematical techniques to solve
these “max/min” problems, we need to understand the situation at hand
and translate the problem into mathematical form. After solving the
problem using calculus (or other mathematical techniques) we need to
check that our mathematical solution really solves the original problem.
Often, the most challenging part of this procedure is understanding the
problem and translating it into mathematical form.

In this section we examine some problems that require understand-
ing, translation, solution and checking. Most will not be as complicated
as those a working scientist, engineer or economist needs to solve, but
they represent a step toward developing the required skills.

Example 1. The company you own has a large supply of 8-inch by
15-inch rectangular pieces of tin, and you decide to use them to make
boxes by cutting a square from each corner and folding up the sides
(see margin). For example, if you cut a 1-inch square from each corner,
the resulting 6-inch by 13-inch by 1-inch box has a volume of 78 cubic
inches. The amount of money you can charge for a box depends on
how much the box holds, so you want to make boxes with the largest
possible volume. What size square should you cut from each corner?

Solution. To help understand the problem, first drawing a diagram
can be very helpful. Then we need to translate it into a mathematical
problem:

• identify the variables

• label the variable and constant parts of the diagram

• write the quantity to be maximized as a function of the variables

If we label the side of the square to be removed as x inches, then the
box is x inches high, 8 − 2x inches wide and 15 − 2x inches long, so the
volume is:

(length)(width)(height) = (15 − 2x)(8 − 2x) · x

= 4x3 − 46x2 + 120x cubic inches
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Now we have a mathematical problem, to maximize the function
V(x) = 4x3 − 46x2 + 120x, so we use existing calculus techniques,
computing V′(x) = 12x2 − 92x + 120 to find the critical points.

• Set V′(x) = 0 and solve by factoring or using the quadratic formula:

V′(x) = 12x2 − 92x + 120 = 4(3x − 5)(x − 6) = 0 ⇒ x =
5
3

or x = 6

so x = 5
3 and x = 6 are critical points of V.

• V′(x) is a polynomial so it is defined everywhere and there are no
critical points resulting from an undefined derivative.

• What are the endpoints for x in this problem? A square cannot have
a negative length, so x ≥ 0. We cannot remove more than half of the
width, so 8 − 2x ≥ 0 ⇒ x ≤ 4. Together, these two inequalities say
that 0 ≤ x ≤ 4, so the endpoints are x = 0 and x = 4. (Note that
the value x = 6 is not in this interval, so x = 6 cannot maximize the
volume and we do not consider it further.)

The maximum volume must occur at the critical point x = 5
3 or at one

of the endpoints (x = 0 and x = 4): V(0) = 0, V( 5
3 ) = 2450

27 ≈ 90.74
cubic inches, and V(4) = 0, so the maximum volume of the box occurs
when we remove a 5

3 -inch by 5
3 -inch square from each corner, resulting

in a box 5
3 inches high, 8 − 2( 5

3 ) =
14
3 inches wide and 15 − 2( 5

3 ) =
35
3

inches long. ◀

Practice 1. If you start with 7-inch by 15-inch pieces of tin, what size
square should you remove from each corner so the box will have as large
a volume as possible? [Hint: 12x2 − 88x + 105 = (2x − 3)(6x − 35)]

We were fortunate in the previous Example and Practice problem
because the functions we created to describe the volume were functions
of only one variable. In other situations, the function we get will have
more than one variable, and we will need to use additional information
to rewrite our function as a function of a single variable. Typically, the
constraints will contain the additional information we need.

Example 2. We want to fence a rectangular area in our backyard for a
garden. One side of the garden is along the edge of the yard, which is
already fenced, so we only need to build a new fence along the other
three sides of the rectangle (see margin). If a neighbor gives us 80 feet
of fencing left over from a home-improvement project, what dimensions
should the garden have in order to enclose the largest possible area
using all of the available material?

Solution. As a first step toward understanding the problem, we draw
a diagram or picture of the situation. Next, we identify the variables:
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in this case, the length (call it x) and width (call it y) of the garden. The
margin figure shows a labeled diagram, which we can use to write a
formula for the function that we want to maximize:

A = area of the rectangle = (length)(width) = x · y

Unfortunately, our function A involves two variables, x and y, so we
need to find a relationship between them (an equation containing both
x and y) that we can solve for wither x or y. The constraint says that we
have 80 feet of fencing available, so x + 2y = 80 ⇒ y = 40 − x

2 . Then:

A = x · y = x
(

40 − x
2

)
= 40x − x2

2

which is a function of a single variable (x). We want to maximize A.
A′(x) = 40 − x so the only way A′(x) = 0 is to have x = 40, and

A(x) is differentiable for all x so the only critical number (other than
the endpoints) is x = 40. Finally, 0 ≤ x ≤ 80 (why?) so we also need
to check x = 0 and x = 80: the maximum area must occur at x = 0,
x = 40 or x = 80.

A(0) = 40(0)− 02

2
= 0 square feet

A(40) = 40(40)− 402

2
= 800 square feet

A(80) = 40(80)− 802

2
= 0 square feet

so the largest rectangular garden has an area of 800 square feet, with
dimensions x = 40 feet by y = 40 − 40

2 = 20 feet. ◀

Practice 2. Suppose you decide to create the rectangular garden in a
corner of your yard. Then two sides of the garden are bounded by the
existing fence, so you only need to use the available 80 feet of fencing
to enclose the other two sides. What are the dimensions of the new
garden of largest area? What are the dimensions if you have F feet of
new fencing available?

Example 3. You need to reach home as quickly as possible, but you are
in a rowboat on a lake 4 miles from shore and your home is 2 miles up
the shore (see margin). If you can row at 3 miles per hour and walk
at 5 miles per hour, toward which point on the shore should you row?
What if your home is 7 miles up the coast?

Solution. The margin figure shows a labeled diagram with the variable
x representing the distance along the shore from point A, the nearest
point on the shore to your boat, to point P, the point you row toward.
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The total time — rowing and walking — is:

T = total time

= (rowing time from boat to P) + (walking time from P to B)

=
distance from boat to P

rate rowing boat
+

distance from P to B
rate walking along shore

=

√
x2 + 42

3
+

2 − x
5

=

√
x2 + 16

3
+

2 − x
5

It is not reasonable to row to a point below A and then walk home,
so x ≥ 0. Similarly, we can conclude that x ≤ 2, so our interval is
0 ≤ x ≤ 2 and the endpoints are x = 0 and x = 2.

To find the other critical numbers of T between x = 0 and x = 2, we
need the derivative of T:

T′(x) =
1
3
· 1

2

(
x2 + 16

)− 1
2
(2x)− 1

5
=

x
3
√

x2 + 16
− 1

5

This derivative is defined for all values of x (and in particular for all
values in the interval 0 ≤ x ≤ 2). To find where T′(x) = 0 we solve:

x
3
√

x2 + 16
− 1

5
= 0 ⇒ 5x = 3

√
x2 + 16

⇒ 25x2 = 9x2 + 144

⇒ 16x2 = 144 ⇒ x2 = 9 ⇒ x = ±3

Neither of these numbers, however, is in our interval 0 ≤ x ≤ 2, so
neither of them gives a minimum time. The only critical numbers for T
on this interval are the endpoints, x = 0 and x = 2:

T(0) =
√

0 + 16
3

+
2 − 0

5
=

4
3
+

2
5
≈ 1.73 hours

T(2) =

√
22 + 16

3
+

2 − 2
5

=

√
20
3

≈ 1.49 hours

The quickest route has P 2 miles down the coast: you should row
directly toward home.

If your home is 7 miles down the coast, then the interval for x is
0 ≤ x ≤ 7, which has endpoints x = 0 and x = 7. Our function for the
travel time is now:

T(x) =

√
x2 + 16

3
+

7 − x
5

⇒ T′(x) =
x

3
√

x2 + 16
− 1

5

so the only point in our interval where T′(x) = 0 is at x = 3 and the
derivative is defined for all values in this interval. So the only critical
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numbers for T are x = 0, x = 3 and x = 7:

T(0) =
√

0 + 16
3

+
7 − 0

5
=

4
3
+

7
5

≈ 2.73 hours

T(3) =

√
32 + 16

3
+

7 − 3
5

=

√
65
3

+
4
5

≈ 2.47 hours

T(7) =

√
72 + 16

3
+

7 − 7
5

=
5
3

≈ 2.68 hours

The quickest way home is to aim for a point P that is 3 miles down the
shore, row directly to P, and then walk along the shore to home. ◀

One challenge of max/min problems is that they may require geom-
etry, trigonometry or other mathematical facts and relationships.

Example 4. Find the height and radius of the least expensive closed
cylinder that has a volume of 1,000 cubic inches. Assume that the
materials needed to construct the cylinder are free, but that it costs
80¢ per inch to weld the top and bottom onto the cylinder and to weld
the seam up the side of the cylinder (see margin).

Solution. If we let r be the radius of the cylinder and h be its height,
then the volume is V = πr2h = 1000. The quantity we want to minimize
is cost, and

C = (top seam cost) + (bottom seam cost) + (side seam cost)

= (total seam length)
(

80
¢

inch

)
= (2πr + 2πr + h) (80) = 320πr + 80h

Unfortunately, C is a function of two variables, r and h, but we can use
the information in the constraint (V = πr2h = 1000) to solve for h and
then substitute this expression for h into the formula for C:

1000 = πr2h ⇒ h =
1000
πr2 ⇒ C = 320πr + 80h = 320πr + 80

(
1000
πr2

)
which is a function of a single variable. Differentiating:

C′(r) = 320π − 160000
πr3

which is defined except when r = 0 (a value that does not make sense
in the original problem) and there are no restrictions on r (other than
r > 0) so there are no endpoints to check. Thus C will be at a minimum
when C′(r) = 0:

320π − 160000
πr3 = 0 ⇒ r3 =

500
π2 ⇒ r = 3

√
500
π2

so r ≈ 3.7 inches and h =
1000
πr2 =

1000

π
(

3
√

500
π2

)2 ≈ 23.3 inches. ◀
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Practice 3. Find the height and radius of the least expensive closed
cylinder that has a volume of 1,000 cubic inches, assuming that the
only cost for this cylinder is the price of the materials: the material for
the top and bottom costs 5¢ per square inch, while the material for the
sides costs 3¢ per square inch (see margin).

Example 5. Find the dimensions of the least expensive rectangular box
that is three times as long as it is wide and which holds 100 cubic
centimeters of water. The material for the bottom costs 7¢ per cm2, the
sides cost 5¢ per cm2 and the top costs 2¢ per cm2.

Solution. Label the box so that w = width, l = length and h = height.
Then our cost function C is:

C = (bottom cost) + (cost of front and back) + (cost of ends) + (top cost)

= (bottom area)(7) + (front and back area)(5) + (ends area)(5) + (top area)(2)

= (wl)(7) + (2lh)(5) + (2wh)(5) + (wl)(2)

= 7wl + 10lh + 10wh + 2wl

= 9wl + 10lh + 10wh

Unfortunately, C is a function of three variables (w, l and h) but we
can use the information from the constraints to eliminate some of the
variables: the box is “three times as long as it is wide” so l = 3w and

C = 9wl + 10lh + 10wh = 9w(3w) + 10(3w)h + 10wh = 27w2 + 40wh

We also know the volume V is 100 in3 and V = lwh = 3w2h (because

l = 3w), so h =
100
3w2 . Then:

C = 27w2 + 40wh = 27w2 + 40w
(

100
3w2

)
= 27w2 +

4000
3w

which is a function of a single variable. Differentiating:

C′(w) = 54w − 4000
3w2

which is defined everywhere except w = 0 (yielding a box of volume 0)
and there is no constraint interval, so C is minimized when C′(w) =

0 ⇒ w =
3

√
4000
162

≈ 2.91 inches ⇒ l = 3w ≈ 8.73 inches ⇒ h = 100
3w2 ≈

3.94 inches. The minimum cost is approximately $6.87. ◀

Problems described in words are usually more difficult to solve
because we first need to understand and “translate” a real-life problem
into a mathematical problem. Unfortunately, those skills only seem to
come with practice. With practice, however, you will start to recognize
patterns for understanding, translating and solving these problems, and
you will develop the skills you need. So read carefully, draw pictures,
think hard — and do the best you can.
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3.5 Problems

1. (a) You have 200 feet of fencing to enclose a rect-
angular vegetable garden. What should the
dimensions of your garden be in order to en-
close the largest area?

(b) Show that if you have P feet of fencing avail-
able, the garden of greatest area is a square.

(c) What are the dimensions of the largest rectan-
gular garden you can enclose with P feet of
fencing if one edge of the garden borders a
straight river and does not need to be fenced?

(d) Just thinking — calculus will not help: What
do you think is the shape of the largest garden
that can be enclosed with P feet of fencing if
we do not require the garden to be rectangu-
lar? What if one edge of the garden borders a
(straight) river?

2. (a) You have 200 feet of fencing available to con-
struct a rectangular pen with a fence divider
down the middle (see below). What dimen-
sions of the pen enclose the largest total area?

(b) If you need two dividers, what dimensions of
the pen enclose the largest area?

(c) What are the dimensions in parts (a) and (b)
if one edge of the pen borders on a river and
does not require any fencing?

3. You have 120 feet of fencing to construct a pen
with four equal-sized stalls.

(a) If the pen is rectangular and shaped like the
one shown below, what are the dimensions of
the pen of largest area and what is that area?

(b) The square pen below uses 120 feet of fencing
but encloses a larger area (400 ft2) than the best

design in part (a). Design a pen that uses only
120 feet of fencing and has four equal-sized
stalls but encloses more than 400 ft2. (Hint:
Don’t use rectangles and squares.)

4. (a) You need to form a 10-inch by 15-inch piece
of tin into a box (with no top) by cutting a
square from each corner and folding up the
sides. How much should you cut so the re-
sulting box has the greatest volume?

(b) If the piece of tin is A inches by B inches, how
much should you cut from each corner so the
resulting box has the greatest volume?

5. Find the dimensions of a box with largest vol-
ume formed from a 10-inch by 10-inch piece of
cardboard cut and folded as shown below.
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6. (a) You must construct a square-bottomed box
with no top that will hold 100 cubic inches of
water. If the bottom and sides are made from
the same material, what are the dimensions of
the box that uses the least material? (Assume
that no material is wasted.)

(b) Suppose the box in part (a) uses different ma-
terials for the bottom and the sides. If the bot-
tom material costs 5¢ per square inch and the
side material costs 3¢ per square inch, what
are the dimensions of the least expensive box
that will hold 100 cubic inches of water?

(This is a “classic” problem with many variations.
We could require that the box be twice as long
as it is wide, or that the box have a top, or that
the ends cost a different amount than the front
and back, or even that it costs a certain amount
to weld each edge. You should be able to set up
the cost equations for these variations.)

7. (a) Determine the dimensions of the least expen-
sive cylindrical can that will hold 100 cubic
inches if the materials cost 2¢, 5¢ and 3¢ per
square inch, respectively, for the top, bottom
and sides.

(b) How do the dimensions of the least expensive
can change if the bottom material costs more
than 5¢ per square inch?

8. You have 100 feet of fencing to build a pen in the
shape of a circular sector, the “pie slice” shown

below. The area of such a sector is
rs
2

.

(a) What value of r maximizes the enclosed area?
(b) What central angle maximizes the area?

9. You are a lifeguard standing at the edge of the
water when you notice a swimmer in trouble (see
figure below) 40 m out in the water from a point
60 m down the beach. Assuming you can run
at a speed of 8 meters per second and swim at
a rate of 2 meters per second, how far along the
shore should you run before diving into the wa-
ter in order to reach the swimmer as quickly as
possible?

10. You have been asked to determine the least ex-
pensive route for a telephone cable that connects
Andersonville with Beantown (see figure below).

(a) If it costs $5000 per mile to lay the cable on
land and $8000 per mile to lay the cable across
the river (with the cost of the cable included),
find the least expensive route.

(b) What is the least expensive route if the cable
costs $7000 per mile in addition to the cost to
lay it?
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11. You have been asked to determine where a wa-
ter works should be built along a river between
Chesterville and Denton (see below) to minimize
the total cost of the pipe to the towns.

(a) Assume that the same size (and cost) pipe is
used to each town. (This part can be done
quickly without using calculus.)

(b) Assume instead that the pipe to Chesterville
costs $3000 per mile and to Denton it costs
$7000 per mile.

12. Light from a bulb at A is reflected off a flat mirror
to your eye at point B (see below). If the time
(and length of the path) from A to the mirror and
then to your eye is a minimum, show that the
angle of incidence equals the angle of reflection.
(Hint: This is similar to the previous problem.)

13. U.S. postal regulations state that the sum of the
length and girth (distance around) of a package
must be no more than 108 inches (see below).

(a) Find the dimensions of the acceptable box with
a square end that has the largest volume.

(b) Find the dimensions of the acceptable box that
has the largest volume if its end is a rectangle
twice as long as it is wide.

(c) Find the dimensions of the acceptable box with
a circular end that has the largest volume.

14. Just thinking — you don’t need calculus for this
problem: A spider and a fly are located on op-
posite corners of a cube (see below). What is the
shortest path along the surface of the cube from
the spider to the fly?

15. Two sides of a triangle are 7 and 10 inches long.
What is the length of the third side so the area
of the triangle will be greatest? (This problem
can be done without using calculus. How? If you
do use calculus, consider the angle θ between the
two sides.)

16. Find the shortest distance from the point (2, 0) to
the curve:

(a) y = 3x − 1 (b) y = x2

(c) x2 + y2 = 1 (d) y = sin(x)

17. Find the dimensions of the rectangle with the
largest area if the base must be on the x-axis and
its other two corners are on the graph of:

(a) y = 16 − x2, −4 ≤ x ≤ 4
(b) x2 + y2 = 1
(c) |x|+ |y| = 1
(d) y = cos(x), −π

2 ≤ x ≤ π
2
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18. The strength of a wooden beam is proportional
to the product of its width and the square of its
height (see figure below). What are the dimen-
sions of the strongest beam that can be cut from
a log with diameter:

(a) 12 inches?

(b) d inches?

19. You have a long piece of 12-inch-wide metal that
you plan to fold along the center line to form a
V-shaped gutter (see below). What angle θ will
yield a gutter that holds the most water (that is,
has the largest cross-sectional area)?

20. You have a long piece of 8-inch-wide metal that
you plan to make into a gutter by bending up 3

inches on each side (see below). What angle θ

will yield a gutter that holds the most water?

21. You have a 6-inch-diameter paper disk that you
want to form into a drinking cup by removing a
pie-shaped wedge (sector) and then forming the
remaining paper into a cone (see below). Find
the height and top radius of the cone so the that
the volume of the cup is as large as possible.

22. (a) What value of b minimizes the sum of the
squares of the vertical distances from y =

2x + b to the points (1, 1), (1, 2) and (2, 2)?

(b) What slope m minimizes the sum of the
squares of the vertical distances from the line
y = mx to the points (1, 1), (1, 2) and (2, 2)?

(c) What slope m minimizes the sum of the
squares of the vertical distances from the line
y = mx to the points (2, 1), (4, 3), (−2,−2)
and (−4,−2)?
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23. You own a small airplane that holds a maximum
of 20 passengers. It costs you $100 per flight from
St. Thomas to St. Croix for gas and wages plus
an additional $6 per passenger for the extra gas
required by the extra weight. The charge per pas-
senger is $30 each if 10 people charter your plane
(10 is the minimum number you will fly), and
this charge is reduced by $1 per passenger for
each passenger over 10 who travels (that is, if 11

fly they each pay $29, if 12 fly they each pay $28,
etc.). What number of passengers on a flight will
maximize your profit?

24. Prove: If f and g are differentiable functions and
if the vertical distance between f and g is greatest
at x = c, then f ′(c) = g′(c) and the tangent lines
to f and g are parallel when x = c.

25. Profit = revenue − expenses. Assuming revenue
and expenses are differentiable functions, show
that when profit is maximized, then marginal

revenue
(

dR
dx

)
equals marginal expense

(
dE
dx

)
.

26. Dean Simonton claims the “productivity levels”
of people in various fields can be described as
a function of their “career age” t by p(t) =

e−at − e−bt where a and b are constants depend-
ing on the field, and career age is approximately
20 less than the actual age of the individual.

(a) Based on this model, at what ages do math-
ematicians (a = 0.03, b = 0.05), geologists
(a = 0.02, b = 0.04) and historians (a = 0.02,
b = 0.03) reach their maximum productivity?

(b) Simonton says, “With a little calculus we can
show that the curve (p(t)) maximizes at t =

1
b − a

ln
(

b
a

)
.” Use calculus to show that Si-

monton is correct.

Note: Models of this type have uses for describing
the behavior of groups, but it is dangerous — and
usually invalid — to apply group descriptions or
comparisons to individuals in a group. (Scientific
Genius by Dean Simonton, Cambridge University
Press, 1988, pp. 69–73)

27. After the table was wiped and the potato chips
dried off, the question remained: “Just how far
could a can of cola be tipped before it fell over?”

(a) For a full can or an empty can the answer was
easy: the center of gravity (CG) of the can is
at the middle of the can, half as high as the
height of the can, and we can tilt the can until
the CG is directly above the bottom rim (see
below left). Find θ if the height of the can is 12

cm and the diameter is 5 cm.

(b) For a partly filled can, more thinking was
needed. Some ideas you will see in Chapter
5 tell us that the CG of a can holding x cm of

cola is C(x) =
360 + 9.6x2

60 + 19.2x
cm above the bot-

tom of the can. Find the height x of cola that
will make the CG as low as possible.

(c) Assuming that the cola is frozen solid (so the
top of the cola stays parallel to the bottom of
the can), how far can we tilt a can containing
x cm of cola? (See above right.)

(d) If the can contained x cm of liquid cola, could
we tilt it farther or less far than the frozen cola
before it would fall over?
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28. Just thinking — calculus will not help with this one.

(a) Four towns are located at the corners of a square. What is the
shortest length of road we can construct so that it is possible to
travel along the road from any town to any other town?

(b) What is the shortest connecting path for five towns located on the
corners of a pentagon?

The problem of finding the shortest path
connecting several points in the plane is
called the “Steiner problem.” It is impor-
tant for designing computer chips and
telephone networks to be as efficient as
possible.

Generalized Max/Min Problems

The previous max/min problems were mostly numerical problems: the
amount of fencing in Problem 2 was 200 feet, the lengths of the piece
of tin in Problem 4 were 10 and 15, and the parabola in Problem 17(a)
was y = 16 − x2. In working those problems, you might have noticed
some patterns among the numbers in the problem and the numbers
in your answers, and you might have wondered if the pattern was a
coincidence or if there really was a general pattern at work. Rather
than trying several numerical examples to see if the “pattern” holds,
mathematicians, engineers, scientists and others sometimes resort to
generalizing the problem. We free the problem from the particular
numbers by replacing the numbers with letters, and then we solve the
generalized problem. In this way, relationships between the values
in the problem and those in the solution can become more obvious.
Solutions to these generalized problems are also useful if you want to
program a computer to quickly provide numerical answers.

29. (a) Find the dimensions of the rectangle with the
greatest area that can be built so the base of
the rectangle is on the x-axis between 0 and 1
(0 ≤ x ≤ 1) and one corner of the rectangle is
on the curve y = x2 (see above right). What is
the area of this rectangle?

(b) Generalize the problem in part (a) for the
parabola y = Cx2 with C > 0 and 0 ≤ x ≤ 1.

(c) Generalize for the parabola y = Cx2 with
C > 0 and 0 ≤ x ≤ B.

30. (a) Find the dimensions of the rectangle with the
greatest area that can be built so the base of
the rectangle is on the x-axis between 0 and 1
and one corner of the rectangle is on the curve
y = x3. What is the area of this rectangle?

(b) Generalize the problem in part (a) for the
curve y = Cx3 with C > 0 and 0 ≤ x ≤ 1.

(c) Generalize for the curve y = Cx3 with C > 0
and 0 ≤ x ≤ B.

(d) Generalize for the curve y = Cxn with C > 0,
n a positive integer, and 0 ≤ x ≤ B.
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31. (a) The base of a right triangle is 50 and the height
is 20. Find the dimensions and area of the
rectangle with the greatest area that can be
enclosed in the triangle if the base of the rect-
angle must lie on the base of the triangle.

(b) The base of a right triangle is B and the height
is H. Find the dimensions and area of the
rectangle with the greatest area that can be
enclosed in the triangle if the base of the rect-
angle must lie on the base of the triangle.

(c) State your general conclusion from part (b) in
words.

32. (a) You have T dollars to buy fencing material to
enclose a rectangular plot of land. The fence
for the top and bottom costs $5 per foot and
for the sides it costs $3 per foot. Find the di-
mensions of the plot with the largest area. For
this largest plot, how much money was used
for the top and bottom, and for the sides?

(b) You have T dollars to buy fencing material to
enclose a rectangular plot of land. The fence
for the top and bottom costs $A per foot and
for the sides it costs $B per foot. Find the
dimensions of the plot with the largest area.
For this largest plot, how much money was
used for the top and bottom (together), and
for the sides (together)?

(c) You have T dollars to buy fencing material to
enclose a rectangular plot of land. The fence
costs $A per foot for the top, $B/foot for the
bottom, $C/ft for the left side and $D/ft for
the right side. Find the dimensions of the plot
with the largest area. For this largest plot, how
much money was used for the top and bottom
(together), and for the sides (together)?

33. Determine the dimensions of the least expensive
cylindrical can that will hold V cubic inches if the
top material costs $A per square inch, the bottom
material costs $B per square inch, and the side
material costs $C per square inch.

34. Find the location of C in the figure below so that
the sum of the distances from A to C and from C
to B is a minimum.

3.5 Practice Answers

1. V(x) = x(15 − 2x)(7 − 2x) = 4x3 − 44x2 + 105x so:

V′(x) = 12x2 − 88x + 105 = (2x − 3)(6x − 35)

which is defined for all x: the only critical numbers are the endpoints
x = 0 and x = 7

2 and where V′(x) = 0: x = 3
2 and x = 35

6 (but 35
6 is



derivatives and graphs 271

not in the interval [0, 7
2 ] so it is not practical). The maximum volume

must occur when x = 0, x = 3
2 or x = 7

2 :

V(0) = 0 · (15 − 2 · 0) · (7 − 2 · 0) = 0

V
(

3
2

)
=

3
2
·
(

15 − 2 · 3
2

)
·
(

7 − 2 · 3
2

)
=

3
2
(12)(4) = 72

V
(

7
2

)
=

7
2

(
15 − 2 · 7

2

)
·
(

7 − 2 · 7
2

)
=

7
2
(8)(0) = 0

The maximum-volume box will result from cutting a 1.5-by-1.5 inch
square from each corner. A graph of V(x) appears in the margin.

2. (a) We have 80 feet of fencing (see margin). Our assignment is
to maximize the area of the garden: A = x · y (two variables).
Fortunately, we have the constraint that x + y = 80, so y = 80− x
and our assignment reduces to maximizing a function of one
variable:

A = x · y = x · (80 − x) = 80x − x2 ⇒ A′(x) = 80 − 2x

so A′(x) = 0 ⇒ x = 40. Because A′′(x) = −2 < 0, the graph
of A is concave down, hence A has a maximum at x = 40. The
maximum area is A(40) = 40 · 40 = 1600 ft2 when x = 40 feet
and y = 40 feet. The maximum-area garden is a square.

(b) This is similar to part (a) except we have F feet of fencing instead
of 80 feet: x + y = F ⇒ y = F − x and we want to maximize
A = xy = x(F − x) = Fx − x2. Differentiating, A′(x) = F − 2x so
A′(x) = 0 ⇒ x = F

2 ⇒ y = F
2 . The maximum area is A

(
F
2

)
= F2

4
square feet when the garden is a square with half of the new
fence used on each of the two new sides.

3. The cost C is given by:

C = 5(area of top) + 3(area of sides) + 5(area of bottom)

= 5(πr2) + 3(2πrh) + 5(πr2)

so our assignment is to minimize C = 10πr2 + 6πrh, a function of
two variables (r and h). Fortunately, we also have the constraint that
volume = 1000 in3 = πr2h ⇒ h = 1000

πr2 . So:

C = 10πr2 + 6πr
(

1000
πr2

)
= 10πr2 +

6000
r

⇒ C′(r) = 20πr − 6000
r2

which exists for r ̸= 0 (r = 0 is not in the domain of C(r)).

C′(r) = 0 ⇒ 20πr− 6000
r2 = 0 ⇒ 20πr3 = 6000 ⇒ r = 3

√
6000
20π

≈ 4.57 inches

When r = 4.57, h = 1000
π(4.57)2 ≈ 15.24 inches. Examining the second

derivative, C′′(r) = 20π + 12000
r3 > 0 for all r > 0 so C is concave up

and we have found the minimum cost.
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3.6 Asymptotic Behavior of Functions

When you turn on an automobile or a light bulb or a computer, many
things happen. Some of them are uniquely part of the start-up process
of the system. These “transient” things occur only during start up,
and then the system settles down to its steady-state operation. This
start-up behavior can be very important, but sometimes we want to
investigate the steady-state — or long-term — behavior: how does the
system behave “after a long time?” In this section we investigate and
describe the long-term behavior of functions and the systems they
model: how does a function behave “when x (or −x) is arbitrarily
large?”

Limits as x Becomes Arbitrarily Large (“Approaches Infinity”)

The same type of questions we considered about a function f as x
approached a finite number can also be asked about f as x “becomes
arbitrarily large” (or “increases without bound”) — that is, eventually
becomes larger than any fixed number.

Example 1. What happens to the values of f (x) =
5x

2x + 3
and g(x) =

sin(7x + 1)
3x

as x becomes arbitrarily large (increases without bound)?

Solution. One approach is numerical: evaluate f (x) and g(x) for some
“large” values of x and see if there is a pattern to the values of f (x) and
g(x). The margin table shows the values of f (x) and g(x) for several
large values of x. When x is very large, it appears that the values of
f (x) are close to 2.5 = 5

2 and the values of g(x) are close to 0. In fact,
we can guarantee that the values of f (x) are as close to 5

2 as someone

wants by taking x to be “big enough.” The values of f (x) =
5x

2x + 3
may or may not ever equal 5

2 (they never do), but if x is “large,” then
f (x) is “very close to” 5

2 . Similarly, we can guarantee that the values of
g(x) are as close to 0 as someone wants by taking x to be “big enough.”
The graphs of f and g for “large” values of x appear in the margin. ◀

x 5x
2x+3

sin(7x+1)
3x

10 2.17 0.031702
100 2.463 −0.001374
1000 2.4962 0.000333
10, 000 2.4996 0.000001

Practice 1. What happens to the values of f (x) =
3x + 4
x − 2

and g(x) =

cos(5x)
2x + 7

as x becomes arbitrarily large?

We can express the answers to Example 1 using limits. “As x becomes

arbitrarily large, the values of
5x

2x + 3
approach 5

2 ” can be written:

lim
x→∞

5x
2x + 3

=
5
2
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and “the values of
sin(7x + 1)

3x
approach 0” can be written:

lim
x→∞

sin(7x + 1)
3x

= 0

We read lim
x→∞

as “the limit as x approaches infinity,” meaning “the limit

as x becomes arbitrarily large” or “as x increases without bound.”

During this discussion — and throughout
this book — we do not treat “infinity” or
“∞” as a number, but only as a useful no-
tation. “Infinity” is not part of the real
number system, and we use the common
notation “x → ∞” and the phrase “x ap-
proaches infinity” only to mean that “x
becomes arbitrarily large.”The notation “x → −∞,” read as “x approaches negative infinity,”

means that the values of −x become arbitrarily large.

Practice 2. Rewrite your answers to Practice 1 using limit notation.

The expression lim
x→∞

f (x) asks about the behavior of f (x) as the

values of x get larger and larger without any bound. One way to
determine this behavior is to look at the values of f (x) for some values
of x that are very “large.” If the values of the function get arbitrarily
close to a single number as x gets larger and larger, then we will say
that number is the limit of the function as x approaches infinity.

A more formal definition of the limit as
“x → ∞” appears at the end of this sec-
tion.

Practice 3. Fill in the table for f (x) =
6x + 7
3 − 2x

and g(x) =
sin(3x)

x
and

use those values to estimate lim
x→∞

f (x) and lim
x→∞

g(x).

x 6x+7
3−2x

sin(3x)
x

10
200
500
20, 000

Example 2. How large must x be to guarantee that f (x) =
1
x
< 0.1?

That f (x) < 0.001? That f (x) < E (with E > 0)?

Solution. If x > 10, then
1
x
<

1
10

= 0.1. If x > 1000, then
1
x
<

1
1000

=

0.001. In general, if E is any positive number, then we can guarantee

that | f (x)| < E by picking only values of x >
1
E

> 0: if x >
1
E

, then
1
x
< E. From this we can conclude that lim

x→∞

1
x
= 0. ◀

Practice 4. How large must x be to guarantee that f (x) =
1
x2 < 0.1?

That f (x) < 0.001? That f (x) < E (with E > 0)? Evaluate lim
x→∞

1
x2 .

The Main Limit Theorem (Section 1.2) about limits of combinations
of functions still holds true if the limits as “x → a” are replaced with
limits as “x → ∞” but we will not prove those results.

Polynomials arise regularly in applications, and we often need the
limit, as “x → ∞,” of ratios of polynomials or functions containing
powers of x. In these situations the following technique is often helpful:
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• factor the highest power of x in the denominator from both the
numerator and the denominator

• cancel the common factor from the numerator and denominator

The limit of the new denominator is a constant, so the limit of the
resulting ratio is easier to determine.

Example 3. Determine lim
x→∞

7x2 + 3x − 4
3x2 − 5

and lim
x→∞

9x + 2
3x2 − 5x + 1

.

Solution. Factoring x2 out of the numerator and the denominator of
the first rational function results in:

lim
x→∞

7x2 + 3x − 4
3x2 − 5

= lim
x→∞

x2(7 + 3
x − 4

x2 )

x2(3 − 5
x2 )

= lim
x→∞

7 + 3
x − 4

x2

3 − 5
x2

=
7
3

where we used the facts that 3
x → 0, 4

x2 → 0 and 5
x2 → 0 as x → ∞.

Similarly:

lim
x→∞

9x + 2
3x2 − 5x + 1

= lim
x→∞

x2( 9
x + 2

x2 )

x2(3 − 5
x + 1

x2 )
= lim

x→∞

9
x + 2

x2

3 − 5
x + 1

x2

=
0
3
= 0

because k
x → 0 and c

x2 → 0 as x → ∞ for any constants k and c. ◀

If we need to evaluate a more difficult limit as x → ∞, it is often
useful to algebraically manipulate the function into the form of a ratio
and then use the previous technique.

If the values of the function oscillate and do not approach a single
number as x becomes arbitrarily large, then the function does not have
a limit as x approaches ∞: the limit does not exist.

Example 4. Evaluate lim
x→∞

sin(x) and lim
x→∞

x − ⌊x⌋

Solution. As x → ∞, f (x) = sin(x) and g(x) = x − ⌊x⌋ do not have
limits. As x grows without bound, the values of f (x) = sin(x) oscillate
between −1 and +1 (see margin), and these values do not approach a
single number. Similarly, g(x) = x − ⌊x⌋ continues to take on all values
between 0 and 1, and these values never approach a single number. ◀

Using Calculators to Help Find Limits as “x → ∞” or “x → −∞”

Calculators only store a limited number of digits for each quantity.
This becomes a severe limitation when we deal with extremely large
quantities.

Example 5. The value of f (x) = (x + 1)− x is clearly equal to 1 for all
values of x, and your calculator will give the right answer if you use it
to evaluate f (4) or f (5). Now use it to evaluate f for a big value of x,
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say x = 1040: f (1040) = (1040 + 1)− 1040 = 1, but most calculators do
not store 40 digits of a number, and they will respond that f (1040) = 0,
which is wrong. In this example the calculator’s error is obvious, but
similar errors can occur in less obvious ways when using calculators
for computations involving very large numbers.

You should be careful with — and somewhat suspicious of — the
answers your calculator gives you.

Calculators can still be helpful for examining limits as x → ∞ and
x → −∞ as long as we don’t place too much faith in their responses.

Even if you have forgotten some of the properties of the natural loga-
rithm function ln(x) and the cube root function 3

√
x, a little experimen-

tation on your calculator can help convince you that lim
x→∞

ln(x)
3
√

x
= 0.

The Limit Is Infinite

The function f (x) =
1
x2 is undefined at x = 0, but we can still ask

about the behavior of f (x) for values of x “close to” 0. The margin
figure indicates that if x is very small (close to 0) then f (x) is very large.
As the values of x get closer to 0, the values of f (x) grow larger and
can be made as large as we want by picking x to be close enough to 0.
Even though the values of f are not approaching any one number, we
use the “infinity” notation to indicate that the values of f are growing

without bound, and write: lim
x→0

1
x2 = ∞.

The values of
1
x2 do not equal “infinity”: the notation lim

x→0

1
x2 = ∞

means that the values of
1
x2 can be made arbitrarily large by picking

values of x very close to 0.

The limit, as x → 0, of
1
x

is slightly more complicated. If x is close to

0, then the value of f (x) =
1
x

can be a large positive number or a large

negative number, depending on the sign of x. The function f (x) =
1
x

does not have a (two-sided) limit as x approaches 0, but we can still
investigate one-sided limits:

lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞

Example 6. Determine lim
x→3+

x − 5
x − 3

and lim
x→3−

x − 5
x − 3

.

Solution. As x → 3+, x − 5 → −2 and x − 3 → 0. Because the
denominator is approaching 0, we cannot use the Main Limit Theorem,
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and we need to examine the function more carefully. When x → 3+,
we know that x > 3 so x − 3 > 0. So if x is close to 3 and slightly larger
than 3, then the ratio of x − 5 to x − 3 is:

a number close to − 2
small positive number

= large negative number

As x > 3 gets closer to 3:

x − 5
x − 3

=
a number closer to − 2
positive and closer to 0

= larger negative number

By taking x > 3 even closer to 3, the denominator gets closer to 0
but remains positive, so the ratio gets arbitrarily large and negative:

lim
x→3+

x − 5
x − 3

= −∞.

As x → 3−, x − 5 → −2 and x − 3 → 0 as before, but now we know
that x < 3 so x − 3 < 0. So if x is close to 3 and slightly smaller than 3,
then the ratio of x − 5 to x − 3 is:

a number close to − 2
small negative number

= large positive number

so lim
x→3−

x − 5
x − 3

= ∞. ◀

Practice 5. Find: (a) lim
x→2+

7
2 − x

(b) lim
x→2+

3x
2x − 4

(c) lim
x→2+

3x2 − 6x
x − 2

.

Horizontal Asymptotes

The limits of f , as “x → ∞” and “x → −∞,” provide information about
horizontal asymptotes of f .

Definition: The line y = K is a horizontal asymptote of f if:

lim
x→∞

f (x) = K or lim
x→−∞

f (x) = K

Example 7. Find any horizontal asymptotes of f (x) =
2x + sin(x)

x
.

Solution. Computing the limit as x → ∞:

lim
x→∞

2x + sin(x)
x

= lim
x→∞

[
2x
x

+
sin(x)

x

]
= lim

x→∞

[
2 +

sin(x)
x

]
= 2 + lim

x→∞

sin(x)
x

= 2 + 0 = 2

so the line y = 2 is a horizontal asymptote of f . The limit, as “x → −∞,"
is also 2 so y = 2 is the only horizontal asymptote of f . The graphs of f
and y = 2 appear in the margin. A function may or may not cross its
asymptote. ◀



derivatives and graphs 277

You likely explored horizontal asymptotes in a previous course using
terms like “end behavior” and investigating only rational functions.
The tools of calculus allow us to make the the notion of “end behavior”
more precise and investigate a wider variety of functions.

Vertical Asymptotes

As with horizontal asymptotes, you have likely studied vertical asymp-
totes before (at least for rational functions). We can now define vertical
asymptotes using infinite limits.

Definition: The vertical line x = a is a vertical asymptote of the
graph of f if either or both of the one-sided limits of f , as x → a−

or x → a+, is infinite.

If our function f is the ratio of a polynomial P(x) and a polynomial

Q(x), f (x) =
P(x)
Q(x)

, then the only candidates for vertical asymptotes

are the values of x where Q(x) = 0. However, the fact that Q(a) = 0 is
not enough to guarantee that the line x = a is a vertical asymptote of f ;
we also need to evaluate P(a).

If Q(a) = 0 and P(a) ̸= 0, then the line x = a must be a vertical
asymptote of f . If Q(a) = 0 and P(a) = 0, then the line x = a may or
may not be a vertical asymptote.

Example 8. Find the vertical asymptotes of f (x) =
x2 − x − 6

x2 − x
and

g(x) =
x2 − 3x
x2 − x

.

Solution. Factoring the numerator and denominator of f (x) yields

f (x) =
(x − 3)(x + 2)

x(x − 1)
so the only values of x that make the denomi-

nator 0 are x = 0 and x = 1, and these are the only candidates to be
vertical asymptotes. Because lim

x→0+
f (x) = +∞ and lim

x→1+
f (x) = −∞,

both x = 0 and x = 1 are vertical asymptotes of f .

Factoring the numerator and denominator of g(x) yields
x(x − 3)
x(x − 1)

so the only candidate to be vertical asymptotes are x = 0 and x = 1.

Because lim
x→1+

g(x) = lim
x→1+

x(x − 3)
x(x − 1)

= lim
x→1+

x − 3
x − 1

= −∞ the line

x = 1 must be a vertical asymptote of g. But lim
x→0

g(x) = lim
x→0

x − 3
x − 1

=

3 ̸= ±∞ so x = 0 is not a vertical asymptote of g. ◀

Practice 6. Find the vertical asymptotes of f (x) =
x2 + x

x2 + x − 2
and

g(x) =
x2 − 1
x − 1

.
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Other Asymptotes as “x → ∞” and “x → −∞”

If the limit of f (x), as x → ∞ or x → −∞, is a constant K, then
the graph of f gets arbitrarily close to the horizontal line y = K, in
which case we call y = K a horizontal asymptote of f . Some functions,
however, approach lines that are not horizontal.

Example 9. Find all asymptotes of f (x) =
x2 + 2x + 1

x
= x + 2 +

1
x

.

Solution. If x is a large positive (or negative) number, then
1
x

is very

close to 0, and the graph of f (x) is very close to the line y = x + 2 (see
margin). The line y = x + 2 is an asymptote of the graph of f .

If x is a large positive number, then
1
x

is positive, and the graph of f
is slightly above the graph of y = x + 2. If x is a large negative number,

then
1
x

is negative, and the graph of f will be slightly below the graph

of y = x + 2. The
1
x

piece of f never equals 0, so the graph of f never
crosses or touches the graph of the asymptote y = x + 2.

The graph of f also has a vertical asymptote at x = 0 because
lim

x→0+
f (x) = ∞ and lim

x→0−
f (x) = −∞. ◀

Practice 7. Find all asymptotes of g(x) =
2x2 − x − 1

x + 1
= 2x − 3+

2
x + 1

.

Some functions even have nonlinear asymptotes: asymptotes that
are not straight lines. The graphs of these functions approach some
nonlinear function when the values of x become arbitrarily large.

Example 10. Find all asymptotes of f (x) =
x4 + 3x3 + x2 + 4x + 5

x2 + 1
=

x2 + 3x +
x + 5
x2 + 1

.

Solution. When x is very large, positive or negative, then
x + 5
x2 + 1

is

very close to 0 and the graph of f is very close to the graph of g(x) =
x2 + 3x. The function g(x) = x2 + 3x is a nonlinear asymptote of f .
The denominator of f is never 0 and f has no vertical asymptotes. ◀

Practice 8. Find all asymptotes of f (x) =
x3 + 2 sin(x)

x
= x2 +

2 sin(x)
x

.

If we can write f (x) as a sum of two functions, f (x) = g(x) + r(x),
with lim

x→±∞
r(x) = 0, then the graph of f is asymptotic to the graph of

g, and g is an asymptote of f . In this situation:

• if g(x) = K, then f has a horizontal asymptote y = K

• if g(x) = ax + b, then f has a linear asymptote y = ax + b

• otherwise f has a nonlinear asymptote y = g(x)
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Formal Definition of lim
x→∞

f (x) = K

The following definition states precisely what we mean by the phrase
“we can guarantee that the values of f (x) are arbitrarily close to K by
restricting the values of x to be sufficiently large.”

Definition: lim
x→∞

f (x) = K means that, for every given ϵ > 0, there

is a number N so that:

if x is larger than N
then f (x) is within ϵ units of K.

Equivalently: | f (x)− K| < ϵ whenever x > N.

Example 11. Show that lim
x→∞

x
2x + 1

=
1
2

.

Solution. Typically, we need to do two things. First we need to find a
value of N, often depending on ϵ. Then we need to show that the value
of N we found satisfies the conditions of the definition.

Assume that | f (x)− K| is less than ϵ and solve for x > 0:

ϵ >

∣∣∣∣ x
2x + 1

∣∣∣∣ = ∣∣∣∣2x − (2x + 1)
2(2x + 1)

∣∣∣∣ = ∣∣∣∣ −1
4x + 2

∣∣∣∣ = 1
4x + 2

⇒ 4x + 2 >
1
ϵ
⇒ x >

1
4

(
1
ϵ
− 2

)

So, given any ϵ > 0, take N =
1
4

(
1
ϵ
− 2

)
.

Now we can just reverse the order of the steps above to show that

this N satisfies the limit definition. If x > 0 and x >
1
4

(
1
ϵ
− 2

)
then:

4x + 2 >
1
ϵ
⇒ ϵ >

1
4x + 2

=

∣∣∣∣ x
2x + 1

− 1
2

∣∣∣∣ = | f (x)− K|

We have shown that “for every given ϵ, there is an N” that satisfies the
definition. ◀

3.6 Problems

1. The margin figure shows f (x) and g(x) for 0 ≤ x ≤ 5. Define a new

function h(x) =
f (x)
g(x)

.

(a) At what value of x does h(x) have a root?

(b) Determine the limits of h(x) as x → 1+, x → 1−, x → 3+ and
x → 3−.

(c) Where does h(x) have a vertical asymptote?
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2. The figure below shows f (x) and g(x) on the

interval 0 ≤ x ≤ 5. Let h(x) =
f (x)
g(x)

.

(a) At what value(s) of x does h(x) have a root?
(b) Where does h(x) have vertical asymptotes?

3. The figure below shows f (x) and g(x) for 0 ≤

x ≤ 5. Let h(x) =
f (x)
g(x)

. Determine the limits of

h(x) as x → 2+, x → 2−, x → 4+ and x → 4−.

For Problems 4–24, calculate the limit of each ex-
pression as “x → ∞.”

4.
6

x + 2
5.

28
3x − 5

6.
7x + 12
3x − 2

7.
4 − 3x
x + 8

8.
5 sin(2x)

2x
9.

cos(3x)
5x − 1

10.
2x − 3 sin(x)

5x − 1
11.

4 + x · sin(x)
2x − 4

12.
x2 − 5x + 2
x2 + 8x − 4

13.
2x2 − 9

3x2 + 10x

14.
√

x + 5√
4x − 2

15.
5x2 − 7x + 2

2x3 + 4x

16.
x + sin(x)
x − sin(x) 17.

7x2 + x · sin(x)
3 − x2 + sin(7x2)

18.
7x143 + 734x − 2
x150 − 99x83 + 25

19.

√
9x2 + 16

2 +
√

x2 + 1

20. sin
(

3x + 5
2x − 1

)
21. cos

(
7x + 4

x2 + x + 1

)

22. ln
(

3x2 + 5x
x2 − 4

)
23. ln(x + 8)− ln(x − 5)

24. ln(3x + 8)− ln(2x + 5)

25. Salt water with a concentration of 0.2 pounds of
salt per gallon flows into a large tank that initially
contains 50 gallons of pure water.

(a) If the flow rate of salt water into the tank is 4

gallons per minute, what is the volume V(t) of
water and the amount A(t) of salt in the tank
t minutes after the flow begins?

(b) Show that the salt concentration C(t) at time t

is C(t) =
0.8t

4t + 50
.

(c) What happens to the concentration C(t) after
a “long” time?

(d) Redo parts (a)–(c) for a large tank that initially
contains 200 gallons of pure water.

26. Under certain laboratory conditions, an agar plate
contains B(t) = 100

(
2 − e−t) bacteria t hours af-

ter the start of the experiment.

(a) How many bacteria are on the plate at the start
of the experiment (t = 0)?

(b) Show that the population is always increasing.
(Show B′(t) > 0 for all t > 0.)

(c) What happens to the population B(t) after a
“long” time?

(d) Redo parts (a)–(c) for B(t) = A(2 − e−t).

For Problems 27–41 , calculate the limits.

27. lim
x→0

x + 5
x2 28. lim

x→3

x − 1
(x − 3)2

29. lim
x→5

x − 7
(x − 5)2 30. lim

x→2+

x − 1
x − 2

31. lim
x→2−

x − 1
x − 2

32. lim
x→3+

x − 1
x − 2

33. lim
x→4+

x + 3
4 − x 34. lim

x→1−

x2 + 5
1 − x

35. lim
x→3+

x2 − 4
x2 − 2x − 3

36. lim
x→2

x2 − x − 2
x2 − 4
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37. lim
x→0

x − 2
1 − cos(x) 38. lim

x→∞

x3 + 7x − 4
x2 + 11x

39. lim
x→5

sin(x − 5)
(x − 5)

40. lim
x→0

x + 1
sin2(x)

41. lim
x→0+

1 + cos(x)
1 − ex

In Problems 42–59, write an equation of each asymp-
tote for each function and state whether it is a verti-
cal, horizontal or slant asymptote.

42. f (x) =
x + 2
x − 1

43. f (x) =
x − 3

x2

44. f (x) =
x − 1
x2 − x

45. f (x) =
x + 5

x2 − 4x + 3

46. f (x) =
x + sin(x)

3x − 3 47. f (x) =
x2 − 4
x + 1

48. f (x) =
cos(x)

x2
49. f (x) = 2 +

3 − x
x − 1

50. f (x) =
x · sin(x)

x2 − x 51. f (x) =
2x2 + x + 5

x

52. f (x) =
x2 + x
x + 1

53. f (x) =
1

x − 2
+ sin(x)

54. f (x) = x +
x

x2 + 1
55. f (x) = x2 +

x
x2 + 1

56. f (x) = x2 +
x

x + 1 57. f (x) =
x · cos(x)

x − 3

58. f (x) =
x3 − x2 + 2x − 1

x − 1

59. f (x) =

√
x2 + 3x + 2

x + 3

3.6 Practice Answers

1. As x becomes arbitrarily large, the values of f (x) approach 3 and
the values of g(x) approach 0.

2. lim
x→∞

3x + 4
x − 2

= 3 and lim
x→∞

cos(5x)
2x + 7

= 0

3. The completed table appears in the margin. x 6x+7
3−2x

sin(3x)
x

10 −3.94117647 −0.09880311
200 −3.04030227 0.00220912
500 −3.00160048 0.00017869
20, 000 −3.00040003 0.00004787

↓ ↓
−3 0

4. If x >
√

10 ≈ 3.162 then f (x) =
1
x2 < 0.1.

If x >
√

1000 ≈ 31.62 then f (x) =
1
x2 < 0.001.

If x >

√
1
E
=

1√
E

then f (x) =
1
x2 < E.

5. (a) As x → 2+, 2 − x → 0, and x > 2 so 2 − x < 0: 2 − x takes on
small negative values.

7
2 − x

=
7

small negative number
= large negative number

so we represent the limit as: lim
x→2+

7
2 − x

= −∞.

(b) As x → 2+, 2x − 4 → 0, and x > 2 so 2x − 4 > 0: 2x − 4 takes on
small positive values. And as x → 2+, 3x → 6 so:

3x
2x − 4

=
number near 6

small positive number
= large positive number

so we represent the limit as: lim
x→2+

3x
2x − 4

= +∞.
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(c) As x → 2+, 3x2 − 6x → 0 and x − 2 → 0 so we need to do more
work. Factoring the numerator as 3x2 − 6x = 3x(x − 2):

lim
x→2+

3x2 − 6x
x − 2

= lim
x→2+

3x(x − 2)
x − 2

= lim
x→2+

3x = 6

where we were able to cancel the x − 2 factor because the limit
involves values of x close to (but not equal to) 2.

6. (a) f (x) =
x2 + x

x2 + x − 2
=

x(x + 1)
(x − 1)(x + 2)

so f has vertical asymptotes

at x = 1 and x = −2.

(b) g(x) =
x2 − 1
x − 1

=
(x + 1)(x − 1)

x − 1
so the value x = 1 is not in the

domain of g. If x ̸= 1, then g(x) = x + 1: g has a “hole” when
x = 1 and no vertical asymptotes.

7. g(x) = 2x − 3 +
2

x + 1
has a vertical asymptote at x = −1 and

no horizontal asymptotes, but lim
x→∞

2
x + 1

= 0 so g has the linear

asymptote y = 2x − 3.

8. f (x) = x2 +
2 sin(x)

x
is not defined at x = 0, so f has a vertical

asymptote or a “hole” there; lim
x→0

x2 +
2 sin(x)

x
= 0 + 2 = 2 so f has

a “hole” when x = 0. Because lim
x→∞

2 sin(x)
x

= 0, f has the nonlinear

asymptote y = x2 (but no horizontal asymptotes).
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3.7 L’Hôpital’s Rule

When taking limits of slopes of secant lines, msec =
f (x + h)− f (x)

h
as h → 0, we frequently encountered one difficulty: both the numerator
and the denominator approached 0. And because the denominator
approached 0, we could not apply the Main Limit Theorem. In many
situations, however, we managed to get past this “ 0

0 ” difficulty by using
algebra or geometry or trigonometry to rewrite the expression and then
take the limit. But there was no common approach or pattern. The alge-

braic steps we used to evaluate lim
h→0

(2 + h)2 − 4
h

seem quite different

from the trigonometric steps needed for lim
h→0

sin(2 + h)− sin(2)
h

. Although discovered by Johann Bernoulli,
this rule was named for the Marquis
de l’Hôpital (pronounced low-pee-TALL),
who published it in his 1696 calculus text-
book, Analysis of the Infinitely Small for the
Understanding of Curved Lines.

In this section we consider a single technique, called l’Hôpital’s Rule,
that enables us to quickly and easily evaluate many limits of the form
“ 0

0 ” as well as several other challenging indeterminate forms.

A Linear Example

The graphs of two linear functions appear in the margin and we want

to find lim
x→5

f (x)
g(x)

. Unfortunately, lim
x→5

f (x) = 0 and lim
x→5

g(x) = 0 so we

cannot apply the Main Limit Theorem. We do know, however, that f
and g are linear, so we can calculate their slopes, and we know that they
both lines go through the point (5, 0) so we can find their equations:
f (x) = −2(x − 5) and g(x) = 3(x − 5).

Now the limit is easier to compute:

lim
x→5

f (x)
g(x)

= lim
x→5

−2(x − 5)
3(x − 5)

= lim
x→5

−2
3

= −2
3
=

slope of f
slope of g

In fact, this pattern works for any two linear functions: If f and g are
linear functions with slopes m ̸= 0 and n ̸= 0 and a common root
at x = a, then f (x)− f (a) = m(x − a) and g(x)− g(a) = n(x − a) so
f (x) = m(x − a) and g(x) = n(x − a). Then:

lim
x→a

f (x)
g(x)

= lim
x→a

m(x − a)
n(x − a)

= lim
x→a

m
n

=
m
n

=
slope of f
slope of g

A more powerful result—that the same pattern holds true for differen-
tiable functions even if they are not linear—is called l’Hôpital’s Rule.

L’Hôpital’s Rule (“ 0
0 ” Form)

If f and g are differentiable at x = a,
f (a) = 0, g(a) = 0 and g′(a) ̸= 0

then lim
x→a

f (x)
g(x)

=
f ′(a)
g′(a)

=
slope of f at a
slope of g at a
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Idea for a proof: Even though f and g may not be linear functions,
they are differentiable. So at the point x = a they are “almost linear” in
the sense that we can approximate them quite well using their tangent
lines at that point (see margin).

Because f (a) = g(a) = 0, f (x) ≈ f (a) + f ′(a)(x − a) = f ′(a)(x − a)
and g(x) ≈ g(a) + g′(a)(x − a) = g′(a)(x − a). So:

lim
x→a

f (x)
g(x)

≈ lim
x→a

f ′(a)(x − a)
g′(a)(x − a)

= lim
x→a

f ′(a)
g′(a)

=
f ′(a)
g′(a)

Unfortunately, we have ignored some
subtle difficulties, such as g(x) or g′(x)
possibly being 0 when x is close to, but
not equal to, a. Because of these issues,
a full-fledged proof of l’Hôpital’s Rule is
omitted.

Example 1. Determine lim
x→0

x2 + sin(5x)
3x

and lim
x→1

ln(x)
ex − e

.

Solution. We could evaluate the first limit without l’Hôpital’s Rule,
but let’s use it anyway. We can match the pattern of l’Hôpital’s Rule
by letting a = 0, f (x) = x2 + sin(5x) and g(x) = 3x. Then f (0) = 0,
g(0) = 0, and f and g are differentiable with f ′(x) = 2x + 5 cos(5x)
and g′(x) = 3, so:

lim
x→0

x2 + sin(5x)
3x

=
f ′(0)
g′(0)

=
2 · 0 + 5 cos(5 · 0)

3
=

5
3

For the second limit, let a = 1, f (x) = ln(x) and g(x) = ex − e. Then
f (1) = 0, g(1) = 0, f and g are differentiable for x near 1 (when x > 0),

and f ′(x) =
1
x

and g′(x) = ex. Then:

lim
x→1

ln(x)
ex − e

=
f ′(1)
g′(1)

=
1
1
e1 =

1
e

Here no simplification was possible, so we needed l’Hôpital’s Rule. ◀

Practice 1. Evaluate lim
x→0

1 − cos(5x)
3x

and lim
x→2

x2 + x − 6
x2 + 2x − 8

.

Strong Version of l’Hôpital’s Rule

We can strengthen L’Hôpital’s Rule to include cases when g′(a) = 0,
and the indeterminate form “ ∞

∞ ” when f and g increase without bound.

L’Hôpital’s Rule (Strong “ 0
0 ” and “ ∞

∞ ” Forms)

If f and g are differentiable on an open interval I con-
taining a, g′(x) ̸= 0 on I except possibly at a, and

lim
x→a

f (x)
g(x)

= “
0
0

” or “
∞
∞

”

then lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

if the limit on the right exists.

(Here “a” can represent a finite number or “∞.”)
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Example 2. Evaluate lim
x→∞

e7x

5x
.

Solution. As “x → ∞,” both e7x and 5x increase without bound, so
we have an “ ∞

∞ ” indeterminate form and can use the Strong Version of

l’Hôpital’s Rule: lim
x→∞

e7x

5x
= lim

x→∞

7e7x

5
= ∞. ◀

The limit of
f ′

g′
may also be an indeterminate form, in which case

we can apply l’Hôpital’s Rule again to the ratio
f ′

g′
. We can continue

using l’Hôpital’s Rule at each stage as long as we have an indeterminate
quotient.

Example 3. Compute lim
x→0

x3

x − sin(x)
.

Solution. As x → 0, f (x) = x3 → 0 and g(x) = x − sin(x) → 0 so:

lim
x→0

x3

x − sin(x)
= lim

x→0

3x2

1 − cos(x)
= lim

x→0

6x
sin(x)

= lim
x→0

6
cos(x)

= 6

where we have used l’Hôpital’s Rule three times in succession. (At each
stage, you should verify the conditions for l’Hôpital’s Rule hold.) ◀

Practice 2. Use l’Hôpital’s Rule to find lim
x→∞

x2 + ex

x3 + 8x
.

Which Function Grows Faster?

Sometimes we want to compare the asymptotic behavior of two systems
or functions for large values of x. L’Hôpital’s Rule can be useful in such
situations. For example, if we have two algorithms for sorting names,
and each algorithm takes longer and longer to sort larger collections
of names, we may want to know which algorithm will accomplish the
task more efficiently for really large collections of names.

Example 4. Algorithm A requires n · ln(n) steps to sort n names and
algorithm B requires n1.5 steps. Which algorithm will be better for
sorting very large collections of names?

Solution. We can compare the ratio of the number of steps each algo-

rithm requires,
n · ln(n)

n1.5 , and then take the limit of this ratio as n grows

arbitrarily large: lim
n→∞

n · ln(n)
n1.5 .

If this limit is infinite, we say that n · ln(n) “grows faster” than n1.5.
If the limit is 0, we say that n1.5 grows faster than n · ln(n).
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Because n · ln(n) and n1.5 both grow arbitrarily large when n becomes

large, we can simplify the ratio to
ln(n)
n0.5 and then use l’Hôpital’s Rule:

lim
n→∞

ln(n)
n0.5 = lim

n→∞

1
n

0.5n−0.5 = lim
n→∞

2√
n
= 0

We conclude that n1.5 grows faster than n · ln(n) so algorithm A requires
fewer steps for really large sorts. ◀

Practice 3. Algorithm A requires en operations to find the shortest path
connecting n towns, while algorithm B requires 100 · ln(n) operations
for the same task and algorithm C requires n5 operations. Which
algorithm is best for finding the shortest path connecting a very large
number of towns? The worst?

Other Indeterminate Forms

We call “ 0
0 ” an indeterminate form because knowing that f approaches

0 and g approaches 0 is not enough to determine the limit of f
g , even

if that limit exists. The ratio of a “small” number divided by a “small”
number can be almost anything as three simple “ 0

0 ” examples show:

lim
x→0

3x
x

= 3 while lim
x→0

x2

x
= 0 and lim

x→0

5x
x3 = ∞

Similarly, “ ∞
∞ ” is an indeterminate form because knowing that f and

g both grow arbitrarily large is not enough to determine the value of
the limit of f

g or even if the limit exists:

lim
x→∞

3x
x

= 3 while lim
x→∞

x2

x
= ∞ and lim

x→∞

5x
x3 = 0

In addition to the indeterminate quotient forms “ 0
0 ” and “ ∞

∞ ” there
are several other “indeterminate forms.” In each case, the resulting
limit depends not only on each function’s limit but also on how quickly
each function approaches its limit.

• Product: If f approaches 0 and g grows arbitrarily large, the product
f · g has the indeterminate form “0 · ∞.”

• Exponent: If f and g both approach 0, the function f g has the
indeterminate form “00.”

• Exponent: If f approaches 1 and g grows arbitrarily large, the
function f g has the indeterminate form “1∞.”

• Exponent: If f grows arbitrarily large and g approaches 0, the
function f g has the indeterminate form “∞0.”
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• Difference: If f and g both grow arbitrarily large, the function f − g
has the indeterminate form “∞ − ∞.”

Unfortunately, l’Hôpital’s Rule can only be used directly with an
indeterminate quotient ( 0

0 or “ ∞
∞ ”), but we can algebraically manipulate

these other forms into quotients and then apply l’Hôpital’s Rule.

Example 5. Evaluate lim
x→0+

x · ln(x).

Solution. This limit involves an indeterminate product (of the form
“0 · −∞”) but we need a quotient in order to apply l’Hôpital’s Rule. If
we rewrite the product x · ln(x) as a quotient:

lim
x→0+

x · ln(x) = lim
x→0+

ln(x)
1
x

= lim
x→0+

1
x
−1
x2

= lim
x→0+

−x = 0

results from applying the “ ∞
∞ ” version of l’Hôpital’s Rule. ◀

To use l’Hôpital’s Rule on a product f · g with indeterminate form

“0 · ∞,” first rewrite f · g as a quotient:
f
1
g

or
g
1
f

. Then apply

l’Hôpital’s Rule.

Example 6. Evaluate lim
x→0+

xx.

Solution. This limit involves the indeterminate form 00. We can con-
vert it to a product by recalling a property of exponential and logarith-
mic functions: for any positive number a, a = eln(a) so:

f g = eln( f g) = eg·ln( f )

Applying this to xx:

lim
x→0+

xx = lim
x→0+

eln(xx) = lim
x→0+

ex·ln(x)

This last limit involves the indeterminate product x · ln(x). From the
previous example we know that lim

x→0+
x · ln(x) = 0 so we can conclude

that:
lim

x→0+
xx = lim

x→0+
ex·ln(x) = elimx→0+ x·ln(x) = e0 = 1

because the function f (u) = eu is continuous everywhere. ◀

To use l’Hôpital’s Rule on an expression involving exponents, f g

with the indeterminate form “00,” “1∞” or “∞0,” first convert it to
an expression involving an indeterminate product by recognizing
that f g = eg·ln( f ) and then determining the limit of g · ln( f ). The
final result is elimit of g·ln( f ).
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Example 7. Evaluate lim
x→∞

(
1 +

a
x

)x
.

Solution. This expression has the form 1∞ so we first use logarithms
to convert the problem into a limit involving a product:

lim
x→∞

(
1 +

a
x

)x
= lim

x→∞
ex·ln(1+ a

x )

so now we need to compute lim
x→∞

x · ln
(

1 +
a
x

)
. This limit has the form

“∞ · 0” so we now convert the product to a quotient:

lim
x→∞

x · ln
(

1 +
a
x

)
= lim

x→∞

ln
(
1 + a

x
)

1
x

This last limit has the form “ 0
0 ” so we can finally apply l’Hôpital’s Rule:

lim
x→∞

ln
(
1 + a

x
)

1
x

= lim
x→∞

−a
x2

1+ a
x

−1
x2

= lim
x→∞

a
1 + a

x
=

a
1
= a

and conclude that:

lim
x→∞

(
1 +

a
x

)x
= lim

x→∞
ex·ln(1+ a

x ) = elimx→∞ x·ln(1+ a
x ) = ea

where we have again used the continuity of the function f (u) = eu. ◀

3.7 Problems

In Problems 1–15, evaluate each limit. Be sure to
justify any use of l’Hôpital’s Rule.

1. lim
x→1

x3 − 1
x2 − 1

2. lim
x→2

x4 − 16
x5 − 32

3. lim
x→0

ln(1 + 3x)
5x

4. lim
x→∞

ex

x3

5. lim
x→0

x · ex

1 − ex 6. lim
x→0

2x − 1
x

7. lim
x→∞

ln(x)
x

8. lim
x→∞

ln(x)√
x

9. lim
x→∞

ln(x)
xp (p > 0) 10. lim

x→0

e3x − e2x

4x

11. lim
x→0

1 − cos(3x)
x2 12. lim

x→0

1 − cos(2x)
x

13. lim
x→a

xm − am

xn − an 14. lim
x→0

cos(a + x)− cos(a)
x

15. lim
x→0

1 − cos(x)
x · cos(x)

16. Find a value for p so that lim
x→∞

3x
px + 7

= 2.

17. Find a value for p so that lim
x→0

epx − 1
3x

= 5.

18. The limit lim
x→∞

√
3x + 5√
2x − 1

has the indeterminate

form “ ∞
∞ .” Why doesn’t l’Hôpital’s Rule work

with this limit? (Hint: Apply l’Hôpital’s Rule
twice and see what happens.) Evaluate the limit
without using l’Hôpital’s Rule.

19. (a) Evaluate lim
x→∞

ex

x
, lim

x→∞

ex

x2 and lim
x→∞

ex

x5 .

(b) An algorithm is “exponential” if it requires
a · ebn steps (a, and b are positive constants).
An algorithm is “polynomial” if it requires
c · nd steps. Show that polynomial algorithms
require fewer steps than exponential ones for
large values of n.
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20. The problem lim
x→0

x2

3x2 + x
appeared on a test.

One student determined the limit was an indeter-
minate “ 0

0 ” form and applied l’Hôpital’s Rule to
get:

lim
x→0

x2

3x2 + x
= lim

x→0

2x
6x + 1

= lim
x→0

2
6
=

1
3

Another student also determined the limit was
an indeterminate “ 0

0 ” form and wrote:

lim
x→0

x2

3x2 + x
= lim

x→0

2x
6x + 1

=
0

0 + 1
= 0

Which student is correct? Why?

In Problems 21–30, evaluate each limit. Be sure to
justify any use of l’Hôpital’s Rule.

21. lim
x→0+

sin(x) · ln(x) 22. lim
x→∞

x3e−x

23. lim
x→0+

√
x · ln(x) 24. lim

x→0+
xsin(x)

25. lim
x→∞

(
1 − 3

x2

)x
26. lim

x→0
(1 − cos(3x))x

27. lim
x→0

(
1
x
− 1

sin(x)

)
28. lim

x→∞
[x − ln(x)]

29. lim
x→∞

(
x + 5

x

) 1
x

30. lim
x→∞

(
1 +

3
x

) 2
x

3.7 Practice Answers

1. Both numerator and denominator in the first limit are differentiable
and both equal 0 when x = 0, so we apply l’Hôpital’s Rule:

lim
x→0

1 − cos(5x)
3x

= lim
x→0

5 sin(5x)
3

=
0
3
= 0

Both numerator and denominator in the second limit are differen-
tiable and both equal 0 when x = 0, so we apply l’Hôpital’s Rule:

lim
x→2

x2 + x − 6
x2 + 2x − 8

= lim
x→2

2x + 1
2x + 2

=
5
6

2. Both numerator and denominator are differentiable and both become
arbitrarily large as x → ∞, so we apply l’Hôpital’s Rule:

lim
x→∞

x2 + ex

x3 + 8x
= lim

x→∞

2x + ex

3x2 + 8
= lim

x→∞

2 + ex

6x
= lim

x→∞

ex

6
= ∞ Note that we needed to apply l’Hôpital’s

Rule three times and that each stage in-
volved an “ ∞

∞ ” indeterminate form.

3. Comparing A with en operations to B with 100 · ln(n) operations we
can apply l’Hôpital’s Rule:

lim
n→∞

en

100 ln(n)
= lim

n→∞

en

1
n

= lim
n→∞

n · en

100
= ∞

to show that B requires fewer operations than A.

Comparing B with 100 ln(n) operations to C with n5 operations, we
again apply l’Hôpital’s Rule:

lim
n→∞

100 ln(n)
n5 = lim

n→∞

100
n

5n4 = lim
n→∞

20
n5 = 0
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to show that B requires fewer operations than C. So B requires the
fewest operations of the three algorithms.

Comparing A to C we must apply l’Hôpital’s Rule repeatedly:

lim
n→∞

en

n5 = lim
n→∞

en

5n4 = lim
n→∞

en

20n3 = lim
n→∞

en

60n2

= lim
n→∞

en

120n
= lim

n→∞

en

120
= ∞

So A requires more operations than C and thus A requires the most
operations of the three algorithms.
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