
4
The Integral

Previous chapters dealt with differential calculus. They started with
the “simple” geometrical idea of the slope of a tangent line to a curve,
developed it into a combination of theory about derivatives and their
properties, examined techniques for calculating derivatives, and applied
these concepts and techniques to real-life situations. This chapter
begins the development of integral calculus and starts with the “simple”
geometric idea of area — an idea that will spawn its own combination
of theory, techniques and applications.

One of the most important results in mathematics, the Fundamental
Theorem of Calculus, appears in this chapter. It unifies differential and
integral calculus into a single grand structure. Historically, this unifi-
cation marked the beginning of modern mathematics, and it provided
important tools for the growth and development of the sciences.

The chapter begins with a look at area, some geometric properties of
areas, and some applications. First we will examine ways of approx-
imating the areas of regions such as tree leaves bounded by curved
edges and the areas of regions bounded by graphs of functions. Then
we will develop ways to calculate the areas of some of these regions
exactly. Finally, we will explore the rich variety of uses of “areas.”

4.0 Area

The primary purpose of this introductory section is to help develop
your intuition about areas and your ability to reason using geometric
arguments about area. This type of reasoning will appear often in the
rest of this book and is very helpful for applying the ideas of calculus.

The basic shape we will use is the rectangle: the area of a rectangle is
(base) · (height). If the units for each side of the rectangle are “meters,”
then the area will have units (meters) · (meters) = “square meters”
= m2. The only other area formulas needed for this section are for
triangles (area = 1

2 b · h) and for circles (area = π · r2). In addition, we
will use (and assume to be true) three other familiar properties of area:
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• Addition Property: The total area of a region is the sum of the areas
of the non-overlapping pieces that comprise the region:

• Inclusion Property: If region B is inside region A (see margin), then
the area of region B is less than or equal to the area of region A.

• Location-Independence Property: The area of a region does not
depend on its location:

Example 1. Determine the area of the region shown below left.

Solution. We can easily break the region into two rectangles (shown
above right), with areas of 35 square inches and 3 square inches respec-
tively, so the area of the original region is 38 square inches. J

Practice 1. Determine the area of the trapezoidal region shown in the
margin by cutting it in two ways: (a) into a rectangle and triangle and
(b) into two triangles.

We can use our three area properties to deduce information about
areas that are difficult to calculate exactly. Let A be the region bounded

by the graph of f (x) =
1
x

, the x-axis, and the vertical lines x = 1 and
x = 3. Because the two rectangles in the margin figure sit inside region

A and do not overlap each other, the area of the rectangles,
1
2
+

1
3
=

5
6

,
is less than the area of region A.

Practice 2. Build two rectangles, each with base 1 unit, with boundaries
that extend outside the shaded region in the margin figure and use
their areas to make another valid statement about the area of region A.
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Practice 3. What can you say about the area of region A if we use
“inside” and “outside” rectangles each with base 1

2 unit?

Example 2. The figure below right includes 32 dark squares, each 1

centimeter on a side, and 31 lighter squares of the same size. We can be
sure that the area of the leaf below left is smaller than what number?

Solution. The area of the leaf is smaller than 32 + 31 = 63 cm2. J

Practice 4. We can be sure that the area of the leaf is at least how large?

Functions can be defined in terms of areas. For the constant function
f (t) = 2, define A(x) to be the area of the rectangular region (top
margin figure) bounded by the graph of f , the t-axis, and the vertical
lines at t = 1 and t = x; we can easily see that A(2) = 2 (shaded region
in the second margin figure). Similarly, A(3) = 4 and A(4) = 6. In
general, A(x) = (base)(height) = (x − 1)(2) = 2x − 2 for any x ≥ 1.
From the graph of y = A(x) (in the third margin figure) we can see
that A′(x) = 2 for every value of x > 1.

(The fact that A′(x) = f (x) in the preceding discussion is not a
coincidence, as we shall soon learn.)

Practice 5. For f (t) = 2, define B(x) to be the area of the region
bounded by the graph of f , the t-axis, and vertical lines at t = 0 and
t = x (see below left). Fill in the table below with the requested values
of B. How are the graphs of y = A(x) and y = B(x) related?

x B(x)

0
0.5
1
2

Sometimes it is useful to move regions around. The area of a paral-
lelogram is obvious if we move the triangular region from one side of
the parallelogram to fill the region on the other side, resulting in with
a rectangle (see margin).
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At first glance, it is difficult to estimate the total area of the shaded
regions shown below left:

but if we slide all of them into a single column (above right), then
becomes easy to determine that the shaded area is less than the area of
the enclosing rectangle = (base)(height) = (1)(2) = 2.

Practice 6. The total area of the shaded regions in the margin figure is
less than what number?

Some Applications of “Area”

One reason “areas” are so useful is that they can represent quantities
other than sizes of simple geometric shapes. For example, if the units
of the base of a rectangle are “hours” and the units of the height are
“miles

hour ,” then the units of the “area” of the rectangle are:

(hours) ·
(

miles
hour

)
= miles

a measure of distance. Similarly, if the base units are “pounds” and
the height units are “feet,” then the “area” units are “foot-pounds,” a
measure of work.

In the bottom margin figure, f (t) is the velocity of a car in “miles
per hour,” and t is the time in “hours.” So the shaded “area” will
be (base) · (height) = (3 hours) ·

(
20 miles

hour

)
= 60 miles, the distance

traveled by the car in the 3 hours from 1:00 p.m. until 4:00 p.m.

Distance as an “Area”
If f (t) is the (positive) forward velocity of an object at time t, then
the “area” between the graph of f and the t-axis and the vertical
lines at times t = a and t = b will equal the distance that the object
has moved forward between times a and b.

This “area as distance” concept can make some difficult distance
problems much easier.
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Example 3. A car starts from rest (velocity = 0) and steadily speeds
up so that 20 seconds later its speed is 88 feet per second (60 miles per
hour). How far did the car travel during those 20 seconds?

Solution. We could answer the question using the techniques of Chap-
ter 3 (try this). But if “steadily” means that the velocity increases
linearly, then it is easier to use the margin figure and the concept of
“area as distance.”

The “area” of the triangular region represents the distance traveled:

distance =
1
2
(base)(height) =

1
2
(20 sec)

(
88

ft
sec

)
= 880 ft

The car travels a total of 880 feet during those 20 seconds. J

Practice 7. A train initially traveling at 45 miles per hour (66 feet per
second) takes 60 seconds to decelerate to a complete stop. If the train
slowed down at a steady rate (the velocity decreased linearly), how
many feet did the train travel before coming to a stop?

Practice 8. You and a friend start off at noon and walk in the same
direction along the same path at the rates shown in the margin figure.

(a) Who is walking faster at 2:00 p.m.? Who is ahead at 2:00 p.m.?

(b) Who is walking faster at 3:00 p.m.? Who is ahead at 3:00 p.m.?

(c) When will you and your friend be together? (Answer in words.)

In the preceding Example and Practice problems, a function repre-
sented a rate of travel (in miles per hour, for instance) and the area
represented the total distance traveled. For functions representing other
rates, such as the production of a factory (bicycles per day) or the flow
of water in a river (gallons per minute) or traffic over a bridge (cars per
minute) or the spread of a disease (newly sick people per week), the
area will still represent the total amount of something.

“Area” as a Total Accumulation
If f (t) represents a positive rate (in units per time interval) at time
t, then the “area” between the graph of f and the t-axis and the
vertical lines at times t = a and t = b will be the total amount of
{something} that accumulates between times a and b (see margin).

For example, the figure at the top of the next page shows the flow
rate (in cubic feet per second) of water in the Skykomish River near
the town of Gold Bar, Washington. The area of the shaded region
represents the total volume (cubic feet) of water flowing past the town
during the month of October:
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total water = “area” = area of rectangle + area of triangle

≈
(

2000
ft3

sec

)
(30 days) +

1
2

(
1500

ft3

sec

)
(30 days)

=

(
2750

ft3

sec

)
(30 days) =

(
2750

ft3

sec

)
(2592000 sec)

≈ 7.128× 109 ft3

For comparison, the flow over Niagara Falls is about 2.12× 105 ft3

sec .

4.0 Problems

1. (a) Calculate the area of the shaded region:

(b) Calculate the area of the shaded region:

2. Calculate the area of the trapezoidal region in the
figure below left by breaking it into a triangle and
a rectangle.

3. Break the region shown above right into a trian-
gle and rectangle and verify that the total area of

the trapezoid is b ·
(

h + H
2

)
.
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4. (a) Calculate the sum of the rectangular areas in
the region shown below left.

(b) What can you say about the area of the shaded
region shown above right?

5. (a) Calculate the sum of the areas of the rectan-
gles shown below left.

(b) What can you say about the area of the shaded
region shown above right?

6. (a) Calculate the sum of the areas of the trape-
zoids shown below left.

(b) What can you say about the area of the shaded
region shown above right?

7. Consider the region bounded by the graph of
y = 2 + x3, the positive x-axis, the positive y-axis
and the line x = 2. Use two well-placed rectan-
gles to estimate the area of this region.

8. Consider the region bounded by the graph of
y = 9− 3x, the positive x-axis and the positive y-

axis. Use two well-placed trapezoids to estimate
the area of this region.

9. Let A(x) represent the area bounded by the graph
of the function shown below, the horizontal axis,
and vertical lines at t = 0 and t = x. Evaluate
A(x) for x = 1, 2, 3, 4 and 5.

10. Let B(x) represent the area bounded by the graph
of the function shown below, the horizontal axis,
and vertical lines at t = 0 and t = x. Evaluate
B(x) for x = 1, 2, 3, 4 and 5.

11. Let C(x) represent the area bounded by the graph
of the function shown below, the horizontal axis,
and vertical lines at t = 0 and t = x. Evaluate
C(x) for x = 1, 2 and 3, and use that information
to deduce a formula for C(x).
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12. Let A(x) represent the area bounded by the graph
of the function shown below, the horizontal axis,
and vertical lines at t = 0 and t = x. Evaluate
A(x) for x = 1, 2 and 3, and find a formula for
A(x).

13. The figure below shows the velocity of a car dur-
ing a 30-second time frame. How far did the car
travel between t = 0 to t = 30 seconds?

14. The figure below shows the velocity of a car dur-
ing a 30-second time frame. How far did the car
travel between t = 0 to t = 30 seconds?

15. The figure below shows the velocities of two cars.
From the time the brakes were applied:

(a) how long did it take each car to stop?

(b) which car traveled farther before stopping?

16. A speeder traveling 45 miles per hour (in a 25-
mph zone) passes a stopped police car, which
immediately takes off after the speeder. If the
police car speeds up steadily to 60 mph over a 10-
second interval and then travels at a constant 60

mph, how long — and how far — will it be before
the police car catches the speeder, who continued
traveling at 45 mph? (See figure below.)

17. Fill in the table with the units for “area” of a
rectangle with the given base and height units.

base height “area”

miles per second seconds
hours dollars per hour
square feet feet
kilowatts hours
houses people per house
meals meals
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4.0 Practice Answers

1. (a) 3(6) + 1
2 (4)(3) = 24 (b) 1

2 (3)(10) + 1
2 (6)(3) = 24

2. outside rectangular area = (1)(1) + (1)
(

1
2

)
= 1.5

3. Using rectangles with base = 1
2 :

inside area =
1
2

(
2
3
+

1
2
+

2
5
+

1
3

)
=

57
60
≈ 0.95

outside area =
1
2

(
1 +

2
3
+

1
2
+

2
5

)
=

72
60

= 1.2

so the area of the region is between 0.95 and 1.2.

4. The leaf’s area is larger than the area of the dark rectangles, 32 cm2.

5. y = B(x) = 2x is a line with slope 2, so it is parallel to the line
y = A(x) = 2x− 2; see margin for table.

x B(x)

0 0
0.5 1
1 2
2 4

6. Area < area of the rectangle enclosing the shifted regions = 5; see
margin figure.

7. Draw a graph of the velocity function:

and then use the concept of “area as distance”:

distance = area of shaded region

=
1
2
(base)(height)

=
1
2
(60 sec)

(
66

ft
sec

)
= 1980 feet

8. (a) At 2:00 p.m. both are walking at the same velocity. You are ahead.

(b) At 3:00 p.m. your friend is walking faster than you, but you are
still ahead. (The “area” under your velocity curve is larger than
the “area” under your friend’s.)

(c) You and your friend will be together on the trail when the “areas”
(distances) under the two velocity graphs are equal.
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4.1 Sigma Notation and Riemann Sums

One strategy for calculating the area of a region is to cut the region into
simple shapes, calculate the area of each simple shape, and then add
these smaller areas together to get the area of the whole region. When
you use this approach with many sub-regions, it will be useful to have
a notation for adding many values together: the sigma (Σ) notation.

summation sigma notation how to read it

12 + 22 + 32 + 42 + 52
5

∑
k=1

k2 the sum of k squared,
from k equals 1 to k equals 5

1
3
+

1
4
+

1
5
+

1
6
+

1
7

7

∑
k=3

1
k

the sum of 1 divided by k,
from k equals 3 to k equals 7

20 + 21 + 22 + 23 + 24 + 25
5

∑
j=0

2j the sum of 2 to the j-th power,
from j equals 0 to j equals 5

a2 + a3 + a4 + a5 + a6 + a7

7

∑
n=2

an the sum of a sub n,
from n equals 2 to n equals 7

The variable (typically i, j, k, m or n) used in the summation is called
the counter or index variable. The function to the right of the sigma is
called the summand, while the numbers below and above the sigma
are called the lower and upper limits of the summation.

Practice 1. Write the summation denoted by each of the following:

(a)
5

∑
k=1

k3 (b)
7

∑
j=2

(−1)j 1
j

(c)
4

∑
m=0

(2m + 1)

In practice, we frequently use sigma notation together with the
standard function notation:

3

∑
k=1

f (k + 2) = f (1 + 2) + f (2 + 2) + f (3 + 2)

= f (3) + f (4) + f (5)
4

∑
j=1

f (xj) = f (x1) + f (x2) + f (x3) + f (x4)

x f (x) g(x) h(x)

1 2 4 3
2 3 1 3
3 1 −2 3
4 0 3 3
5 3 5 3

Example 1. Use the table to evaluate
5

∑
k=2

2 · f (k) and
5

∑
j=3

[5 + f (j− 2)].

Solution. Writing out the sum and using the table values:

5

∑
k=2

2 · f (k) = 2 · f (2) + 2 · f (3) + 2 · f (4) + 2 · f (5)

= 2 · 3 + 2 · 1 + 2 · 0 + 2 · 3 = 14
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while:
5

∑
j=3

[5 + f (j− 2)] = [5 + f (3− 2)] + [5 + f (4− 2)] + [5 + f (5− 2)]

= [5 + f (1)] + [5 + f (2)] + [5 + f (3)]

= [5 + 2] + [5 + 3] + [5 + 1]

which adds up to 21. J

Practice 2. Use the values in the preceding margin table to evaluate:

(a)
5

∑
k=2

g(k) (b)
4

∑
j=1

h(j) (c)
5

∑
k=3

[g(k) + f (k− 1)]

Example 2. For f (x) = x2 + 1, evaluate
3

∑
k=0

f (k).

Solution. Writing out the sum and using the function values:

3

∑
k=0

f (k) = f (0) + f (1) + f (2) + f (3)

=
(

02 + 1
)
+
(

12 + 1
)
+
(

22 + 1
)
+
(

32 + 1
)

= 1 + 2 + 5 + 10

which adds up to 18. J

Practice 3. For g(x) =
1
x

, evaluate
4

∑
k=2

g(k) and
3

∑
k=1

g(k + 1).

The summand need not contain the index variable explicitly: you
can write a sum from k = 2 to k = 4 of the constant function f (k) = 5

as
4

∑
k=2

f (k) or
4

∑
k=2

5 = 5 + 5 + 5 = 3 · 5 = 15. Similarly:

7

∑
k=3

2 = 2 + 2 + 2 + 2 + 2 = 5 · 2 = 10

Because the sigma notation is simply a notation for addition, it pos-
sesses all of the familiar properties of addition.

Summation Properties:

Sum of Constants:
n

∑
k=1

C = C + C + C + · · ·+ C = n · C

Addition:
n

∑
k=1

(ak + bk) =
n

∑
k=1

ak +
n

∑
k=1

bk

Subtraction:
n

∑
k=1

(ak − bk) =
n

∑
k=1

ak −
n

∑
k=1

bk

Constant Multiple:
n

∑
k=1

C · ak = C ·
n

∑
k=1

ak

Problems 16 and 17 illustrate that sim-
ilar patterns for sums of products and
quotients are not valid.
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Sums of Areas of Rectangles

In Section 4.2, we will approximate areas under curves by building
rectangles as high as the curve, calculating the area of each rectangle,
and then adding the rectangular areas together.

Example 3. Evaluate the sum of the rectangular areas in the margin
figure, then write the sum using sigma notation.

Solution. The sum of the rectangular areas is equal to the sum of
(base) · (height) for each rectangle:

(1)
(

1
3

)
+ (1)

(
1
4

)
+ (1)

(
1
5

)
=

47
60

which we can rewrite as
5

∑
k=3

1
k

using sigma notation. J

Practice 4. Evaluate the sum of the rectangular areas in the margin
figure, then write the sum using sigma notation.

The bases of these rectangles need not be equal. For the rectangular
areas associated with f (x) = x2 in the margin figure:

rectangle base height area

1 3− 1 = 2 f (2) = 4 2 · 4 = 8
2 4− 3 = 1 f (4) = 16 1 · 16 = 16
3 6− 4 = 2 f (5) = 25 2 · 25 = 50

so the sum of the rectangular areas is 8 + 16 + 50 = 74.

Example 4. Write the sum of the areas of the rectangles in the margin
figure using sigma notation.

Solution. The area of each rectangle is (base) · (height):

rectangle base height area

1 x1 − x0 f (x1) (x1 − x0) · f (x1)

2 x2 − x1 f (x2) (x2 − x1) · f (x2)

3 x3 − x2 f (x3) (x3 − x2) · f (x3)

The area of the k-th rectangle is (xk − xk−1) · f (xk), so we can express

the total area of the three rectangles as
3

∑
k=1

(xk − xk−1) · f (xk). J

Practice 5. Write the sum of the areas of the shaded rectangles in the
margin figure using sigma notation.
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Area Under a Curve: Riemann Sums

Suppose we want to calculate the area between the graph of a positive
function f and the x-axis on the interval [a, b] (see below left).

One method to approximate the area involves building several rect-
angles with bases on the x-axis spanning the interval [a, b] and with
sides that reach up to the graph of f (above right). We then compute
the areas of the rectangles and add them up to get a number called
a Riemann sum of f on [a, b]. The area of the region formed by the
rectangles provides an approximation of the area we want to compute.

Example 5. Approximate the area shown in the margin between the
graph of f and the x-axis spanning the interval [2, 5] by summing the
areas of the rectangles shown in the lower margin figure.

Solution. The total area is (2)(3) + (1)(5) = 11 square units. J

In order to effectively describe this process, some new vocabulary is
helpful: a partition of an interval and the mesh of a partition.

A partition P of a closed interval [a, b] into n subintervals consists
of a set of n + 1 points {x0 = a, x1, x2, x3, . . . , xn−1, xn = b} listed in
increasing order, so that a = x0 < x1 < x2 < x3 < . . . < xn−1 < xn = b.
(A partition is merely a collection of points on the horizontal axis,
unrelated to the function f in any way.)

The points of the partition P divide [a, b] into n subintervals:

These intervals are [x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn] with lengths
∆x1 = x1 − x0, ∆x2 = x2 − x1, ∆x3 = x3 − x2, . . . , ∆xn = xn − xn−1.
The points xk of the partition P mark the locations of the vertical lines
for the sides of the rectangles, and the bases of the rectangles have
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lengths ∆xk for k = 1, 2, 3, . . . , n. The mesh or norm of a partition P is
the length of the longest of the subintervals [xk−1, xk] or, equivalently,
the maximum value of ∆xk for k = 1, 2, 3, . . . , n.

For example, the set P = {2, 3, 4.6, 5.1, 6} is a partition of the interval
[2, 6] (see margin) that divides the interval [2, 6] into four subintervals
with lengths ∆x1 = 1, ∆x2 = 1.6, ∆x3 = 0.5 and ∆x4 = 0.9, so the mesh
of this partition is 1.6, the maximum of the lengths of the subintervals.
(If the mesh of a partition is “small,” then the length of each one of the
subintervals is the same or smaller.)

Practice 6. P = {3, 3.8, 4.8, 5.3, 6.5, 7, 8} is a partition of what inter-
val? How many subintervals does it create? What is the mesh of the
partition? What are the values of x2 and ∆x2?

A function, a partition and a point chosen from each subinter-
val determine a Riemann sum. Suppose f is a positive function
on the interval [a, b] (so that f (x) > 0 when a ≤ x ≤ b), P =

{x0 = a, x1, x2, x3, . . . , xn−1, xn = b} is a partition of [a, b], and ck is an
x-value chosen from the k-th subinterval [xk−1, xk] (so xk−1 ≤ ck ≤ xk).
Then the area of the k-th rectangle is:

f (ck) · (xk − xk−1) = f (ck) · ∆xk

Definition:

A summation of the form
n

∑
k=1

f (ck) · ∆xk is called a Riemann sum

of f for the partition P and the chosen points {c1, c2, . . . , cn}.

This Riemann sum is the total of the areas of the rectangular regions
and provides an approximation of the area between the graph of f and
the x-axis on the interval [a, b].

Example 6. Find the Riemann sum for f (x) =
1
x

using the partition

{1, 4, 5} and the values c1 = 2 and c2 = 5 (see margin).

Solution. The two subintervals are [1, 4] and [4, 5], hence ∆x1 = 3 and
∆x2 = 1. So the Riemann sum for this partition is:

2

∑
k=1

f (ck) · ∆xk = f (c1) · ∆x1 + f (c2) · ∆x2

= f (2) · 3 + f (5) · 1 =
1
2
· 3 + 1

5
· 1 =

17
10

The value of the Riemann sum is 1.7. J

Practice 7. Calculate the Riemann sum for f (x) =
1
x

on the partition

{1, 4, 5} using the chosen values c1 = 3 and c2 = 4.
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Practice 8. What is the smallest value a Riemann sum for f (x) =
1
x

can have using the partition {1, 4, 5}? (You will need to choose values
for c1 and c2.) What is the largest value a Riemann sum can have for
this function and partition?

The table below shows the output of a computer program that calcu-

lated Riemann sums for the function f (x) =
1
x

with various numbers
of subintervals (denoted n) and different ways of choosing the points
ck in each subinterval.

n mesh ck = left edge = xk−1 ck = “random” point ck = right edge = xk

4 1.0 2.083333 1.473523 1.283333
8 0.5 1.828968 1.633204 1.428968

16 0.25 1.714406 1.577806 1.514406
40 0.10 1.650237 1.606364 1.570237

400 0.01 1.613446 1.609221 1.605446
4000 0.001 1.609838 1.609436 1.609038

As the mesh gets smaller, all of the Rie-
mann Sums seem to be approaching the
same value, approximately 1.609. (As we
shall soon see, these values are all ap-
proaching ln(5) ≈ 1.609437912.)

When the mesh of the partition is small (and the number of subintervals,
n, is large), it appears that all of the ways of choosing the ck locations
result in approximately the same value for the Riemann sum. For this
decreasing function, using the left endpoint of the subinterval always
resulted in a sum that was larger than the area approximated by the
sum. Choosing the right endpoint resulted in a value smaller than that
area. Why?

Example 7. Find the Riemann sum for the function f (x) = sin(x)
on the interval [0, π] using the partition

{
0,

π

4
,

π

2
, π
}

and the chosen

points c1 =
π

4
, c2 =

π

2
and c3 =

3π

4
.

Solution. The three subintervals (see margin) are
[
0,

π

4

]
,
[π

4
,

π

2

]
and[π

2
, π
]

so ∆x1 = π
4 , ∆x2 = π

4 and ∆x3 = π
2 . The Riemann sum for this

partition is:

3

∑
k=1

f (ck) · ∆xk = sin
(π

4

)
· π

4
+ sin

(π

2

)
· π

4
+ sin

(
3π

4

)
· π

2

=

√
2

2
· π

4
+ 1 · π

4
+

√
2

2
· π

2
=

(2 + 3
√

2)π
8

or approximately 2.45148. J

Practice 9. Find the Riemann sum for the function and partition in the

previous Example, but this time choose c1 = 0, c2 =
π

2
and c3 =

π

2
.
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Two Special Riemann Sums: Lower and Upper Sums

Two particular Riemann sums are of special interest because they repre-
sent the extreme possibilities for a given partition.

We need f to be continuous in order to
assure that it attains its minimum and
maximum values on any closed subinter-
val of the partition. If f is bounded — but
not necessarily continuous — we can gen-
eralize this definition by replacing f (mk)
with the greatest lower bound of all f (x)
on the interval and f (Mk) with the least
upper bound of all f (x) on the interval.

Definition:
If f is a positive, continuous function on [a, b] and P is a partition
of [a, b], let mk be the x-value in the k-th subinterval so that f (mk) is
the minimum value of f on that interval, and let Mk be the x-value
in the k-th subinterval so that f (Mk) is the maximum value of f on
that subinterval. Then:

LSP =
n

∑
k=1

f (mk) · ∆xk is the lower sum of f for P

USP =
n

∑
k=1

f (Mk) · ∆xk is the upper sum of f for P

Geometrically, a lower sum arises from building rectangles under
the graph of f (see first margin figure) and every lower sum is less than
or equal to the exact area A of the region bounded by the graph of f
and the x-axis on the interval [a, b]: LSP ≤ A for every partition P .

Likewise, an upper sum arises from building rectangles over the
graph of f (see second margin figure) and every upper sum is greater
than or equal to the exact area A of the region bounded by the graph of
f and the x-axis on the interval [a, b]: USP ≥ A for every partition P .

Together, the lower and upper sums provide bounds on the size of
the exact area: LSP ≤ A ≤ USP .

For any ck value in the k-th subinterval, f (mk) ≤ f (ck) ≤ f (Mk), so,

for any choice of the ck values, the Riemann sum RSP =
n

∑
k=1

f (ck) · ∆xk

satisfies the inequality:

n

∑
k=1

f (mk) · ∆xk ≤
n

∑
k=1

f (ck) · ∆xk ≤
n

∑
k=1

f (Mk) · ∆xk

or, equivalently, LSP ≤ RSP ≤ USP . The lower and upper sums
provide bounds on the size of all Riemann sums for a given partition.

The exact area A and every Riemann sum RSP for partition P and
any choice of points {ck} both lie between the lower sum and the upper
sum for P (see margin). Therefore, if the lower and upper sums are
close together, then the area and any Riemann sum for P (regardless of
how you choose the points ck) must also be close together. If we know
that the upper and lower sums for a partition P are within 0.001 units
of each other, then we can be sure that every Riemann sum for partition
P is within 0.001 units of the exact area A.
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Unfortunately, finding minimums and maximums for each subinter-
val of a partition can be a time-consuming (and tedious) task, so it is
usually not practical to determine lower and upper sums for “wiggly”
functions. If f is monotonic, however, then it is easy to find the values
for mk and Mk, and sometimes we can even explicitly calculate the
limits of the lower and upper sums.

For a monotonic, bounded function we can guarantee that a Rie-
mann sum is within a certain distance of the exact value of the area it
is approximating.

Recall from Section 3.3 that “monotonic”
means “always increasing or always de-
creasing” on the interval in question.

Theorem:
If f is a positive, monotonic, bounded function on [a, b]
then for any partition P and any Riemann sum for f using P ,

|RSP − A| ≤ USP − LSP ≤ | f (b)− f (a)| · (mesh of P)

In words, this string of inequalities says
that the distance between any Riemann
sum and the area being approximated is
no bigger than the difference between the
upper and lower Riemann sums for the
same partition, which in turn is no big-
ger than the distance between the values
of the function at the endpoints of the
interval times the mesh of the partition.

Proof. The Riemann sum and the exact area are both between the upper
and lower sums, so the distance between the Riemann sum and the exact
area is no bigger than the distance between the upper and lower sums.
If f is monotonically increasing, we can slide the areas representing the
difference of the upper and lower sums into a rectangle:

whose height equals f (b)− f (a) and whose base equals the mesh of P .
So the total difference of the upper and lower sums is smaller than the
area of that rectangle, [ f (b)− f (a)] · (mesh of P).

See Problem 56 for the monotonically de-
creasing case.

4.1 Problems

In Problems 1–6 , rewrite the sigma notation as a
summation and perform the indicated addition.

1.
4

∑
k=2

k2
2.

5

∑
j=1

(1 + j)

3.
3

∑
n=1

(1 + n)2
4.

5

∑
k=0

sin(πk)

5.
5

∑
j=0

cos(π j) 6.
3

∑
k=1

1
k
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In Problems 7–12, rewrite each summation using the
sigma notation. Do not evaluate the sums.

7. 3 + 4 + 5 + · · ·+ 93 + 94

8. 4 + 6 + 8 + · · ·+ 24

9. 9 + 16 + 25 + 36 + · · ·+ 144

10.
3
4
+

3
9
+

3
16

+ · · ·+ 3
100

11. 1 · 21 + 2 · 22 + 3 · 23 + · · ·+ 7 · 27

12. 3 + 6 + 9 + · · ·+ 30

In Problems 13–15, use this table:

k ak bk

1 1 2
2 2 2
3 3 2

to verify the equality for these values of ak and bk.

13.
3

∑
k=1

(ak + bk) =
3

∑
k=1

ak +
3

∑
k=1

bk

14.
3

∑
k=1

(ak − bk) =
3

∑
k=1

ak −
3

∑
k=1

bk

15.
3

∑
k=1

5ak = 5 ·
3

∑
k=1

ak

For Problems 16–18, use the values of ak and bk in
the table above to verify the inequality.

16.
3

∑
k=1

ak · bk 6=
(

3

∑
k=1

ak

)(
3

∑
k=1

bk

)

17.
3

∑
k=1

a2
k 6=

(
3

∑
k=1

ak

)2

18.
3

∑
k=1

ak
bk
6= ∑3

k=1 ak

∑3
k=1 bk

For 19–30, f (x) = x2, g(x) = 3x and h(x) =
2
x

.
Evaluate each sum.

19.
3

∑
k=0

f (k) 20.
3

∑
k=0

f (2k)

21.
3

∑
j=0

2 · f (j) 22.
3

∑
i=0

f (1 + i)

23.
3

∑
m=1

g(m) 24.
3

∑
k=1

g ( f (k))

25.
3

∑
j=1

g2(j) 26.
3

∑
k=1

k · g(k)

27.
4

∑
k=2

h(k) 28.
4

∑
i=1

h(3i)

29.
3

∑
n=1

f (n) · h(n) 30.
7

∑
k=1

g(k) · h(k)

In 31–36, write out each summation and simplify the
result. These are examples of “telescoping sums.”

31.
7

∑
k=1

[
k2 − (k− 1)2

]
32.

6

∑
k=1

[
k3 − (k− 1)3

]

33.
5

∑
k=1

[
1
k
− 1

k + 1

]
34.

4

∑
k=0

[
(k + 1)3 − k3

]

35.
8

∑
k=0

[√
k + 1−

√
k
]

36.
5

∑
k=1

[xk − xk−1]

In 37–43, (a) list the subintervals determined by the
partition P , (b) find the values of ∆xk, (c) find the

mesh of P and (d) calculate
n

∑
k=1

∆xk.

37. P = {2, 3, 4.5, 6, 7}
38. P = {3, 3.6, 4, 4.2, 5, 5.5, 6}
39. P = {−3,−1, 0, 1.5, 2}
40. P as shown below:

41. P as shown below:

42. P as shown below:
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43. For ∆xk = xk − xk−1, verify that:

n

∑
k=1

∆xk = length of the interval [a, b]

For 44–48, sketch a graph of f , draw vertical lines at
each point of the partition, evaluate each f (ck) and
sketch the corresponding rectangle, and calculate
and add up the areas of those rectangles.

44. f (x) = x + 1, P = {1, 2, 3, 4}
(a) c1 = 1, c2 = 3, c3 = 3

(b) c1 = 2, c2 = 2, c3 = 4

45. f (x) = 4− x2, P = {0, 1, 1.5, 2}
(a) c1 = 0, c2 = 1, c3 = 2

(b) c1 = 1, c2 = 1.5, c3 = 1.5

46. f (x) =
√

x, P = {0, 2, 5, 10}
(a) c1 = 1, c2 = 4, c3 = 9

(b) c1 = 0, c2 = 3, c3 = 7

47. f (x) = sin(x), P =
{

0, π
4 , π

2 , π
}

(a) c1 = 0, c2 =
π

4
, c3 =

π

2
(b) c1 =

π

4
, c2 =

π

2
, c3 = π

48. f (x) = 2x, P = {0, 1, 3}
(a) c1 = 0, c2 = 2

(b) c1 = 1, c2 = 3

For 49–52, sketch the function and find the smallest
possible value and the largest possible value for a
Riemann sum for the given function and partition.

49. f (x) = 1 + x2

(a) P = {1, 2, 4, 5}
(b) P = {1, 2, 3, 4, 5}
(c) P = {1, 1.5, 2, 3, 4, 5}

50. f (x) = 7− 2x

(a) P = {0, 2, 3}
(b) P = {0, 1, 2, 3}
(c) P = {0, .5, 1, 1.5, 2, 3}

51. f (x) = sin(x)

(a) P =
{

0, π
2 , π

}
(b) P =

{
0, π

4 , π
2 , π

}
(c) P =

{
0, π

4 , 3π
4 , π

}

52. f (x) = x2 − 2x + 3

(a) P = {0, 2, 3}
(b) P = {0, 1, 2, 3}
(c) P = {0, 0.5, 1, 2, 2.5, 3}

53. Suppose LSP = 7.362 and USP = 7.402 for a
positive function f and a partition P of [1, 5].

(a) You can be certain that every Riemann sum for
the partition P is within what distance of the
exact value of the area between the graph of f
and the x-axis on the interval [1, 5]?

(b) What if LSP = 7.372 and USP = 7.390?

54. Suppose you divide the interval [1, 4] into 100
equally wide subintervals and calculate a Rie-
mann sum for f (x) = 1 + x2 by randomly select-
ing a point ck in each subinterval.

(a) You can be certain that the value of the Rie-
mann sum is within what distance of the exact
value of the area between the graph of f and
the x-axis on interval [1, 4]?

(b) What if you use 200 equally wide subintervals?

55. If you divide [2, 4] into 50 equally wide subin-
tervals and calculate a Riemann sum for f (x) =
1 + x3 by randomly selecting a point ck in each
subinterval, then you can be certain that the Rie-
mann sum is within what distance of the exact
value of the area between f and the x-axis on the
interval [2, 4]?

56. If f is monotonic decreasing on [a, b] and you
divide [a, b] into n equally wide subintervals:

then you can be certain that the Riemann sum is
within what distance of the exact value of the area
between f and the x-axis on the interval [a, b]?
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Summing Powers of Consecutive Integers

Formulas for some commonly encountered summations can be useful
for explicitly evaluating certain special Riemann sums.

The formulas below are included here for
your reference. They will not be used
in the following sections, except for a
handful of exercises in Section 4.2. The summation formula for the first n positive integers is relatively

well known, has several easy but clever proofs, and even has an inter-
esting story behind it.

1 + 2 + 3 + · · ·+ (n− 1) + n =
n

∑
k=1

k =
n(n + 1)

2

Proof. Let S = 1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) + n, which we can
also write as S = n + (n− 1) + (n− 2) + · · ·+ 3 + 2 + 1. Adding these
two representations of S together:

S = 1 + 2 + 3 + · · · + (n− 2) + (n− 1) + n
+ S = n + (n− 1) + (n− 2) + · · · + 3 + 2 + 1

2S = (n + 1) + (n + 1) + (n + 1) + · · · + (n + 1) + (n + 1) + (n + 1)

So 2S = n · (n + 1)⇒ S =
n(n + 1)

2
, the desired formula.

Karl Friedrich Gauss (1777–1855), a Ger-
man mathematician sometimes called the
“prince of mathematics.”

Gauss supposedly discovered this formula for himself at the age
of five when his teacher, planning to keep the class busy for a while,
asked the students to add up the integers from 1 to 100. Gauss thought
a few minutes, wrote his answer on his slate, and turned it in, then sat
smugly while his classmates struggled with the problem.

57. Find the sum of the first 100 positive integers in two ways: (a) using
Gauss’ formula, and (b) using Gauss’ method (from the proof).

58. Find the sum of the first 10 odd integers. (Each odd integer can be
written in the form 2k− 1 for k = 1, 2, 3, . . . .)

59. Find the sum of the integers from 10 to 20.

Formulas for other integer powers of the first n integers are also known:

n

∑
k=1

k =
1
2

n2 +
1
2

n =
n(n + 1)

2
n

∑
k=1

k2 =
1
3

n3 +
1
2

n2 +
1
6

n =
n(n + 1)(2n + 1)

6
n

∑
k=1

k3 =
1
4

n4 +
1
2

n3 +
1
4

n2 =

(
n(n + 1)

2

)2

n

∑
k=1

k4 =
1
5

n5 +
1
2

n4 +
1
3

n3 − 1
30

n =
n(n + 1)(2n + 1)(3n2 + 3n− 1)

30
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In Problems 60–62, use the properties of summation and the formulas
for powers given above to evaluate each sum.

60.
10

∑
k=1

(
3 + 2k + k2

)
61.

10

∑
k=1

k ·
(

k2 + 1
)

62.
10

∑
k=1

k2 · (k− 3)

4.1 Practice Answers

1. (a)
5

∑
k=1

k3 = 1 + 8 + 27 + 64 + 125

(b)
7

∑
j=2

(−1)j · 1
j
=

1
2
− 1

3
+

1
4
− 1

5
+

1
6
− 1

7

(c)
4

∑
m=0

(2m + 1) = 1 + 3 + 5 + 7 + 9

2. (a)
5

∑
k=2

g(k) = g(2) + g(3) + g(4) + g(5) = 1 + (−2) + 3 + 5 = 7

(b)
4

∑
j=1

h(j) = h(1) + h(2) + h(3) + h(4) = 3 + 3 + 3 + 3 = 12

(c)
5

∑
k=3

(g(k) + f (k− 1)) = (g(3) + f (2))+ (g(4) + f (3))+ (g(5) + f (4))

= (−2 + 3) + (3 + 1) + (5 + 0) = 10

3.
4

∑
k=2

g(k) = g(2) + g(3) + g(4) =
1
2
+

1
3
+

1
4
=

13
12

3

∑
k=1

g(k + 1) = g(2) + g(3) + g(4) =
1
2
+

1
3
+

1
4
=

13
12

4. Rectangular areas = 1 +
1
2
+

1
3
+

1
4
=

25
12

=
4

∑
j=1

1
j

5. f (x0) · (x1 − x0) + f (x1) · (x2 − x1) + f (x2) · (x3 − x2) =
3

∑
j=1

f
(
xj−1

)
·
(
xj − xj−1

)
or

2

∑
k=0

f (xk) · (xk+1 − xk)

6. Interval is [3, 8]; six subintervals; mesh = 1.2; x2 = 4.8; ∆x2 = x2 − x1 = 4.8− 3.8 = 1.

7. RS = (3)
(

1
3

)
+ (1)

(
1
4

)
= 1.25

8. smallest RS = (3)
(

1
4

)
+ (1)

(
1
5

)
= 0.95

largest RS = (3)(1) + (1)
(

1
4

)
= 3.25

9. RS = (0)
(

π
4
)
+ (1)

(
π
4
)
+ (1)

(
π
2
)
≈ 2.356
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4.2 The Definite Integral

Each particular Riemann sum depends on several things: the function f ,
the interval [a, b], the partition P of that interval, and the chosen values
ck from each subinterval of that partition. Fortunately — for most of the
functions needed for applications — as the approximating rectangles
get thinner (and as the meshes of the partitions P approach 0 and the
number of subintervals n in those partitions approaches ∞) the values
of the Riemann sums approach the same number, independent of the
particular partitions P and the chosen points ck in the subintervals of
those partitions.

This limit of the Riemann sums will become the next big topic in
calculus: the definite integral. Integrals arise throughout the rest of this
book and in applications in almost every field that uses mathematics.

Here we use the notation ‖P‖ to mean
“the mesh of P .”

The dx is a differential (see Section 3.6),
the limit of the discrete quantity ∆x in
the Riemann sum.

Definition of the Definite Integral:

If lim
‖P‖→0

(
n

∑
k=1

f (ck) · ∆xk

)
equals a finite number I, where each

P is a partition of the interval [a, b], then we say f is integrable on
the interval [a, b] and call the number I the definite integral of f on

[a, b] and write it as
∫ b

a
f (x) dx.

We read the symbol
∫ b

a
f (x) dx as “the integral from a to b of ‘eff’

of x ‘dee’ x” or “the integral from a to b of f (x) with respect to x.”
Furthermore, we call f (x) the integrand, a the lower endpoint of inte-
gration and b the upper endpoint of integration. (We will sometimes
also call a and b the upper and lower limits of integration.)

Example 1. Describe the area between the graph of f (x) =
1
x

, the
x-axis, and the vertical lines at x = 1 and x = 5 as a limit of Riemann
sums and as a definite integral.

Solution. Here f (x) =
1
x

, a = 1 and b = 5, so:

area = lim
‖P‖→0

(
n

∑
k=1

1
ck
· ∆xk

)
=
∫ 5

1

1
x

dx

which, according to estimations made in Section 4.1, is approximately
equal to 1.609. J

You may have noticed that we did not pre-
cisely define what lim

‖P‖→0
means or how

to compute this limit. Providing a defi-
nition turns out to be more complicated
than the limits we have encountered so
far, and in practice we will rarely need to
compute such a limit, so a formal defini-
tion is left to more advanced textbooks. Practice 1. Describe the area between the graph of f (x) = sin(x), the

x-axis, and the vertical lines at x = 0 and x = π as a limit of Riemann
sums and as a definite integral.
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Example 2. Using the concept of area, determine the values of:

(a) lim
‖P‖→0

(
n

∑
k=1

(1 + ck) · ∆xk

)
on the interval [1, 3]

(b)
∫ 4

0
(5− x) dx

(c)
∫ 1

−1

√
1− x2 dx

Solution. (a) The limit of the Riemann sums represents the area be-
tween the graph of f (x) = 1 + x, the x-axis, and the vertical lines at
x = 1 and x = 3 (see margin); this area equals 6 square units.

(b) The definite integral represents the area between f (x) = 5− x, the
x-axis and the vertical lines at x = 0 and x = 4, which is a trapezoid
with area 12 square units.

(c) The definite integral represents the area of the upper half of the
circle x2 + y2 = 1, which has radius 1 and center at (0, 0). The area

of this semicircle is
1
2
· πr2 =

1
2
· π · 12 =

π

2
. J

Practice 2. Using the concept of area, determine the values of:

(a) lim
‖P‖→0

(
n

∑
k=1

(2ck) · ∆xk

)
on the interval [1, 3] (b)

∫ 8

3
4 dx

Example 3. Represent each limit of Riemann sums as a definite integral.

(a) lim
‖P‖→0

(
n

∑
k=1

(3 + ck)∆xk

)
on [1, 4] (b) lim

‖P‖→0

(
n

∑
k=1

√
ck ∆xk

)
on [0, 9]

Solution. (a)
∫ 4

1
(3 + x) dx (b)

∫ 9

0

√
x dx J

Example 4. Represent each shaded area in the margin figure as a
definite integral. (Do not attempt to evaluate the definite integral, just
translate the picture into symbols.)

Solution. (a)
∫ 2

−2

(
4− x2

)
dx (b)

∫ π

0
sin(x) dx J

The value of a definite integral
∫ b

a
f (x) dx depends only on the

function f being integrated and on the interval [a, b]. Replacing the

variable x that appears in
∫ b

a
f (x) dx, sometimes called a “dummy

variable,” does not change the value of the integral. The following
definite integrals each represent the integral of the function f on the
interval [a, b], and they are all equal:∫ b

a
f (x) dx =

∫ b

a
f (t) dt =

∫ b

a
f (u) du =

∫ b

a
f (w) dw
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Definite Integrals of Negative Functions

A definite integral is a limit of Riemann sums, and you can form
Riemann sums using any integrand function f , positive or negative
(or both), continuous or discontinuous. The definite integral of an
integrable function will still have a geometric meaning even if the
function is sometimes (or always) negative, and definite integrals of
negative functions also have meaningful interpretations in applications.

Example 5. Find the definite integral of f (x) = −2 on [1, 4].

Solution. Writing a Riemann sum for f (x) = −2 on the interval [1, 4]:

n

∑
k=1

f (ck) · ∆xk =
n

∑
k=1

(−2) · ∆xk = −2 ·
n

∑
k=1

∆xk = −2 (3) = −6

for every partition P and every choice of values for ck so:∫ 4

1
−2 dx = lim

‖P‖→0

(
n

∑
k=1

(−2) · ∆xk

)
= lim
‖P‖→0

−6 = −6

The area of the region in in the margin figure is 6 units, but because
the region is below the x-axis, the value of the integral is −6. J

If the graph of f (x) is below the x-axis for a ≤ x ≤ b ( f is negative)

then
∫ b

a
f (x) dx is −1 times the area of the region below the x-axis and

above the graph of f (x) between x = a and x = b.
If f (t) represents the rate of population change (people per year)

for a town, then negative values of f for a given time interval would
indicate that the population of the town was getting smaller, and the
definite integral (now a negative number) would represent the change
in the population — a decrease — during that time interval.

Example 6. In 1980 there were 12,000 ducks nesting around a lake. The
rate of population change is shown in the margin. Write a definite
integral to represent the total change in the duck population between
1980 and 1990, then estimate the population in 1990.

Solution. The total change in population is given by
∫ 1990

1980
f (t) dt and

this definite integral is equal to −1 times the area of the rectangle in
the margin figure:

−200
ducks
year

· 10 years = −2000 ducks

so:

[1990 population] = [1980 population] + [change from 1980 to 1990]

= 12000 + (−2000) = 10000

Approximately 10,000 ducks were nesting around the lake in 1990. J
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If f (t) represents the velocity of a car (in miles per hour) moving
in the positive direction along a straight line at time t, then negative
values of f indicate that the car was travelling in the negative direction
(that is, backwards). The definite integral of f (the integral will be a
negative number) represents the change in position of the car during
the time interval: how far the car travelled in the negative direction.

Practice 3. A bug starts at the location x = 12 on the x-axis at 1:00 p.m.
and walks along the axis with the velocity shown in the margin figure.
How far does the bug travel between 1:00 p.m. and 3:00 p.m.? Where is
the bug at 3:00 p.m.?

Frequently an integrand function will be positive some of the time
and negative some of the time. If f represents a rate of population
increase, then the integral of the positive parts of f will give the increase
in population and the integral of the negative parts of f will give the
decrease in population. Altogether, the integral of f over the entire
time interval will give the total (net) change in the population.

Geometrically, we can now interpret a definite integral as a difference
of areas of the region(s) between the graph of f and the horizontal axis:∫ b

a
f (x) dx = [area above x-axis]− [area below x-axis]

Example 7. Use the margin figure to calculate
∫ 2

0
f (x) dx,

∫ 4

2
f (x) dx,∫ 5

4
f (x) dx and

∫ 5

0
f (x) dx.

Solution. Using the areas indicated in the figure,
∫ 2

0
f (x) dx = 2,∫ 4

2
f (x) dx = −5 and

∫ 5

4
f (x) dx = 2, while

∫ 5

0
f (x) dx = [area above x-axis]− [area below x-axis]

= [2 + 2]− [5] = −1

where we added the areas of the regions above the x-axis and subtracted
the area of the region below the x-axis. J

Practice 4. Use geometric reasoning to evaluate
∫ 2π

0
sin(x) dx.

If f represents a velocity, then integrals on the intervals where f is
positive measure distances moved in the forward direction and integrals
on the intervals where f is negative measure distances moved in the
backward direction. The integral over the whole time interval gives the
total (net) change in position: the distance moved forward minus the
distance moved backward.
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Practice 5. A car travels west with the velocity shown in the margin.

(a) How far does the car travel between noon and 6:00 p.m.?

(b) At 6:00 p.m., where is the car relative to its position at noon?

Units for the Definite Integral

We have already seen that the “area” under a graph can represent
quantities whose units are not the usual geometric units of square
meters or square feet. For example, if x measures time in “seconds”
and f (x) gives a velocity with units “feet per second,” then ∆x has the
units “seconds” and f (x) · ∆x has units:(

feet
second

)
(seconds) = feet

which is a measure of distance. Because each Riemann sum ∑ f (x) ·∆x
is a sum of “feet” and the definite integral is a limit of these Riemann
sums, the definite integral has the same units, “feet.”

If the units of f (x) are “square feet” and the units of x are “feet,”

then
∫ b

a
f (x) dx is a number with the units (feet2) · (feet) = feet3, or

cubic feet, a measure of volume. If f (x) represents a force in pounds

and x is a distance in feet, then
∫ b

a
f (x) dx is a number with the units

foot-pounds, a measure of work.

In general, the units for
∫ b

a
f (x) dx are (units for f (x)) · (units for x).

A quick check of the units when computing a definite integral can help
avoid errors when solving an applied problem.

4.2 Problems

In Problems 1–4 , rewrite each limit of Riemann
sums as a definite integral.

1. lim
‖P‖→0

(
n

∑
k=1

(2 + 3ck) · ∆xk

)
on [0, 4]

2. lim
‖P‖→0

(
n

∑
k=1

(ck)
3 · ∆xk

)
on [0, 11]

3. lim
‖P‖→0

(
n

∑
k=1

cos(5ck) · ∆xk

)
on [2, 5]

4. lim
‖P‖→0

(
n

∑
k=1

√
ck · ∆xk

)
on [1, 4]

In Problems 5–10, represent the area of each
bounded region as a definite integral. (Do not at-
tempt to evaluate the integral, just translate the area
into an integral.)

5. The region bounded by y = x3, the x-axis, and
the lines x = 1 and x = 5.

6. The region bounded by y =
√

x, the x-axis and
the line x = 9.

7. The region bounded by y = x · sin(x), the x-axis,
and the lines x = 1

2 and x = 2.
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8. The shaded region shown below:

9. The shaded region shown below:

10. The shaded region shown above for 2 ≤ x ≤ 3.

In Problems 11–15, represent the area of each
bounded region as a definite integral, then use geom-
etry to determine the value of that definite integral.

11. The region bounded by y = 2x, the x-axis, and
the lines x = 1 and x = 3.

12. The region bounded by y = 4− 2x, the x-axis and
the y-axis.

13. The region bounded by y = |x|, the x-axis and
the line x = −1.

14. The shaded region shown below left.

15. The shaded region shown above right.

16. Evaluate each integral using the figure below
showing the graph of f and various areas.

(a)
∫ 5

0
f (x) dx (b)

∫ 5

3
f (x) dx (c)

∫ 7

5
f (x) dx

(d)
∫ 5

0
| f (x)| dx (e)

∫ 7

3
f (x) dx

17. Evaluate each integral using the figure below
showing the graph of g and various areas.

(a)
∫ 3

1
g(x) dx (b)

∫ 4

3
g(x) dx (c)

∫ 8

4
g(x) dx

(d)
∫ 8

1
g(x) dx (e)

∫ 8

3
|g(x)| dx

18. Evaluate each integral using the figure below
showing the graph of h.

(a)
∫ 1

−1
h(x) dx (b)

∫ 6

4
h(x) dx (c)

∫ 6

−2
h(x) dx

(d)
∫ 4

−2
h(x) dx (e)

∫ 4

−2
|h(x)| dx
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For Problems 19–20, the figure shows your velocity
(in feet per minute) along a straight path. (a) Sketch
a graph of your location. (b) How many feet did
you walk in 8 minutes? (c) Where, relative to your
starting location, are you after 8 minutes?

19. See figure below left.

20. See figure above right.

Problems 21–27 give the units for x and f (x). Spec-

ify the units of the definite integral
∫ b

a
f (x) dx.

21. x is time in “seconds”; f (x) is velocity in “meters
per second”

22. x is time in “hours”; f (x) is a flow rate in “gallons
per hour”

23. x a position in “feet”; f (x) area in “square feet”

24. x is a time in “days”; f (x) is a temperature in
“degrees Celsius”

25. x a height in “meters”; f (x) force in “grams”

26. x is a position in “inches”; f (x) is a density in
“pounds per inch”

27. x is a time in “seconds”; f (x) is an acceleration
in “feet per second per second”

(
ft

sec2

)
The remaining problems use the summation formulas given at the end
of Section 4.1, as demonstrated in the following Example.

Example 8. For f (x) = x2, divide the interval [0, 2] into n equally wide
subintervals, evaluate the lower sum, and compute the limit of that
lower sum as n→ ∞.

Solution. The width of the interval is b− a = 2− 0 = 2 so each of the

n subintervals should have width ∆x =
b− a

n
=

2
n

. The endpoints of

the k-th interval in the partition are therefore (k− 1) · 2
n and k · 2

n for
k = 1, 2, . . . , n.

Because f (x) = x2 is increasing on [0, 2] the minimum value of
the function on each subinterval occurs at the left endpoint of the
subinterval, hence we need to choose ck = (k− 1) · 2

n . So:

LS =
n

∑
k=1

f (ck) · ∆xk =
n

∑
k=1

(
(k− 1) · 2

n

)2
· 2

n
=

8
n3 ·

n

∑
k=1

(k− 1)2

=
8
n3 ·

n

∑
k=1

(
k2 − 2k + 1

)
=

8
n3

[
n

∑
k=1

k2 − 2
n

∑
k=1

k +
n

∑
k=1

1

]

=
8
n3

[
n(n + 1)(2n + 1)

6
− 2 · n(n + 1)

2
+ n

]
=

8
n3

[
2n3 − 3n2 + n

6

]
=

8
6

[
2− 3

n
+

1
n2

]

As n→ ∞, LS→ 8
6
(2) =

8
3

so we can be certain that
∫ 2

0
x2 dx ≥ 8

3
. J
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Practice 6. Redo Example 6 but find the upper Riemann sum for n
equally wide partition intervals and show that the limit of these upper

sums, as n→ ∞, is
8
3

.

From the previous Example and Practice problem, we know that

8
3
≤
∫ 2

0
x2 dx ≤ 8

3

so we can conclude that
∫ 2

0
x2 =

8
3

. We will discover a much easier

method for evaluating this integral in Section 4.4.

28. For f (x) = 3 + x, partition the interval [0, 2] into n equally wide
subintervals of length ∆x = 2

n .

(a) Compute the lower sum for this function and partition, and calcu-
late the limit of that lower sum as n→ ∞.

(b) Compute the upper sum for this function and partition and find
the limit of the upper sum as n→ ∞.

29. For f (x) = x3, partition the interval [0, 2] into n equally wide subin-
tervals of length ∆x = 2

n .

(a) Compute the lower sum for this function and partition, and calcu-
late the limit of that lower sum as n→ ∞.

(b) Compute the upper sum for this function and partition and find
the limit of the upper sum as n→ ∞.

30. For f (x) =
√

x, partition the interval [0, 9] into n subintervals by

taking xk =
9
n2 · k

2 for k = 1, 2, . . . , n.

(a) Choose ck = xk for each subinterval and compute the upper sum
for this function and partition, then calculate the limit of that
upper sum as n→ ∞.

(b) Compute the lower sum for this function and partition and find
the limit of the lower sum as n→ ∞.
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4.2 Practice Answers

1. area = lim
‖P‖→0

(
n

∑
k=1

sin (ck) · ∆xk

)
=
∫ π

0
sin(x) dx

2. lim
‖P‖→0

(
n

∑
k=1

(2ck) · ∆xk

)
= area of trapezoid in margin = 8∫ 8

3
4 dx = area of rectangle in margin = 20

3. (a) 12.5 feet forward and 2.5 feet backward = 15 feet total

(b) The bug ends up 10 feet forward of its starting position at x = 12,
so the bug’s final location is at x = 22.

4. Between x = 0 and x = 2π, the graph of y = sin(x) has the same
area above the x-axis as below the x-axis so the two areas cancel and

the definite integral is 0:
∫ 2π

0
sin(x) dx = 0.

5. (a) 20 miles west (from noon to 2:00 p.m.) plus 60 miles east (from
2:00 p.m. to 6:00 p.m.) yields a total travel distance of 80 miles.
(At 4:00 p.m. the driver is back at the starting position after
driving 40 miles: 20 miles west and then 20 miles east.)

(b) The car is 40 miles east of the starting location. (East is the
“negative” of west.)

6. ∆x =
2− 0

n
=

2
n

, Mk =
2
n · k so f (Mk) =

( 2
n · k

)2
= 4

n2 · k2. Then:

US =
n

∑
k=1

f (Mk) · ∆x =
n

∑
k=1

4
n2 · k

2 · 2
n

=
8
n3

n

∑
k=1

k2 =
8
n3

[
1
3

n3 +
1
2

n2 +
1
6

n
]
=

8
3
+

4
n
+

4
3n2

so the limit of these upper sums as n→ ∞ is
8
3

.
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4.3 Properties of the Definite Integral

We have defined definite integrals as limits of Riemann sums, which
can often be interpreted as “areas” of geometric regions. These two
powerful concepts of the definite integral can help us understand
integrals and use them in a variety of applications.

This section continues to emphasize this dual view of definite in-
tegrals and presents several properties of definite integrals. We will
justify these properties using the properties of summations and the
definition of a definite integral as a Riemann sum, but they also have
natural interpretations as properties of areas of regions.

We will then use these properties to help understand functions that
are defined by integrals, and later to help calculate the values of definite
integrals.

Properties of the Definite Integral

As you read each statement about definite integrals, draw a sketch
or examine the accompanying figure to interpret the property as a
statement about areas. ∫ a

a
f (x) dx = 0

This property says that the definite integral of a function over an
interval consisting of a single point must be 0. Geometrically, we can
see that the area under the graph of a a function above a single point
should be 0 because the “width” of a point is 0. In terms of Riemann
sums, we can’t partition a single point, so instead we must define the
value of any definite integral over a non-existent “interval” to be 0.

∫ a

b
f (x) dx = −

∫ b

a
f (x) dx

In words, this property says that if we reverse the limits of integration,
we must multiply the value of the definite integral by −1.

Geometrically, if a < b then the x-values in the first integral are
moving “backwards” from x = b to x = a, so it might seem reasonable
that we should get a negative answer.

In terms of Riemann sums, if we move from right to left, each ∆xk in
any partition P will be negative:

n

∑
k=1

f (ck) · ∆xk =
n

∑
k=1

f (ck) · (− |∆xk|) = −1 ·
n

∑
k=1

f (ck) · |∆xk|

resulting in −1 times the Riemann sum we would use for
∫ b

a
f (x) dx.

Our definition of a Riemann sum only al-
lows each ∆xk to be positive, however, so
we can simply treat this integral property
as another definition.
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∫ b

a
k dx = k (b− a) (k is any constant)

Thinking geometrically, if k > 0 (see margin), then
∫ b

a
k dx represents

the area of a rectangle with base b− a and height k, so:∫ b

a
k dx = (height) · (base) = k · (b− a)

Alternatively, for any P = {x0 = a, x1, x2, x3, . . . , xn−1, xn = b} that par-
titions the interval [a, b], and every choice of points cj from the subin-
tervals of that partition, the Riemann sum is:

n

∑
j=1

f
(
cj
)
· ∆xj =

n

∑
j=1

k · ∆xj = k
n

∑
j=1

∆xj = k · (b− a)

Because every Riemann sum equals k · (b− a), the limit of those sums,
as ‖P‖ → 0, must also be k · (b− a).

Here we use the fact that the sum of the
lengths of the subinterval of any partition
of the interval [a, b] is equal to the width
of [a, b], which is b− a.

∫ b

a
k · f (x) dx = k ·

∫ b

a
f (x) dx (k is any constant)

In words, this property says that multiplying an integrand by a
constant k has the same result as multiplying the value of the definite
integral by that constant.

Geometrically, multiplying a function by a positive constant k stretches
the graph of y = f (x) by a factor of k in the vertical direction, which
should multiply the area of the region between that graph and the
x-axis by the same factor.

Thinking in terms of Riemann sums:

n

∑
j=1

k · f
(
cj
)
· ∆xj = k ·

n

∑
j=1

f
(
cj
)
· ∆xj

so the limit of the sum on the left over all possible partitions P , as

‖P‖ → 0, is
∫ b

a
k · f (x) dx, while the corresponding limit of the sums

on the right yields k ·
∫ b

a
f (x) dx.

∫ b

a
f (x) dx +

∫ c

b
f (x) dx =

∫ c

a
f (x) dx

This property is most easily understood (and believed) in terms of a
picture (see margin). We can also justify this property using Riemann
sums by restricting our partitions to include the point x = b between
x = a and x = c and then splitting that partition into two sub-partitions
that partition [a, b] and [b, c], respectively.

This property remains true, however, even when b ≥ c or b ≤ a.
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Properties of Definite Integrals of Combinations of Functions

The next two properties relate the values of integrals of sums and
differences of functions to the sums and differences of integrals of the
individual functions. You will find these properties very useful when
computing integrals of functions that involve the sum or difference
of several terms (such as a polynomial): you can integrate each term
and then add or subtract the individual results to get the answer. Both
properties have natural interpretations as statements about areas.

∫ b

a
[ f (x) + g(x)] dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx In words, this says “the integral of a sum

is the sum of the integrals.”

The following graph supplies a geometrical justification:

Using Riemann sums, we can write:

n

∑
j=1

[
f
(
cj
)
+ g

(
cj
)]
· ∆xj =

n

∑
j=1

f
(
cj
)
· ∆xj +

n

∑
j=1

g
(
cj
)
· ∆xj

and then take the limit on each side as ‖P‖ → 0.

∫ b

a
[ f (x)− g(x)] dx =

∫ b

a
f (x) dx −

∫ b

a
g(x) dx In words, this says “the integral of a dif-

ference is the difference of the integrals.”

The justification for this difference property is quite similar to the
justification of the sum property. (Or we can combine the sum property
with the constant-multiple property, setting k = −1.)

Practice 1. Given that
∫ 4

1
f (x) dx = 7 and that

∫ 4

1
g(x) dx = 3, evaluate

the definite integral
∫ 4

1
[ f (x)− g(x)] dx.

If f (x) ≤ g(x) for all x in [a, b], then
∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx

Geometrically, the margin figure illustrates that if f and g are both
positive and that f (x) ≤ g(x) on the interval [a, b], then the area of
region between the graph of f and the x-axis is smaller than the area of
region between the graph of g and the x-axis.
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Similar sketches for the situations where f or g are sometimes or
always negative illustrate that the property holds in other situations as
well, but we can avoid all of those different cases using Riemann sums.

If we use the same partition P and chosen points cj for Riemann
sums for f and g, then f

(
cj
)
≤ g

(
cj
)

for each j, so:

n

∑
j=1

f
(
cj
)
· ∆xj ≤

n

∑
j=1

g
(
cj
)
· ∆xj

Taking the limit over all such partitions as the mesh of those partitions

approaches 0, we get
∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx.

If m ≤ f (x) ≤ M for all x in [a, b]

then m · (b− a) ≤
∫ b

a
f (x) dx ≤ M · (b− a)

You may have noticed that we haven’t
called the justifications of these proper-
ties “proofs,” in part because we haven’t
precisely defined what lim

‖P‖→0
means, but

also because of some other technical de-
tails left to more advanced textbooks.

This property follows easily from the previous one. First let g(x) =
M so that f (x) ≤ M = g(x) for all x in [a, b], hence∫ b

a
f (x) dx ≤

∫ b

a
M dx = M · (b− a)

(using one of our previous properties). Likewise, taking g(x) = m so
that f (x) ≥ m = g(x) for all x in [a, b]:∫ b

a
f (x) dx ≥

∫ b

a
m dx = m · (b− a)

Geometrically, this says that if we can “trap” the output values of
a function on the interval [a, b] between two upper and lower bounds,
m and M, then the value of the definite integral must lie between the
areas of the rectangles with heights m and M.

If f is continuous on the closed interval [a, b], then we know that f
takes on a minimum value on that interval (call it m) and a maximum
value (call it M), in which case this property just uses the lower and
upper Riemann sums for the simplest possible partition of [a, b]:

Example 1. Determine lower and upper bounds for the value of
∫ 5

1
f (x) dx

with f (x) given graphically in the margin.
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Solution. If 1 ≤ x ≤ 5, then we can estimate (from the graph) that

2 ≤ f (x) ≤ 9 so a lower bound for
∫ 5

1
f (x) dx is

(b− a) · (minimum of f on [a, b]) = (4)(2) = 8

and an upper bound is:

(b− a) · (maximum of f on [a, b]) = (4)(9) = 36

We can conclude that 8 ≤
∫ 5

1
f (x) dx ≤ 36. J

Knowing that the value of a definite integral is somewhere between
8 and 36 is not useful for finding its exact value, but the preceding esti-
mation property is very easy to use and provides a “ballpark estimate”
that will help you avoid reporting an unreasonable value.

Practice 2. Determine a lower bound and an upper bound for the value

of
∫ 5

3
f (x) dx with f as in the previous Example.

Functions Defined by Integrals

If one of the endpoints a or b of the interval [a, b] changes, then the

value of the integral
∫ b

a
f (t) dt typically changes. A definite integral of

the form
∫ x

a
f (t) dt defines a function of x that possesses interesting

and useful properties. The next examples illustrate one such property:
the derivative of a function defined by an integral is closely related to
the integrand, the function “inside” the integral.

Example 2. For the function f (t) = 2, define A(x) to be the area of the
region bounded by f , the t-axis, and vertical lines at t = 1 and t = x.

(a) Evaluate A(1), A(2), A(3) and A(4).

(b) Find an algebraic formula for A(x) valid for x ≥ 1.

(c) Calculate A′(x).

(d) Express A(x) as a definite integral.

Solution. (a) Referring to the graph in the margin, we can see that
A(1) = 0, A(2) = 2, A(3) = 4 and A(4) = 6. (b) Using the same area
idea to compute a more general area:

A(x) = area of a rectangle = (base) (height) = (x− 1)(2) = 2x− 2

(c) A′(x) =
d

dx
(2x− 2) = 2 (d) A(x) =

∫ x

1
2 dt J
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Practice 3. Answer the questions in the previous Example for f (x) = 3.

Example 3. For the function f (t) = 1 + t, define B(x) to be the area of
the region bounded by the graph of f , the t-axis, and vertical lines at
t = 0 and t = x (see margin).

(a) Evaluate B(0), B(1), B(2) and B(3).

(b) Find an algebraic formula for B(x) valid for x ≥ 0.

(c) Calculate B′(x).

(d) Express B(x) as a definite integral.

Solution. (a) From the graph, B(0) = 0, B(1) = 1.5, B(2) = 4 and
B(3) = 7.5. (b) Using the same area concept:

B(x) = area of trapezoid = (base) · (average height)

= (x) ·
(

1 + (1 + x)
2

)
= x +

1
2

x2

(c) B′(x) =
d

dx

(
x +

1
2

x2
)
= 1 + x (d) B(x) =

∫ x

0
[1 + t] dt J

Practice 4. Answer the questions in the previous Example for f (t) = 2t.

A curious “coincidence” appeared in each of these Examples and
Practice problems: the derivative of the function defined by the integral
was the same as the integrand, the function “inside” the integral. Stated
another way, the function defined by the integral was an “antiderivative”
of the function “inside” the integral. In Section 4.4 we will see that this
“coincidence” is actually a property shared by all functions defined by
an integral in this way. And it is such an important property that it is
part of a result called the Fundamental Theorem of Calculus. Before
we study the Fundamental Theorem of Calculus, however, we need to
consider an “existence” question: Which functions can be integrated?

Which Functions Are Integrable?

Due to our inexact definition of the limit
involved in the definition of the definite
integral, we defer a proof of this theorem
to more advanced textbooks.

This important question was finally answered in the 1850s by Bernhard
Riemann, a name that should be familiar to you by now. Riemann
proved that a function must be badly discontinuous in order to not be
integrable.

Theorem: Every continuous function is integrable.

This result says that if f is continuous on the interval [a, b], then
n

∑
k=1

f (ck) · ∆xk approaches the same finite number,
∫ b

a
f (x) dx, as

‖P‖ → 0, no matter how we choose the partitions P .
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In fact, we can generalize this result to functions that have a finite
number of breaks or jumps, as long as the function is bounded:

Theorem:
If f is defined on an interval [a, b] and bounded

(| f (x)| ≤ M for some number M for all x in [a, b])
and continuous except at a finite number of points in [a, b]

then f is integrable on [a, b].

The function f graphed in the margin is always between −3 and 3 (in
fact, always between −1 and 3), so it is bounded, and it is continuous
except at x = 1 and x = 3. As long as the values of f (1) and f (3) are
finite numbers, their actual values will not affect the value of the definite
integral, and we can compute the value of the integral by computing
the areas of the (triangular and rectangular) regions between the graph
of f and the x-axis:∫ 5

0
f (x) dx =

∫ 1

0
f (x) dx +

∫ 3

1
f (x) dx +

∫ 5

3
f (x) dx = 0+ 6+ 2 = 8

Practice 5. Evaluate
∫ 3.2

1.5
bxc dx (see margin).

The figure below depicts graphically the relationships between dif-
ferentiable, continuous and integrable functions:

This says:

• Every differentiable function is continuous, but there are continuous
functions that are not differentiable: a simple example of the latter is
f (x) = |x|, which is continuous but not differentiable at x = 0.

• Every continuous function is integrable, but there are integrable
functions that are not continuous: a simple example of the latter situ-
ation is the function f (x) graphed in the margin, which is integrable
on [0, 5] but discontinuous at x = 2 and x = 3.

• Finally, as demonstrated by the next example, there are functions
that are not integrable.
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A Non-integrable Function

If f is continuous or piecewise continuous on [a, b], then f is integrable
on [a, b]. Fortunately, nearly all of the functions we will use throughout
the rest of this book are integrable, as are the functions you are likely
to need for common applications.

There are functions, however, for which the limit of the Riemann
sums does not exist and hence, by definition, are not integrable. Recall
the “holey” function from Section 0.4:

The function

h(x) =

{
2 if x is a rational number
1 if x is an irrational number

is not integrable on [0, 3].

Proof. For any partition P of [0, 3], suppose that you, a very rational
person, always choose values of ck that are rational numbers. (Any
open interval on the real-number line contains rational numbers and
irrational numbers, so for each subinterval of the partition P you can
always choose ck to be a rational number.)

Then h (ck) = 2, so for your Riemann sum:

YSP =
n

∑
k=1

h (ck) · ∆xk =
n

∑
k=1

2 · ∆xk = 2 ·
n

∑
k=1

∆xk = 2 · (3− 0) = 6

Suppose your friend, however, always selects values of ck that are
irrational numbers. Then h (ck) = 1 for each ck, so for your friend’s
Riemann sum:

FSP =
n

∑
k=1

h (ck) · ∆xk =
n

∑
k=1

1 · ∆xk = 1 ·
n

∑
k=1

∆xk = 1 · (3− 0) = 3

So the limit of your Riemann sums, as the mesh of P approaches
0, will be 6, while the limit of your friend’s sums will be 3. This

means that lim
‖P‖→0

(
n

∑
k=1

h (ck) · ∆xk

)
does not exist (because there is no

single limiting value of the Riemann sums as ‖P‖ → 0) so h(x) is not
integrable on [0, 3].

A similar argument shows that h(x) is not integrable on any interval
of the form [a, b] (where a < b).
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4.3 Problems

In Problems 1–20, refer to the graph of f given below
to determine the value of each definite integral.

1.
∫ 3

0
f (x) dx 2.

∫ 5

3
f (x) dx

3.
∫ 2

2
f (x) dx 4.

∫ 7

6
f (w) dw

5.
∫ 5

0
f (x) dx 6.

∫ 7

0
f (x) dx

7.
∫ 6

3
f (t) dt 8.

∫ 7

5
f (x) dx

9.
∫ 0

3
f (x) dx 10.

∫ 3

5
f (x) dx

11.
∫ 0

6
f (x) dx 12.

∫ 3

0
2 · f (x) dx

13.
∫ 4

4
f 2(s) ds 14.

∫ 3

0
[1 + f (x)] dx

15.
∫ 3

0
[x + f (x)] dx 16.

∫ 5

3
[3 + f (x)] dx

17.
∫ 5

0
[2 + f (x)] dx 18.

∫ 5

3
| f (x)| dx

19.
∫ 5

0
| f (x)| dx 20.

∫ 3

7
[1 + | f (x)|] dx

Problems 21–30 refer to the graph of g given below.
Use the graph to evaluate each integral.

21.
∫ 2

0
g(x) dx 22.

∫ 3

1
g(t) dt

23.
∫ 5

0
g(x) dx 24.

∫ 2

4
g(x) dx

25.
∫ 8

0
g(s) ds 26.

∫ 4

1
|g(x)| dx

27.
∫ 3

0
2 · g(t) dt 28.

∫ 8

5
[1 + g(x)] dx

29.
∫ 3

6
g(u) du 30.

∫ 8

0
[t + g(t)] dt

For 31–34 , use the constant functions f (x) = 4 and
g(x) = 3 on the interval [0, 2]. Calculate the value
of each integral and verify that the value obtained
in part (a) is not equal to the value in part (b).

31. (a)
∫ 2

0
f (x) dx ·

∫ 2

0
g(x) dx (b)

∫ 2

0
f (x) · g(x) dx

32. (a)

∫ 2
0 f (x) dx∫ 2
0 g(x) dx

(b)
∫ 2

0

f (x)
g(x)

dx

33. (a)
∫ 2

0
[ f (x)]2 dx (b)

(∫ 2

0
f (x) dx

)2

34. (a)
∫ 2

0

√
f (x) dx (b)

√∫ 2

0
f (x) dx

For 35–42, sketch a graph of the integrand function
and use it to help evaluate the integral.

35.
∫ 4

0
|x| dx 36.

∫ 4

0
[1 + |t|] dt

37.
∫ 2

−1
|x| dx 38.

∫ 2

0
[|x| − 1] dx

39.
∫ 3

1
buc du 40.

∫ 3.5

1
bxc dx

41.
∫ 3

1
[2 + btc] dt 42.

∫ 1

3
bxc dx

For Problems 43–46, sketch (a) a graph of y =

A(x) =
∫ x

0
f (t) dt and (b) a graph of y = A′(x).

43. f (x) = x 44. f (x) = x− 2
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45.

46.

For 47–50, state whether or not each function is:
(a) continuous on [1, 4] (b) differentiable on [1, 4]
(c) integrable on [1, 4]

47. f (x) from Problem 45.

48. f (x) from Problem 46.

49.

50.

51. The figure below shows the velocity of a car.
Write the total distance traveled by the car be-
tween 1:00 p.m. and 4:00 p.m. as a definite inte-
gral and estimate the value of that integral.

52. Write the total distance traveled by the car in the
previous problem between 3:00 p.m. and 6:00 p.m.
as a definite integral and estimate the value of
that integral.

53. Define g(x) = 7 for x 6= 2 and g(2) = 5.

(a) Show that the Riemann sum for g(x) for any
partition P of the interval [1, 4] is equal to
5w + 7(3 − w), where w is the width of the
subinterval that includes x = 2.

(b) Compute the limit of these sums, as ‖P‖ → 0

(c) Compare the values of
∫ 4

1 g(x) dx and
∫ 4

1 7 dx.

(d) What can you conclude about how changing
the value of an integrable function at a single
point affects the value of its definite integral?

4.3 Practice Answers

1.
∫ 4

1
[ f (x)− g(x)] dx = 7− 3 = 4

2. m = 2 and M = 6 so (2)(5− 3) = 4 ≤
∫ 5

3
f (x) dx ≤ 12 = (6)(5− 3)

3. (a) A(1) = 0, A(2) = 3, A(3) = 6, A(4) = 9

(b) A(x) = (x− 1)(3) = 3x− 3 (c) A′(x) = 3 (d) A(x) =
∫ x

1
3 dt

4. (a) B(0) = 0, B(1) = 1, B(2) = 4, B(3) = 9

(b) B(x) = 1
2 (x)(2x) = x2 (c) B′(x) = 2x (d) A(x) =

∫ x

1
2t dt

5. (0.5)(1) + (1)(2) + (0.2)(3) = 3.1
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4.4 Areas, Integrals and Antiderivatives

This section explores properties of functions defined as areas and
examines some connections among areas, integrals and antiderivatives.
In order to focus on these connections and their geometric meaning, all
of the functions in this section are nonnegative, but in the next section
we will generalize (and prove) the results for all continuous functions.
This section also introduces examples showing how you can use the
relationships between areas, integrals and antiderivatives in various
applications.

When f is a continuous, nonnegative function, the “area function”

A(x) =
∫ x

a
f (t) dt represents the area of the region bounded by the

graph of f , the t-axis, and vertical lines at t = a and t = x (see margin
figure), and the derivative of A(x) represents the rate of change (growth)
of A(x) as the vertical line t = x moves rightward. Examples 2 and 3

of Section 4.3 showed that for certain functions f , A′(x) = f (x) so that
A(x) was an antiderivative of f (x). The next theorem says the result is
true for every continuous, nonnegative function f .

The Area Function Is an Antiderivative

If f is a continuous, nonnegative function

and A(x) =
∫ x

a
f (t) dt for x ≥ a

then
d

dx

(∫ x

a
f (t) dt

)
= A′(x) = f (x)

so A(x) is an antiderivative of f (x).

This result relating integrals and antiderivatives is a special case (for
nonnegative functions f ) of the first part of the Fundamental Theorem
of Calculus (FTC1), which we will prove in Section 4.5. This result is
important for two reasons:

• It says that a large collection of functions have antiderivatives.

• It leads to an easy way to exactly evaluate definite integrals.

Example 1. Define A(x) =
∫ x

1
f (t) dt for the function f (t) shown in

the margin. Estimate the values of A(x) and A′(x) for x = 2, 3, 4 and 5
and use these values to sketch a graph of y = A(x).

Solution. Dividing the region into squares and triangles, it is easy to
see that A(2) = 2, A(3) = 4.5, A(4) = 7 and A(5) = 8.5. Because
A′(x) = f (x), we know that A′(2) = f (2) = 2, A′(3) = f (3) = 3,
A′(4) = f (4) = 2 and A′(5) = f (5) = 1. A graph of y = A(x) appears
in the margin at the top of the next page. J
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It is important to recognize that f is not differentiable at x = 2 or
x = 3 but that the values of A change smoothly near x = 2 and x = 3,
and the function A is differentiable at those points and at every other
point between x = 1 and x = 5. Also note that f ′(4) = −1 ( f is clearly
decreasing near x = 4) but that A′(4) = f (4) = 2 is positive (the area
A is growing even though f is getting smaller).

Practice 1. Let B(x) be the area bounded by the horizontal axis, vertical
lines at t = 0 and t = x, and the graph of f (t) shown in the margin.
Estimate the values of B(x) and B′(x) for x = 1, 2, 3, 4 and 5.

Example 2. Let G(x) =
d

dx

(∫ x

0
sin(t) dt

)
. Evaluate G(x) for x =

π

4
,

π

2
and

3π

4
.

Solution. The middle margin figure shows A(x) =
∫ x

0
sin(t) dt graph-

ically. By the theorem, A′(x) = sin(x), so:

G
(π

4

)
= A′

(π

4

)
= sin

(π

4

)
=

1√
2
≈ 0.707

G
(π

2

)
= A′

(π

2

)
= sin

(π

2

)
= 1

G
(

3π

4

)
= A′

(
3π

4

)
= sin

(
3π

4

)
=

1√
2
≈ 0.707

The penultimate margin figure shows a graph of y = A(x) and the
bottom margin figure shows the graph of y = A′(x) = G(x). J

Using Antiderivatives to Evaluate
∫ b

a
f (x) dx

Now we combine the ideas of areas and antiderivatives to devise a
technique for evaluating definite integrals that is exact — and often
easy.

If A(x) =
∫ x

a
f (t) dt, then we know that A(a) =

∫ a

a
f (t) dt = 0,

A(b) =
∫ b

a
f (t) dt and that A(x) is an antiderivative of f , so A′(x) =

f (x). We also know that if F(x) is any antiderivative of f , then F(x)
and A(x) have the same derivative so F(x) and A(x) are “parallel”
functions and differ by a constant: F(x) = A(x) + C for all x and some
constant C. As a consequence:

F(b)− F(a) = [A(b) + C]− [A(a) + C] = A(b)− A(a)

=
∫ b

a
f (t) dt−

∫ a

a
f (t) dt =

∫ b

a
f (t) dt

This result says that, to evaluate a definite integral A(b) =
∫ b

a
f (t) dt,

we can find any antiderivative F of f and simply evaluate F(b)− F(a).
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This result is a special case of the second part of the Fundamental
Theorem of Calculus (FTC2, stated and proved in Section 4.5), which
you will use hundreds of times over the next several chapters.

Antiderivatives and Definite Integrals

If f is a continuous, nonnegative function and F is any
antiderivative of f (so that F′(x) = f (x)) on [a, b]

then
∫ b

a
f (t) dt = F(b)− F(a)

The problem of finding the exact value of a definite integral has been
reduced to finding some (any) antiderivative F of the integrand and
then evaluating F(b)− F(a). Even finding one antiderivative can be
difficult, so for now we will restrict our attention to functions that have
“easy” antiderivatives. Later we will explore some methods for finding
antiderivatives of more “difficult” functions.

Because an evaluation of the form F(b)− F(a) will occur quite often,

we represent it symbolically as F(x)
∣∣∣b
a

or
[

F(x)
]b

a
.

Example 3. Evaluate
∫ 3

1
x dx in two ways:

(a) by sketching a graph of y = x and finding the area represented
by the definite integral.

(b) by finding an antiderivative F(x) of f (x) = x and evaluating
F(3)− F(1).

Solution. (a) A graph of y = x appears in the margin; the area of the
trapezoidal region in question has area 4. (b) One antiderivative of x is

F(x) =
1
2

x2 (you should check for yourself that D
(

x2

2

)
= x), so:

F(x)

∣∣∣∣∣
3

1

= F(3)− F(1) =
1
2
(3)2 − 1

2
(1)2 =

9
2
− 1

2
= 4

which agrees with the area from part (a).
If someone chose another antiderivative of x, say F(x) = 1

2 x2 + 7

(you should check for yourself that D
(

x2

2
+ 7
)
= x), then:

F(x)

∣∣∣∣∣
3

1

= F(3)− F(1) =
[

1
2
(3)2 + 7

]
−
[

1
2
(1)2 + 7

]
=

23
2
− 15

2
= 4

No matter which antiderivative F we choose, F(3)− F(1) = 4. J

Practice 2. Evaluate
∫ 3

1
(x − 1) dx in the two ways specified in the

previous Example.
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This antiderivative method provides an extremely powerful way to
evaluate some definite integrals, and we will use it often.

Example 4. Find the area of the region in the first quadrant bounded
by the graph of y = cos(x), the horizontal axis, and the line x = 0.

Solution. The area we want (see margin) is
∫ π

2

0
cos(x) dx so we need

an antiderivative of f (x) = cos(x). F(x) = sin(x) is one such an-
tiderivative (you should check that D (sin(x)) = cos(x)), so

∫ π
2

0
cos(x) dx = sin(x)

∣∣∣∣ π
2

0
= sin

(π

2

)
− sin(0) = 1− 0 = 1

is the area of the region in question. J

Practice 3. Find the area of the region bounded by the graph of y = 3x2,
the horizontal axis and the vertical lines x = 1 and x = 2.

Integrals, Antiderivatives and Applications

The antiderivative method for evaluating definite integrals can also be
used when we need to find a more general “area,” so it is often useful
for solving applied problems.

Example 5. A robot has been programmed so that when it starts to
move, its velocity after t seconds will be 3t2 feet per second.

(a) How far will the robot travel during its first four seconds of
movement?

(b) How far will the robot travel during its next four seconds of
movement?

(c) How long will it take for the robot to move 729 feet from its
starting place?

Solution. (a) The distance during the first four seconds will be the area
under the graph of the velocity function (see margin figure) from
t = 0 to t = 4, an area we can compute with the definite integral∫ 4

0
3t2 dt. One antiderivative of 3t2 is t3 so:

∫ 4

0
3t2 dt =

[
t3
]4

0
= 43 − 03 = 64

and we can conclude that the robot will be 64 feet away from its
starting position after four seconds.

(b) Proceeding similarly:∫ 8

4
3t2 dt =

[
t3
]8

4
= 83 − 43 = 512− 64 = 448 feet
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(c) This question is different from the first two. Here we know the
lower integration endpoint, t = 0, and the total distance, 729 feet,
and need to find the upper integration endpoint (the time when the
robot is 729 feet away from its starting position). Calling this upper
endpoint T, we know that:

729 =
∫ T

0
3t2 dt =

[
t3
]T

0
= T3 − 03 = T3

so T = 3
√

729 = 9. The robot is 729 feet away after 9 seconds. J

Practice 4. Refer to the robot from the previous Example.

(a) How far will the robot travel between t = 1 and t = 5 seconds?

(b) How long will it take for the robot to move 343 feet from its
starting place?

Example 6. Suppose that t minutes after placing 1,000 bacteria on a
Petri plate the rate of growth of the bacteria population is 6t bacteria
per minute.

(a) How many new bacteria are added to the population during the
first seven minutes?

(b) What is the total population after seven minutes?

(c) When will the total population reach 2,200 bacteria?

Solution. (a) The number of new bacteria is represented by the area
under the rate-of-growth graph (see margin) and one antiderivative
of 6t is 3t2 (check that D

(
3t2) = 6t) so:

new bacteria =
∫ 7

0
6t dt =

[
3t2
]7

0
= 3(7)2 − 3(0)2 = 147

(b) [old population] + [new bacteria] = 1000 + 147 = 1147 bacteria.

(c) When the total population reaches 2,200 bacteria, then there are
2200− 1000 = 1200 new bacteria, hence we need to find the time T
required for that many new bacteria to grow:

1200 =
∫ T

0
6t dt =

[
3t2
]T

0
= 3(T)2 − 3(0)2 = 3T2

so T2 = 400⇒ T = 20. After 20 minutes, the total bacteria popula-
tion will be 1000 + 1200 = 2200. J

Practice 5. Refer to the bacteria population from the previous Example.

(a) How many new bacteria will be added to the population between
t = 4 and t = 8 minutes?

(b) When will the total population reach 2,875 bacteria?
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4.4 Problems

In Problems 1–8, A(x) =
∫ x

1
f (t) dt with f (t) given.

(a) Graph y = A(x) for 1 ≤ x ≤ 5.
(b) Estimate the values of A(1), A(2), A(3) and A(4).
(c) Estimate A′(1), A′(2), A′(3) and A′(4).

1. 2.

3. 4.

5. f (t) = 2 6. f (t) = 1 + t

7. f (t) = 6− t 8. f (t) = 1 + 2t

In Problems 9–18, use the Antiderivatives and Def-
inite Integrals Theorem to evaluate each integral.

9. (a)
∫ 3

0
2x dx (b)

∫ 3

1
2x dx (c)

∫ 1

0
2x dx

10. (a)
∫ 2

0
4x3 dx (b)

∫ 1

0
4x3 dx (c)

∫ 2

1
4x3 dx

11. (a)
∫ 3

1
6x2 dx (b)

∫ 2

1
6x2 dx (c)

∫ 3

0
6x2 dx

12. (a)
∫ 2

−2
2x dx (b)

∫ −1

−2
2x dx (c)

∫ 0

−2
2x dx

13. (a)
∫ 3

0
4x3 dx (b)

∫ 3

1
4x3 dx (c)

∫ 1

0
4x3 dx

14. (a)
∫ 5

0
4x3 dx (b)

∫ 2

0
4x3 dx (c)

∫ 5

2
4x3 dx

15. (a)
∫ 3

−3
3x2 dx (b)

∫ 0

−3
3x2 dx (c)

∫ 3

0
3x2 dx

16. (a)
∫ 3

0
5 dx (b)

∫ 2

0
5 dx (c)

∫ 3

2
5 dx

17. (a)
∫ 2

0
3x2 dx (b)

∫ 3

1
3x2 dx (c)

∫ 1

3
3x2 dx

18. (a)
∫ 2

−2

[
12− 3x2

]
dx (b)

∫ 2

1

[
12− 3x2

]
dx

In 19–21, use the given velocity of a car (in feet per
second) after t seconds to find:

(a) how far the car travels during the first 10 seconds.

(b) how many seconds it takes the car to travel half
the distance in part (a).

19. v(t) = 2t 20. v(t) = 3t2
21. v(t) = 4t3

Problems 22–23 give the velocity of a car (in feet per
second) after t seconds.

(a) How many seconds does it take for the car to
come to a stop (velocity = 0)?

(b) How far does the car travel before coming to a
stop?

(c) How many seconds does it take the car to travel
half the distance in part (b)?

22. v(t) = 20− 2t 23. v(t) = 75− 3t2

24. Find the exact area under half of one arch of the

sine curve:
∫ π

2

0
sin(x) dx.

25. An artist you know wants to make a figure con-
sisting of the region between the curve y = x2

and the x-axis for 0 ≤ x ≤ 3.

(a) Where should the artist divide the region with
a vertical line (see figure below) so that each
piece has the same area?

(b) Where should she divide the region with verti-
cal lines to get three pieces with equal areas?
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4.4 Practice Answers

1. B(1) = 2.5, B(2) = 5, B(3) = 8.5, B(4) = 12, B(5) = 14.5

B(x) =
∫ x

0
f (t) dt ⇒ B′(x) =

d
dx

(∫ x

0
f (t) dt

)
= f (x)

(by the Area Function Is an Antiderivative Theorem), hence:
B′(1) = f (1) = 2, B′(2) = f (2) = 3, B′(3) = 4, B′(4) = 3 and B′(5) = 2.

2. (a)
∫ 3

1
(x− 1) dx gives the area of the triangular region between the

graph of y = x− 1 and the x-axis for 1 ≤ x ≤ 3:

area =
1
2
(base) (height) =

1
2
(2)(2) = 2

(b) F(x) = 1
2 x2 − x is an antiderivative of f (x) = x− 1 so:

∫ 3

1
(x− 1) dx = F(3)− F(1) =

[
1
2
· 33 − 3

]
−
[

1
2
· 13 − 1

]
= 2

3. Area =
∫ 2

1
3x2 dx = x3

∣∣∣∣2
1
= 23 − 13 = 8− 1 = 7

4. (a) distance =
∫ 5

1
3t2 dt = t3

∣∣∣5
1
= 125− 1 = 124 feet.

(b) We know the starting point is x = 0 and the total distance (“area”
under the velocity curve) is 343 feet. We need to find the time T

(see margin figure) so that 343 feet =
∫ T

0
3t2 dt:

343 =
∫ T

0
3t2 dt = t3

∣∣∣∣T
0
= T3 − 0 = T3

hence T = 3
√

343 = 7 seconds.

5. (a) new bacteria =
∫ 8

4
6t dt = 3t2

∣∣∣∣8
4
= 3 · 64− 3 · 16 = 144 bacteria.

(b) We know the total new population (“area” under the rate-of-
change graph) is 2875− 1000 = 1875 so:

1875 =
∫ T

0
6t dt = 3t2

∣∣∣∣T
0
= 3T2 − 0 = 3T2 ⇒ T2 = 625

hence T =
√

625 = 25 minutes.
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4.5 The Fundamental Theorem of Calculus

This section contains the most important and most frequently used
theorem of calculus, THE Fundamental Theorem of Calculus. Discov-
ered independently by Newton and Leibniz during the late 1600s, it
establishes a connection between derivatives and integrals, provides a
way to easily calculate many definite integrals, and was a key step in
the development of modern mathematics to support the rise of science
and technology. Calculus is one of the most significant intellectual struc-
tures in the history of human thought, and the Fundamental Theorem
of Calculus is the most important brick in that beautiful structure.

Prior sections have emphasized the meaning of the definite integral,
defined it, and began to explore some of its applications and properties.
In this section, the emphasis shifts to the Fundamental Theorem of
Calculus. You will use this theorem often in later sections.

The Fundamental Theorem has two parts. They resemble results in
the previous section but apply to more general situations. The first
part (FTC1) says that every continuous function has an antiderivative
and shows how to differentiate a function defined as an integral. The
second part (FTC2) shows how to evaluate the definite integral of any
function if we know a formula for an antiderivative of that function.

Part 1: Antiderivatives

Every continuous function has an antiderivative, even functions with
“corners,” such as the absolute value function f (x) = |x|, that fail to be
differentiable at one or more points.

The Fundamental Theorem of Calculus Part 1 (FTC1)

If f is continuous and A(x) =
∫ x

a
f (t) dt

then A′(x) =
d

dx

[∫ x

a
f (t) dt

]
= f (x)

so A(x) is an antiderivative of f (x).

Proof. For a continuous function f , let A(x) =
∫ x

a
f (t) dt. By the

definition of derivative,

A′(x) = lim
h→0

A(x + h)− A(x)
h

= lim
h→0

∫ x+h
a f (t) dt−

∫ x
a f (t) dt

h
Using one of the integral properties from Section 4.3, we know that:∫ x+h

a
f (t) dt =

∫ x

a
f (t) dt +

∫ x+h

x
f (t) dt

⇒
∫ x+h

a
f (t) dt−

∫ x

a
f (t) dt =

∫ x+h

x
f (t) dt
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Assume for the moment that h > 0. Because f is continuous on [x, x+ h]
we know that f attains a maximum and minimum on that interval, so
there are values mh and Mh with x < mh < x + h and x < Mh < x + h
so that f (mh) ≤ f (t) ≤ f (Mh) when x ≤ t ≤ x + h. Hence:∫ x+h

x
f (mh) dt ≤

∫ x+h

x
f (t) dt ≤

∫ x+h

x
f (Mh) dt

⇒ f (mh) · h ≤
∫ x+h

x
f (t) dt ≤ f (Mh) · h

⇒ f (mh) ≤
∫ x+h

x f (t) dt
h

≤ f (Mh)

Because x < mh < x + h, we know lim
h→0+

mh = x; consequently —

because f (t) is continuous — we also know that lim
h→0+

f (mh) = f (x).

Likewise, lim
h→0+

f (Mh) = f (x), so the Squeezing Theorem tells us that:

lim
h→0+

∫ x+h
x f (t) dt

h
= f (x)

Repeating this argument for h < 0 is relatively straightforward.

Example 1. Define A(x) =
∫ x

0
f (t) dt for f in the margin figure. Eval-

uate A(x) and A′(x) for x = 1, 2, 3 and 4.

Solution. A(1) =
∫ 1

0
f (t) dt =

1
2

, A(2) =
∫ 2

0
f (t) dt = 1, A(3) =∫ 3

0
f (t) dt =

1
2

and A(4) =
∫ 4

0
f (t) dt = −1

2
. Because f is continuous,

FTC1 tells us that A′(x) = f (x), so A′(1) = f (1) = 1, A′(2) = f (2) = 0,
A′(3) = f (3) = −1 and A′(4) = f (4) = −1. J

Practice 1. Define A(x) =
∫ x

0
g(t) dt for g in the margin figure. Evalu-

ate A(x) and A′(x) for x = 1, 2, 3 and 4.

Example 2. Define A(x) =
∫ x

0
f (t) dt for f in the margin figure. For

which value of x is A(x) maximum? For which x is the rate of change
of A maximum?

Solution. Because A is differentiable, the only critical points are where
A′(x) = 0 or at endpoints. A′(x) = f (x) = 0 at x = 3, and A has a
maximum at x = 3. Notice that the values of A(x) increase as x goes
from 0 to 3 and then the values of A decrease. The rate of change of
A(x) is A′(x) = f (x), and f (x) appears to have a maximum at x = 2,
so the rate of change of A(x) is maximum when x = 2. Near x = 2,
a slight increase in the value of x yields the maximum increase in the
value of A(x). J
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Part 2: Evaluating Definite Integrals

If we know a formula for an antiderivative of a function, then we can
compute any definite integral of that function.

The Fundamental Theorem of Calculus Part 2 (FTC2)

If f (x) is continuous
and F(x) is any antiderivative of f (so that F′(x) = f (x))

then
∫ b

a
f (x) dx = F(x)

∣∣∣∣b
a
= F(b)− F(a).

Proof. Define A(x) =
∫ x

a
f (t) dt. If F is an antiderivative of f , then

F′(x) = f (x) and by FTC1 we know that A′(x) = f (x) so F′(x) = A′(x),
hence F(x) and A(x) differ by a constant: A(x)− F(x) = C for all x
and some constant C. At x = a, we have C = A(a)− F(a) = 0− F(a) =
−F(a) so C = −F(a) and the equation A(x) − F(x) = C becomes
A(x)− F(x) = −F(a). Then A(x) = F(x)− F(a) for all x, so setting

x = b yields A(b) = F(b)− F(a), hence
∫ b

a
f (x) dx = F(b)− F(a), the

formula we wanted.

We can evaluate the definite integral of a continuous function f by
finding an antiderivative of f (any antiderivative of f will work) and
then doing some arithmetic with this antiderivative. FTC2 does not
tell us how to find an antiderivative of f , and it does not tell us how to
find the definite integral of a discontinuous function. It is possible to
evaluate definite integrals of some discontinuous functions (as we saw
in Section 4.3) but not by using FTC2 directly.

Example 3. Evaluate
∫ 2

0

(
x2 − 1

)
dx.

Solution. F(x) = 1
3 x3 − x is an antiderivative of f (x) = x2 − 1 (you

should check that D
(

1
3 x3 − x

)
= x2 − 1), so:

∫ 2

0

(
x2 − 1

)
dx =

[
1
3

x3 − x
]2

0
=

[
1
3
· 23 − 2

]
−
[

1
3
· 03 − 0

]
=

2
3

If your friend had picked a different antiderivative of x2− 1, say G(x) =
1
3 x3 − x + 4, then her calculations would be slightly different :

∫ 2

0

(
x2 − 1

)
dx =

[
1
3

x3 − x + 4
]2

0

=

[
1
3
· 23 − 2 + 4

]
−
[

1
3
· 03 − 0 + 4

]
=

2
3
+ 4− 4 =

2
3

but the result would be the same. J
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Practice 2. Evaluate
∫ 3

1

(
3x2 − 1

)
dx.

Example 4. Evaluate
∫ 2.7

1.5
bxc dx (where bxc = INT(x) is the largest

integer less than or equal to x, as in the margin figure).

Solution. f (x) = bxc is not continuous at x = 2 in the interval [1.5, 2.7],
so we cannot employ the Fundamental Theorem of Calculus directly.
We can, however, use our understanding of the geometric meaning of a
definite integral to compute:

∫ 2.7

1.5
bxc dx = (area below y = bxc for 1.5 ≤ x ≤ 2) + (area below y = bxc for 2 ≤ x ≤ 2.7)

= (first base) (first height) + (second base) (second height)

= (0.5)(1) + (0.7)(2) = 1.9

We could also split the integral into two pieces:

∫ 2.7

1.5
bxc dx =

∫ 2.0

1.5
bxc dx +

∫ 2.7

2.0
bxc dx

=
∫ 2.0

1.5
1 dx +

∫ 2.7

2.0
2 dx =

[
x
]2.0

1.5
+
[

x
]2.7

2.0

= [2.0− 1.5] + [2(2.7)− 2(2.0)] = 0.5 + 1.4 = 1.9

using the fact that bxc = 1 for 1.5 ≤ x < 2.0 and the fact that bxc = 2
for 2.0 ≤ x ≤ 2.7. (We also need to redefine the first integrand to equal
1 at its right endpoint and the second integrand to equal 2 at its right
endpoint so that each integrand is continuous on a closed interval). J

Problem 53 in Section 4.3 indicates that
this redefinition is perfectly legal.

Practice 3. Evaluate
∫ 3.4

1.3
bxc dx.

Calculus is the study of derivatives and integrals, their meanings
and their applications. The Fundamental Theorem of Calculus demon-
strates how differentiation and integration are closely related processes:
integration is really anti-differentiation, the inverse of differentiation.

Applications: The Future

Calculus is important for many reasons, but students are usually re-
quired to study calculus because they will need to apply calculus con-
cepts in a variety of fields. Most applied problems in integral calculus
require the following steps to get from a real-life problem to a numerical
answer:

applied problem 1−−−→ Riemann sum 2−−−→ definite integral 3−−−→ number
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Step 1 is absolutely vital. If we can not translate the ideas of an
applied problem into an area or a Riemann sum or a definite integral,
then we can not use integral calculus to solve the problem. For a few
special types of applied problems, we will be able to move directly from
the problem to an integral, but usually it will be easier to first break
the problem into smaller pieces and to build a Riemann sum. Section
4.7 and all of Chapter 5 focus on translating different types of applied
problems into Riemann sums and definite integrals. Computers and
calculators are seldom of any help with Step 1.

Step 2 is usually easy. If we have a Riemann sum
n

∑
k=1

f (ck)∆xk on

an interval [a, b], then the limit of the sum (as n → ∞) is simply the

definite integral
∫ b

a
f (x) dx.

Step 3 can be handled in several ways.

• If the function f is relatively simple, we may be able to find an
antiderivative for f (using techniques from Section 4.6 and Chapter
8) and then apply FTC2 to get a numerical answer.

• If the function f is more complicated, then integral tables or comput-
ers (Section 4.8) may help us find an antiderivative for f , in which
case we can apply FTC2 to get a numerical answer.

• If we cannot find an antiderivative for f , we can compute approxi-
mate numerical answers for the definite integral using various ap-
proximation methods (Sections 4.9 and 8.7); we typically employ
computers to carry out the heavy-duty arithmetic.

Usually any difficulties in solving an applied problem arise in the
first and third steps. There are techniques and details to master and
understand, but it is also important to keep in mind where these
techniques and details fit into the bigger picture.

The next Example illustrates these steps for the problem of finding a
volume of a solid. We will explore techniques for finding volumes of
solids in greater detail in Chapter 5.

Example 5. Find the volume of the solid shown in the margin for
0 ≤ x ≤ 2. (Each “slice” perpendicular to the xy-plane is a square.)

Solution. Step 1: Going from the figure to a Riemann sum.
If we break the solid into n “slices” with cuts perpendicular to the
x-axis (and the xy-plane) using a partition P with cuts at x1, x2, x3,. . . ,
xn−1 (like slicing a block of cheese or a loaf of bread), then the volume
of the original solid is equal to the sum of the volumes of the “slices.”

The volume of the k-th slice is approximately equal to the volume of a
thin, rectangular box:

(height) · (base) · (thickness) ≈ (ck + 1) (ck + 1) · ∆xk
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where ck is any chosen value between xk−1 and xk. Therefore:

total volume =
n

∑
k=1

(volume of the k-th slice) =
n

∑
k=1

(ck + 1)2 ∆xk

which is a Riemann sum.
Step 2: Going from the Riemann sum to a definite integral.
We can improve the Riemann sum approximation of the total volume
from Step 1 by taking thinner slices (making all of the ∆xk smaller and
smaller) so that the mesh of the partition P approaches 0:

lim
‖P‖→0

n

∑
k=1

(ck + 1)2 ∆xk =
∫ 2

0
(x + 1)2 dx =

∫ 2

0

[
x2 + 2x + 1

]
dx

Step 3: Going from the definite integral to a numerical answer.

We can now use FTC2 to evaluate the integral: F(x) =
1
3

x3 + x2 + x is

an antiderivative of x2 + 2x + 1 (check this by differentiating F(x)), so:∫ 2

0

[
x2 + 2x + 1

]
dx =

[
1
3

x3 + x2 + x
]2

0

=

[
1
3
· 23 + 22 + 2

]
−
[

1
3
· 03 + 02 + 0

]
=

26
3

The volume of the solid shape is exactly
26
3

cubic inches. J

Practice 4. Find the volume of the solid shape in the margin figure for
0 ≤ x ≤ 2. (Each “slice” perpendicular to the xy-plane is a square.)

Leibniz’s Rule For Differentiating Integrals

If the endpoint of an integral is a function of x rather than simply x,
then we need to use the Chain Rule together with FTC1 to calculate the
derivative of the integral. For example:

A′(x) = f (x) ⇒ d
dx

[
A
(

x2
)]

= A′(x) · 2x = f
(

x2
)
· 2x

We can generalize this result by applying the Chain Rule to the deriva-
tive of the integral:

d
dx

[∫ g(x)

a
f (t) dt

]
=

d
dx

[A (g(x))] = f (g(x)) · g′(x)

and combine this with some integral properties to further extend FTC1.

Leibniz’s Rule

If f is a continuous function, A(x) =
∫ x

a
f (t) dt

and g1(x) and g2(x) are both differentiable functions

then
d

dx

[∫ g2(x)

g1(x)
f (t) dt

]
= f (g2(x)) · g′2(x)− f (g1(x)) · g′1(x)
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Proof. Assume for simplicity that f , g1 and g2 are continuous on
(−∞, ∞) and let c be any number. Then:

∫ g2(x)

g1(x)
f (t) dt =

∫ g2(x)

c
f (t) dt +

∫ c

g1(x)
f (t) dt

=
∫ g2(x)

c
f (t) dt−

∫ g1(x)

c
f (t) dt

Now apply the preceding result.

Example 6. If a is any constant, compute the derivatives
d

dx

[∫ 5x

a
t2 dt

]
,

d
dx

[∫ x2

a
cos(u) du

]
and

d
dw

[∫ sin w

πw
z3 dz

]
.

Solution. Applying Leibniz’s Rule:

d
dx

[∫ 5x

a
t2 dt

]
= (5x)2 · 5 = 125x2

d
dx

[∫ x2

a
cos(u) du

]
= cos(x2) · 2x = 2x cos(x2)

d
dw

[∫ sin(w)

πw
z3 dz

]
= (sin(w))3 · cos(w)− (πw)3 · π

The last quantity simplifies to sin3(w) cos(w)− π4w3. J

Practice 5. Compute
d

dx

[∫ x3

0
sin(t)dt

]
.

4.5 Problems

In Problems 1–2, (a) Use FTC2 to find a formula
for A(x), differentiate A(x) to obtain a formula for
A′(x), and evaluate A′(x) at x = 1, 2 and 3. (b) Use
FTC1 to evaluate A′(x) at x = 1, 2 and 3.

1. A(x) =
∫ x

0
3t2 dt 2. A(x) =

∫ x

1
(1 + 2t) dt

In Problems 3–8, compute A′(1), A′(2) and A′(3).

3. A(x) =
∫ x

0
2t dt 4. A(x) =

∫ x

1
2t dt

5. A(x) =
∫ x

−3
2t dt 6. A(x) =

∫ x

0

(
3− t2

)
dt

7. A(x) =
∫ x

0
sin(t) dt 8. A(x) =

∫ x

1
|t− 2| dt

In 9–12, A(x) =
∫ x

0
f (t) dt, with f (t) given graphi-

cally. Evaluate A′(1), A′(2) and A′(3).

9. 10.

11. 12.
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In 13–33, verify that F(x) is an antiderivative of the
integrand and use FTC2 to evaluate the integral.

13.
∫ 1

0
2x dx, F(x) = x2 + 5

14.
∫ 4

1
3x2 dx, F(x) = x3 + 2

15.
∫ 3

1
x2 dx, F(x) =

1
3

x3

16.
∫ 3

0

[
x2 + 4x− 3

]
dx, F(x) =

1
3

x3 + 2x2 − 3x

17.
∫ 5

1

1
x

dx, F(x) = ln(x)

18.
∫ 5

2

1
x

dx, F(x) = ln(x) + 4

19.
∫ 3

1
2

1
x

dx, F(x) = ln(x)

20.
∫ 3

1

1
x

dx, F(x) = ln(x) + 2

21.
∫ π

2

0
cos(x) dx, F(x) = sin(x)

22.
∫ π

0
sin(x) dx, F(x) = − cos(x)

23.
∫ 1

0

√
x dx, F(x) =

2
3

x
3
2

24.
∫ 4

1

√
x dx, F(x) =

2
3

x
3
2

25.
∫ 7

1

√
x dx, F(x) =

2
3

x
3
2

26.
∫ 4

1

1
2
√

x
dx, F(x) =

√
x

27.
∫ 9

1

1
2
√

x
dx, F(x) =

√
x

28.
∫ 5

2

1
x2 dx, F(x) = − 1

x

29.
∫ 3

−2
ex dx, F(x) = ex

30.
∫ 3

0

2x
1 + x2 dx, F(x) = ln(1 + x2)

31.
∫ π

4

0
sec2(x) dx, F(x) = tan(x)

32.
∫ e

1
ln(x) dx, F(x) = x · ln(x)− x

33.
∫ 3

0
2x
√

1 + x2 dx, F(x) =
2
3

(
1 + x2

) 3
2

For 34–48, find an antiderivative of the integrand
and use FTC2 to evaluate the definite integral.

34.
∫ 5

2
3x2 dx 35.

∫ 2

−1
x2 dx

36.
∫ 3

1

[
x2 + 4x− 3

]
dx 37.

∫ e

1

1
x

dx

38.
∫ π

2

π
4

sin(x) dx 39.
∫ 100

25

√
x dx

40.
∫ 5

3

√
x dx 41.

∫ 10

1

1
x2 dx

42.
∫ 1000

1

1
x2 dx 43.

∫ 1

0
ex dx

44.
∫ 2

−2

2x
1 + x2 dx 45.

∫ π
4

π
6

sec2(x) dx

46.
∫ 1

0
e2x dx 47.

∫ 3

3
sin(x) · ln(x) dx

48.
∫ 4

2
(x− 2)3 dx

In 49–54, find the area of the shaded region.

49.
50.

51.
52.

53. 54.
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55. Given that A′(x) = tan(x), find D (A(3x)),
D
(

A(x2)
)

and D (A(sin(x))).

56. Given that B′(x) = sec(x), find D (B(3x)),
D
(

B(x2)
)

and D (B(sin(x))).

In 57–68, apply Leibniz’s Rule.

57.
d

dx

[∫ 5x

1

√
1 + t dt

]
58.

d
dx

[∫ x2

2

√
1 + t dt

]

59.
d

dx

[∫ sin(x)

0

√
1 + t dt

]
60.

d
dx

[∫ 2+3x

1

(
t2 + 5

)
dt
]

61.
d

dx

[∫ 1−2x

0

(
3t2 + 2

)
dt
]

62.
d

dx

[∫ 9

x

(
3t2 + 2

)
dt
]

63.
d

dx

[∫ π

x
cos(3t) dt

]

64.
d

dx

[∫ π

7x
cos(2t) dt

]
65.

d
dx

[∫ x2

x
tan(t) dt

]

66.
d

dx

[∫ π

0
cos(3t) dt

]
67.

d
dx

[∫ ln(x)

2
5t · cos(3t) dt

]

68.
d

dx

[∫ π

0
tan(7t) dt

]
69.

d
dy

[∫ y2

0
tan(θ) dθ

]

4.5 Practice Answers

1. A(1) = 1, A(2) = 1.5, A(3) = 1, A(4) = 0.5; A′(x) = f gx) so
A′(1) = g(1) = 1, A′(2) = g(2) = 0, A′(3) = −1, A′(4) = 0.

2. F(x) = x3 − x is an antiderivative of f (x) = 3x2 − 1 so:∫ 3

1

[
3x2 − 1

]
dx =

[
x3 − x

]3

1
=
[
33 − 3

]
−
[
13 − 1

]
= 24

F(x) = x3 − x + 7 is another antiderivative of f (x) = 3x2 − 1 so:∫ 3

1

[
3x2 − 1

]
dx =

[
x3 − x + 7

]3

1
=
[
33 − 3 + 7

]
−
[
13 − 1 + 7

]
= 24

No matter which antiderivative of f (x) = 3x2 − 1 you use, the value

of the definite integral
∫ 3

1

[
3x2 − 1

]
dx is 24.

3. Because f (x) = bxc is not continuous on [1.3, 3.4] we cannot use
the Fundamental Theorem of Calculus. Instead, we can think of the
definite integral as an area (see margin figure) and compute:∫ 3.4

1.3
bxc dx = 3.9

4. First break the solid into “slices” and approximate the volume of the
k-th slice by (3− ck)

2 · ∆xk where ck is any point in the k-th subin-
terval. Next add up these approximate volumes to get a Riemann
Sum:

n

∑
k=1

(3− ck)
2 · ∆xk
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and then take the limit of these Riemann sums as the mesh of the
partitions approaches 0 (and n → ∞, where n is the number of
subintervals in the partition):

lim
‖P‖→0

[
n

∑
k=1

(3− ck)
2 · ∆xk

]
=
∫ 2

0
(3− x)2 dx

=
∫ 2

0

(
9− 6x + x2

)
dx

=

[
9x− 3x2 +

1
3

x3
]2

0

=

[
18− 12 +

8
3

]
− [0− 0 + 0] =

26
3

5.
d

dx

[∫ x3

0
sin(t) dt

]
= sin(x3) · d

dx

[
x3
]
= 3x2 sin(x3)
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4.6 Finding Antiderivatives

In order to use the second part of the Fundamental Theorem of Cal-
culus, we need an antiderivative of the integrand, but sometimes it is
not easy to find one. This section collects some of the information we
already know about general properties of antiderivatives and about
antiderivatives of particular functions. It shows how to use this in-
formation to find antiderivatives of more complicated functions and
introduces a “change of variable” technique to make that job easier.

Indefinite Integrals and Antiderivatives

Antiderivatives arise so often that there is a special notation to indicate
the antiderivative of a function:

∫
f (x) dx, read as “the indefinite integral of f ” or as “the

antiderivatives of f ,” represents the collection (or family)
of all functions whose derivatives are f .

If you’ve been wondering why we called∫ b

a
f (t) dt a definite integral, now you

know. A definite integral has specific up-
per and lower limits, while an indefinite
integral does not.

If F is an antiderivative of f , then any member of the family
∫

f (x) dx

has the form F(x) + C for some constant C. We write
∫

f (x) dx =

F(x) + C, where C represents an arbitrary constant. There are no small
families in the world of antiderivatives: if f has one antiderivative F,
then f has an infinite number of antiderivatives and each has the form
F(x) + C, which means there are many ways to write a particular indef-
inite integral and some of them may look very different. You can check
that F(x) = sin2(x), G(x) = − cos2(x) and H(x) = 2 sin2(x) + cos2(x)
all have the same derivative, f (x) = 2 sin(x) cos(x), so the indefinite in-

tegral of 2 sin(x) cos(x),
∫

2 sin(x) cos(x) dx, can be written in several

ways: sin2(x) + C or − cos2(x) + K or 2 sin2(x) + cos2(x) + C.

Practice 1. Verify that
∫

2 tan(x) · sec2(x) dx = tan2(x) + C and that∫
2 tan(x) · sec2(x) dx = sec2(x) + K.

Properties of Antiderivatives (Indefinite Integrals)

These sum, difference and constant-
multiple properties follow directly from
corresponding properties for derivatives.

If f and g are integrable functions, then

•
∫

[ f (x)± g(x)] dx =
∫

f (x) dx±
∫

g(x) dx

•
∫

k · f (x) dx = k ·
∫

f (x) dx
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Although we know general rules for derivatives of products and
quotients, unfortunately there are no easy general patterns for an-
tiderivatives of products and quotients — we will only be able to add
one more general property to this list (in Section 8.2).

We already know antiderivatives for several important functions.

Constant Functions:
∫

k dx = kx + C

Powers of x:
∫

xp dx =
xp+1

p + 1
+ C if p 6= −1,

∫ 1
x

dx = ln |x|+ C

Exponential Functions:
∫

ex dx = ex + C

Trig Functions:
∫

cos(x) dx = sin(x) + C,
∫

sin(x) dx = − cos(x) + C∫
sec2(x) dx = tan(x) + C,

∫
csc2(x) dx = − cot(x) + C∫

sec(x) · tan(x) dx = sec(x) + C,
∫

csc(x) · cot(x) dx = − csc(x) + C

All of these antiderivatives can be verified
by differentiating. For

∫ 1
x dx you may

be wondering about the presence of the
absolute value signs in the antiderivative.
If x > 0, you can check that:

D (ln(|x|)) = D (ln(x)) =
1
x

If x < 0, then you can check that:

D (ln(|x|)) = D (ln(−x)) =
−1
−x

=
1
x

When computing a definite integral of
the form

∫ b
a

1
x dx, either a and b will both

be positive or both be negative, because
the integrand is not defined at x = 0, so
x = 0 cannot be included in the interval
of integration.

Our list of antiderivatives of particular functions will grow in com-
ing chapters and will eventually include antiderivatives of additional
trigonometric functions, the inverse trigonometric functions, logarithms,
rational functions and more. (See Appendix I.)

Antiderivatives of More Complicated Functions

Antiderivatives are very sensitive to small changes in the integrand, so
we should be very careful.

Fortunately, an antiderivative can always
be checked by differentiating, so even
though we may not find the correct an-
tiderivative, we should be able to deter-
mine whether or not an antiderivative
candidate is actually an antiderivative.

Example 1. We know D (sin(x)) = cos(x), so
∫

cos(x) dx = sin(x)+C.

Find: (a)
∫

cos(2x + 3) dx (b)
∫

cos(5x− 7) dx (c)
∫

cos(x2) dx

Solution. (a) Because sin(x) is an antiderivative of cos(x), it is reason-
able to hope that sin(2x + 3) will be an antiderivative of cos(2x + 3).
Unfortunately, we see that D (sin(2x + 3)) = cos(2x + 3) · 2, exactly
twice the result we want. Let’s try again by modifying our “guess”
to be half the original guess:

D
(

1
2

sin(2x + 3)
)
=

1
2

cos(2x + 3) · 2 = cos(2x + 3)

which is what we want, so
∫

cos(2x + 3) dx =
1
2

sin(2x + 3) + C.

(b) D (sin(5x− 7)) = cos(5x− 7) · 5, so dividing the original guess by

5 we get D
(

1
5 sin(5x− 7)

)
= 1

5 cos(5x − 7) · 5 = cos(5x − 7) and

conclude that
∫

cos(5x− 7) dx =
1
5

sin(5x− 7) + C.

(c) D
(
sin(x2)

)
= cos(x2) · 2x. It was easy enough in parts (a) and (b)

to modify our “guesses” to eliminate the constants 2 and 5, but here
the x is much harder to eliminate:
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D
(

1
2x

sin
(

x2
))

= D
(

sin(x2)

2x

)
=

2x ·D
(
sin(x2)

)
− sin(x2) ·D(2x)

(2x)2)

=
(2x)2 cos(x2)− 2 sin(x2)

(2x)2

= cos(x2)− sin(x2)

2x2 6= cos(x2)

Our guess did not check out — we’re stuck. J

The value of a definite integral of cos(x2) could still be approximated
as accurately as needed by using Riemann sums or one of the numerical
techniques in Sections 4.9 and 8.7, but no matter how hard we try, we
cannot find a concise formula for an antiderivative of cos(x2) in order
to use the Fundamental Theorem of Calculus. Even a simple-looking
integrand can be very difficult. At this point, there is no quick way to
tell the difference between an “easy” indefinite integral and a “difficult”
or “impossible” one.

Advanced mathematical techniques be-
yond the scope of this text can show that
cos(x2) does not have an “elementary”
antiderivative composed of polynomials,
roots, trigonometric functions, exponen-
tial functions or their inverses.

Getting the Constants Right

The previous example illustrated one technique for finding antideriva-
tives: “guess” the form of the answer, differentiate your “guess” and
then modify your original “guess” so its derivative is exactly what you
want it to be.

Example 2. Knowing that
∫

sec2(x) dx = tan(x) + C and
∫ 1√

x
dx =

2
√

x + C, find (a)
∫

sec2(3x + 7) dx (b)
∫ 1√

5x + 3
dx.

Solution. (a) If we “guess” an answer of tan(3x + 7) and then dif-
ferentiate it, we get D (tan(3x + 7)) = sec2(3x + 7) ·D(3x + 7) =

3 sec2(3x + 7), which is three times what we want. If we divide our
original guess by 3 and try again, we have:

D
(

1
3

tan(3x + 7)
)
=

1
3

D (tan(3x + 7)) =
1
3

sec2(3x + 7) · 3

= sec2(3x + 7)

so
∫

sec2(3x + 7) dx =
1
3

tan(3x + 7) + C.

(b) If we “guess” 2
√

5x + 3 and then differentiate it, we get:

D
(

2 (5x + 3)
1
2
)
= 2 · 1

2
(5x + 3)−

1
2 D(5x + 3) = 5 · (5x + 3)−

1
2
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which is five times what we want. Dividing our guess by 5 and
differentiating, we have:

D
(

2
5
(5x + 3)

1
2

)
=

2
5
· 1

2
(5x + 3)−

1
2 · 5 =

1√
5x + 3

so
∫ 1√

5x + 3
dx =

2
5

√
5x + 3 + C. J

Practice 2. Find
∫

sec2(7x) dx and
∫ 1√

3x + 8
dx.

The “guess and check” method is a very effective technique if you
can make a good first guess, one that misses the desired result only
by a constant multiple. In that situation, just divide the first guess
by the unwanted constant multiple. If the derivative of your guess
misses by something other than a constant multiple, then more drastic
modifications are needed. Sometimes the next technique can help.

Making Patterns More Obvious: Changing the Variable

Successful integration is mostly a matter of recognizing patterns. The
“change of variable” technique can make some underlying patterns
of an integral easier to recognize. Essentially, the technique involves
rewriting an integral that is originally in terms of one variable, say x,
in terms of another variable, say u, with the hope that it will be easier
to find an antiderivative of the new integrand.

We first discussed differential notation in
Section 2.8; although you may not have
used them much in differential calculus,
you will now use them extensively.

For example, we can rewrite
∫

cos(5x + 1) dx by setting u = 5x + 1.

Then cos(5x + 1) becomes cos(u) but we must also convert the dx in

the original integral. We know that
du
dx

= 5, so rewriting this last
expression in differential notation, we get du = 5 dx; isolating dx yields
dx = 1

5 du so:∫
cos(5x + 1) dx =

∫
cos(u) · 1

5
du =

1
5

∫
cos(u) du

This new integral is easier:

1
5

∫
cos(u) du =

1
5

sin(u) + C

but our original problem was in terms of x and our answer is in terms
of u, so we must “resubstitute” using the relationship u = 5x + 1:

1
5

sin(u) + C =
1
5

sin(5x + 1) + C

We can now conclude that:∫
cos(5x + 1) dx =

1
5

sin(5x + 1) + C
As always, you can check this result by
differentiating.
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We can summarize the steps of this “change of variable” (or “u-
substitution”) method as:

• set a new variable, say u, equal to some function of the original
variable x

• calculate the differential du in terms of x and dx

• rewrite the original integral in terms of u and du

• integrate the new integral to get an answer in terms of u

• resubstitute for u to get a result in terms of the original variable x

Often u is set equal to some “interior”
part of the original integrand function.

Example 3. Make the suggested change of variable, rewrite each inte-
gral in terms of u and du, and evaluate the integral.

(a)
∫

cos(x) · esin(x) dx with u = sin(x)

(b)
∫ 2x

5 + x2 dx with u = 5 + x2

Solution. (a) u = sin(x)⇒ du = cos(x) dx and esin(x) = eu:∫
cos(x)esin(x) dx =

∫
eu du = eu + C = esin(x) + C

(b) u = 5 + x2 ⇒ du = 2x dx, so:∫ 2x
5 + x2 dx =

∫ 1
u

du = ln |u|+ C = ln
∣∣∣5 + x2

∣∣∣+ C

Because 5 + x2 > 0, we can also write the answer as ln
(
5 + x2). J

In each example, the change of variable did not find the antideriva-
tive, but it did make the pattern of the integrand more obvious, which
in turn made it easier to determine an antiderivative.

Practice 3. Make the suggested change of variable, rewrite each integral
in terms of u and du and evaluate the integral.

(a)
∫

(7x + 5)3 dx with u = 7x + 5

(b)
∫

3x2 · sin
(

x3 − 1
)

dx with u = x3 − 1

The previous examples have supplied a suggested substitution, but in
the future you will need to decide what u should equal. Unfortunately
there are no rules that guarantee your choice will lead to an easier
integral — sometimes you will need to resort to trial and error until you
find a particular u-substitution that works for your integrand. There is,
however, a “rule of thumb” that frequently results in easier integrals.
Even though the following suggestion comes with no guarantees, it is
often worth trying.
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A “Rule of Thumb” for Changing the Variable

If part of the integrand consists of a composition of functions,
f (g(x)), try setting u = g(x), the “inner” function.

The key to becoming skilled at selecting
a good u and correctly making the sub-
stitution is practice.

If part of the integrand is being raised to a power, try setting u equal
to the part being raised to the power. For example, if the integrand
includes (3 + sin(x))5, try u = 3 + sin(x). If part of the integrand
involves a trigonometric (or exponential or logarithmic) function of
another function, try setting u equal to the “inside” function: if the
integrand includes the function sin

(
3 + x2), try u = 3 + x2.

Example 4. Select a u for each integrand and rewrite the associated
integral in terms of u and du.

(a)
∫

cos(3x)
√

2 + sin(3x) dx (b)
∫ 5ex

2 + ex dx (c)
∫

ex · sin (ex) dx

Solution. (a) If u = 2+ sin(3x), du = 3 cos(3x) dx ⇒ 1
3 du = cos(3x) dx

so the integral becomes
∫ 1

3
√

u du. (b) With u = 2 + ex ⇒ du = ex dx,

the integral becomes
∫ 5

u
du. (c) With u = ex ⇒ du = ex dx, the integral

becomes
∫

sin(u) du. J

Changing Variables with Definite Integrals

If we need to change variables in a definite integral, we have two choices:

• First work out the corresponding indefinite integral and then use that
antiderivative and FTC2 to evaluate the definite integral.

• Change variables in the definite integral, which requires changing
the limits of integration from x limits to u limits.

For the second option, if the original integral had endpoints x = a and
x = b, and we make the substitution u = g(x) ⇒ du = g′(x) dx, then
the new integral will have endpoints u = g(a) and u = g(b):

∫ x=b

x=a
f (g(x)) · g′(x) dx =

∫ u=g(b)

u=g(a)
f (u) du

Example 5. Evaluate
∫ 1

0
(3x− 1)4 dx.

Solution. Using the first option with u = 3x − 1 ⇒ du = 3 dx ⇒
1
3 du = dx, the corresponding indefinite integral becomes:∫

(3x− 1)4 dx =
∫

u4 · 1
3

du =
1
3
· 1

5
u5 + C =

1
15

(3x− 1)5 + C
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We now use this result to evaluate the original definite integral:

∫ 1

0
(3x− 1)4 dx =

[
1

15
(3x− 1)5

]1

0
=

[
1

15
· 25
]
−
[

1
15
· (−1)5

]
=

32
15
− −1

15
=

33
15

=
11
5

For the second option, we make the same substitution u = 3x− 1⇒
1
3 du = dx while also computing x = 0 ⇒ u = 3 · 0− 1 = −1 and
x = 1⇒ u = 3 · 1− 1 = 2:∫ x=1

x=0
(3x− 1)4 dx =

∫ u=2

u=−1

1
3

u4 du =
1
3
· 1

5
u5
∣∣∣∣2
−1

=
25

15
− (−1)5

15
=

33
15

We arrive at the same answer either way. J

Both options require roughly the same
amount of work and computation. In
practice you should choose the option
that seems easiest for you and poses the
least risk of error.

Practice 4. If the original integrals in Example 4 had endpoints (a) x = 0
to x = π (b) x = 0 to x = 2 or (c) x = 0 to x = ln(3), then the new
integrals should have what endpoints?

Special Transformations for
∫

sin2(x) dx and
∫

cos2(x) dx

cos(2x) = 1− 2 sin2(x)

cos(2x) = 2 cos2(x)− 1

sin(2x) = 2 sin(x) cos(x)

The integrals of sin2(x) and cos2(x) arise often, and we can find their
antiderivatives with the help of some trigonometric identities. Solving
the first identity in the margin for sin2(x), we get:

sin2(x) =
1
2
− 1

2
cos(2x)

and solving the second identity for cos2(x), we get:

cos2(x) =
1
2
+

1
2

cos(2x)

Integrating the first of these new identities yields:∫
sin2(x) dx =

∫ [1
2
− 1

2
cos(2x)

]
dx =

1
2

x− 1
4

sin(2x) + C

Using the identity sin(2x) = 2 sin(x) cos(x), we can also write:∫
sin2(x) dx =

1
2

x− 1
2

sin(x) cos(x) + C

Similarly, using cos2(x) =
1
2
+

1
2

cos(2x) yields:

∫
cos2(x) dx =

1
2

x +
1
4

sin(2x) + C =
1
2

x +
1
2

sin(x) cos(x) + C

In practice, it’s easier to remember the
new trig identities and use them to work
out these antiderivatives, rather than
memorizing the antiderivatives directly.
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4.6 Problems

For Problems 1–4, put f (x) = x2 and g(x) = x to
verify the inequality.

1.
∫ 2

1
f (x) · g(x) dx 6=

(∫ 2

1
f (x) dx

)(∫ 2

1
g(x) dx

)
2.
∫ 2

1

f (x)
g(x)

dx 6=
∫ 2

1 f (x) dx∫ 2
1 g(x) dx

3.
∫ 1

0
f (x) · g(x) dx 6=

(∫ 1

0
f (x) dx

)(∫ 1

0
g(x) dx

)
4.
∫ 4

1

f (x)
g(x)

dx 6=
∫ 4

1 f (x) dx∫ 4
1 g(x) dx

For 5–14, use the suggested u to find du and rewrite
the integral in terms of u and du. Then find an an-
tiderivative in terms of u and, finally, rewrite your
answer in terms of x.

5.
∫

cos(3x) dx, u = 3x

6.
∫

sin(7x) dx, u = 7x

7.
∫

ex sin(2 + ex) dx, u = 2 + ex

8.
∫

e5x dx, u = 5x

9.
∫

cos(x) sec2 (sin(x)) dx, u = sin(x)

10.
∫ cos(x)

sin(x)
dx, u = sin(x)

11.
∫ 5

3 + 2x
dx, u = 3 + 2x

12.
∫

x2
(

5 + x3
)7

dx, u = 5 + x3

13.
∫

x2 sin
(

1 + x3
)

dx, u = 1 + x3

14.
∫ ex

1 + ex dx, u = 1 + ex

For 15–26, use the change-of-variable technique to
evaluate the indefinite integral.

15.
∫

cos(4x) dx 16.
∫

e3x dx

17.
∫

x3
(

5 + x4
)11

dx 18.
∫

x · sin
(

x2
)

dx

19.
∫ 3x2

2 + x3 dx 20.
∫ sin(x)

cos(x)
dx

21.
∫ ln(x)

x
dx 22.

∫
x
√

1 + x2 dx

23.
∫

(1 + 3x)7 dx 24.
∫ 1

x
· sin(ln(x)) dx

25.
∫

ex · sec (ex) · tan (ex) dx

26.
∫ 1√

x
cos

(√
x
)

dx

In 27–42, evaluate the integral.

27.
∫ π

2

0
cos(3x) dx 28.

∫ π

0
cos(4x) dx

29.
∫ 1

0
ex · sin (2 + ex) dx 30.

∫ 1

0
e5x dx

31.
∫ 1

−1
x2
(

1 + x3
)5

dx 32.
∫ 1

0
x4
(

x5 − 1
)10

dx

33.
∫ 2

0

5
3 + 2x

dx 34.
∫ ln(3)

0

ex

1 + ex dx

35.
∫ 1

0
x
√

1− x2 dx 36.
∫ 5

2

2
1 + x

dx

37.
∫ 1

0

√
1 + 3x dx 38.

∫ 1

0

1√
1 + 3x

dx

39.
∫

sin2(5x) dx 40.
∫

cos2(3x) dx

41.
∫ [1

2
− sin2(x)

]
dx 42.

∫ [
ex + sin2(x)

]
dx

43. Find the area under one arch of y = sin2(x).

44. Evaluate
∫ 2π

0
sin2(x) dx.

In 45–53, expand the integrand first.

45.
∫ (

x2 + 1
)3

dx 46.
∫ (

x3 + 5
)2

dx

47.
∫

(ex + 1)2 dx 48.
∫ (

x2 + 3x− 2
)2

dx

49.
∫
(x2 + 1)(x3 + 5) dx 50.

∫
(7 + sin(x))2 dx

51.
∫

ex
(

ex + e3x
)

dx 52.
∫

(2 + sin(x)) sin(x) dx

53.
∫ √

x
(

x2 + 3x− 2
)

dx
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In 54–64, divide, then find an antiderivative.

54.
∫ x + 1

x
dx 55.

∫ 3x
x + 1

dx

56.
∫ x− 1

x + 2
dx 57.

∫ x2 − 1
x + 1

dx

58.
∫ 2x2 − 13x + 15

x− 1
dx 59.

∫ 2x2 − 13x + 18
x− 1

dx

60.
∫ 2x2 − 13x + 11

x− 1
dx 61.

∫ x + 2
x− 1

dx

62.
∫ ex + e3x

ex dx 63.
∫ x + 4√

x
dx

64.
∫ √x + 3

x
dx

The definite integrals in 65–70 involve areas associ-
ated with parts of circles; use your knowledge of
circles and their areas to evaluate them. (Suggestion:
Sketch a graph of the integrand function.)

65.
∫ 1

−1

√
1− x2 dx 66.

∫ 1

0

√
1− x2 dx

67.
∫ 3

−3

√
9− x2 dx 68.

∫ 0

−4

√
16− x2 dx

69.
∫ 1

−1

[
2 +

√
1− x2

]
dx 70.

∫ 2

0

[
3−

√
1− x2

]
dx

4.6 Practice Answers

1. D
(
tan2(x) + C

)
= 2 tan1(x) ·D (tan(x)) = 2 tan(x) sec2(x)

D
(
sec2(x) + C

)
= 2 sec1(x) ·D (sec(x)) = 2 sec(x) · sec(x) tan(x)

2. We know D (tan(x)) = sec2(x), so it is reasonable to try tan(7x): D (tan(7x)) = sec2(7x) · D(7x) =

7 sec2(7x), a result seven times the result we want, so divide the original “guess” by 7 and try again:

D
(

1
7

tan(7x)
)
=

1
7

sec2(7x) · 7 = sec2(7x)

so
∫

sec2(7x) dx =
1
7

tan(7x) + C.

D
(
(3x + 8)

1
2

)
=

1
2
(3x + 8)−

1
2 D(3x + 8) =

3
2
(3x + 8)−

1
2 so multiply our original “guess” by

2
3

:

D
(

2
3
(3x + 8)

1
2

)
=

2
3
· 1

2
· (3x + 8)−

1
2 ·D(3x + 8) =

2
3
· 3

2
· 1√

3x + 8

hence
∫ 1√

3x + 8
dx =

2
3

√
3x + 8 + C.

3. (a) u = 7x + 5⇒ du = 7 dx ⇒ dx = 1
7 du so:∫

(7x + 5)3 dx =
∫

u3 · 1
7

du =
1
7
· 1

4
u4 + C =

1
28

(7x + 5)4 + C

(b) u = x3 − 1⇒ du = 3x2 dx so
∫

sin(x3 − 1) · 3x2 dx becomes:∫
sin(u) du = − cos(u) + C = − cos

(
x3 − 1

)
+ C

4. (a) u = 2 + sin(3x) so x = 0⇒ u = 2 + sin(3 · 0) = 2 and x = π ⇒ u = 2 + sin(3π) = 2. (This integral is
now easy; why?)

(b) u = 2 + ex so x = 0⇒ u = 2 + e0 = 3 and x = 2⇒ u = 2 + e2

(c) u = ex so x = 0⇒ u = e0 = 1 and x = ln(3)⇒ u = eln(3) = 3
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4.7 First Applications of Definite Integrals

The development of calculus by Newton and Leibniz was a vital step in
the advancement of pure mathematics, but Newton also advanced the
sciences and applied mathematics. Not only did he discover theoretical
results, he immediately used those results to answer important ques-
tions about gravity and motion. The success of these applications of
mathematics to the physical sciences helped establish what we now take
for granted: mathematics can and should be used to answer questions
about the world.

Newton applied mathematics to the outstanding problems of his
day, problems primarily in the field of physics. During the intervening
300-plus years, thousands upon thousands of people have continued
these theoretical and applied traditions, using mathematics to help
develop our understanding of the physical and biological sciences, as
well as the behavioral sciences and economics. Mathematics is still
used to answer new questions in physics and engineering, but it is also
important for modeling ecological processes, for understanding the
behavior of DNA, for determining how the brain works, and even for
devising financial strategies. The mathematics you are learning now
can help you become part of this tradition, and you might even use it
to add to our understanding of the world.

It is important to understand the special applications of integration
we will study in case you need to use those particular applications. But
it is also important that you understand the process of building models
with integrals so you can apply that process to other situations in a
variety of fields of study. Conceptually, converting an applied problem
to a Riemann sum is the most valuable step. Typically, it is also the most challenging.

Area between Two Curves

We have already used integrals to find the area between the graph of a
function and the horizontal axis. We can also use integrals to find the
area between the graphs of two functions.

If f (x) ≥ g(x) for all x in [a, b], then we can approximate the area
between the graphs of f and g by partitioning the interval [a, b] and
forming a Riemann sum (see margin). The height of each rectangle is
f (ck)− g(ck) so the area of the k-th rectangle is:

(height) · (base) = [ f (ck)− g(ck)] · ∆xk

and an approximation of the total area is given by

n

∑
k=1

[ f (ck)− g(ck)] · ∆xk

which is a Riemann sum.
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The limit of this Riemann sum, as the mesh of the partitions ap-
proaches 0, is a definite integral:∫ b

a
[ f (x)− g(x)] dx

We will sometimes use an arrow to indicate “the limit of the Riemann
sum as the mesh of the partitions approaches 0,” writing:

n

∑
k=1

[ f (ck)− g(ck)] · ∆xk −→
∫ b

a
[ f (x)− g(x)] dx

If T(x) ≥ B(x) for a ≤ x ≤ b
then the area of the region bounded by the graphs of the

“top” function T(x), the “bottom” function B(x),
and the lines x = a and x = b is given by:∫ b

a
[T(x)− B(x)] dx

Example 1. Find the area bounded between the graphs of f (x) = x
and g(x) = 3 for 1 ≤ x ≤ 4.

Solution. It is clear from the margin figure that the area between f and
g is 2.5 square units. Using the integration procedure above, we need
to identify a “top” function and a “bottom” function. For 1 ≤ x ≤ 3,
g(x) = 3 ≥ x = f (x) so the area of the left-hand triangle is given by
the integral:

∫ 3

1
[3− x] dx =

[
3x− 1

2
x2
]3

1
=

[
9− 9

2

]
−
[

3− 1
2

]
= 2

For the interval 3 ≤ x ≤ 4, g(x) = 3 ≤ x = f (x) so the area of the
right-hand triangle is given by the integral:

∫ 4

3
[x− 3] dx =

[
1
2

x2 − 3x
]4

3
= [8− 12]−

[
9
2
− 9
]
=

1
2

Adding these two areas, we get 2 + 0.5 = 2.5. J

If we had mindlessly integrated in the previous Example without
consulting a graph:

∫ 4

1
[3− x] dx =

[
3x− 1

2
x2
]4

1
= [12− 8]−

[
3− 1

2

]
=

3
2

we would have arrived at an incorrect answer.

Graphing the region in question to de-
termine which function is on “top” and
which is on “bottom” is often crucial to
getting the right answer to a problem in-
volving the area between two curves.

Practice 1. Use integrals and the graphs of f (x) = 1 + x and g(x) =
3− x to determine the area between the graphs of f and g for 0 ≤ x ≤ 3.



4.7 first applications of definite integrals 361

Example 2. Objects A and B start from the same location at the same
time and travel along the same path with respective velocities vA(t) =
t + 3 and vB(t) = t2 − 4t + 3 meters per second (see margin). How far
ahead is A after 3 seconds? After 5 seconds?

Solution. From the graph, it appears that vA(t) ≥ vB(t), at least for
0 ≤ t ≤ 3, but for the second question we need to know whether this
holds for 3 ≤ t ≤ 5 as well. Setting vA(t) = vB(t) to see where the
graphs intersect:

t + 3 = t2 − 4t + 3 ⇒ t2 − 5t = 0 ⇒ t = 0 or t = 5

Checking that vA(1) = 4 > 0 = vB(1) (or referring to the graph), we
can conclude that vA(t) ≥ vB(t) on the interval [0, 5].

Because vA(t) ≥ vB(t), the “area” between the graphs of vA and vB

over an interval [0, x] represents the distance between the objects after
x seconds. After three seconds, the distance apart is:∫ 3

0
[vA(t)− vB(t)] dt =

∫ 3

0

[
(t + 3)− (t2 − 4t + 3)

]
dt =

∫ 3

0

[
5t− t2

]
dt

=

[
5
2

t2 − 1
3

t3
]3

0
=

[
45
2
− 9
]
− [0− 0] =

27
2

or 13.5 meters. After five seconds, the distance apart is

∫ 5

0
[vA(t)− vB(t)] dt =

[
5
2

t2 − 1
3

t3
]5

0
=

125
6

or approximately 20.83 meters. J

If f (x) ≥ g(x) ≥ 0 on an interval [a, b] (as illustrated in the margin
figure), we could have used a simpler geometric argument that the area
between the graphs of f and g is just the area below the graph of f
minus the area below the graph of g:∫ b

a
f (x) dx−

∫ b

a
g(x) dx =

∫ b

a
[ f (x)− g(x)] dx

which agrees with our previous result. We took a different approach at
the beginning of this section, however, because it provides a nice (yet
simple) example of translating a geometric or physical problem into a
Riemann sum and then into a definite integral.

Example 3. Find the area of the shaded region in the margin figure.

Solution. These are the same two functions from our previous Exam-
ple; in our previous solution we observed that t + 3 ≥ t2 − 4t + 3 for
0 ≤ t ≤ 5, and it is straightforward to check that t + 3 ≤ t2 − 4t + 3 for
t ≥ 5 (and, in particular, for 5 ≤ t ≤ 7).
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We therefore need to split our problem into two pieces and subtract
the “bottom” function from the “top” function on each interval. The
area of the left region is:

∫ 5

0

[
(t + 3)− (t2 − 4t + 3)

]
dt =

[
5
2

t2 − 1
3

t3
]5

0
=

125
6

(as worked out in the previous example), while the area of the region
on the right is:

∫ 7

5

[
(t2 − 4t + 3)− (t + 3)

]
dt =

[
1
3

t3 − 5
2

t2
]7

5
=

38
3

so the total area is
125
6

+
38
3

=
67
2

= 33.5. J

Average Value of a Function

We compute the average (or mean value) of n numbers, a1, a2, . . . , an

by adding them up and dividing by n:

average = a =
1
n

n

∑
k=1

ak

but computing the average value of a function requires an integral.

A “bar” above a quantity typically indi-
cates the mean of that quanitity.

To estimate the average value of f on the interval [a, b], we can

partition [a, b] into n equally long subintervals of length ∆x =
b− a

n
,

then choose a value ck in each subinterval, and find the average of the
function values f (ck) at those n points:

f = average of f ≈ f (c1) + f (c2) + · · ·+ f (cn)

n
=

n

∑
k=1

f (ck) ·
1
n

While this last term resembles a Riemann sum, it does not have the

form ∑ f (ck) · ∆xk, because
1
n
6= ∆x =

b− a
n

. But multiplying and
dividing by b− a yields:

n

∑
k=1

f (ck) ·
1
n
=

n

∑
k=1

f (ck) ·
b− a

n
· 1

b− a
=

1
b− a

n

∑
k=1

f (ck) ·
b− a

n

This last (Riemann) sum converges to a definite integral:

1
b− a

n

∑
k=1

f (ck) ·
b− a

n
=

1
b− a

n

∑
k=1

f (ck) · ∆x −→ 1
b− a

∫ b

a
f (x) dx

as the number of subintervals n gets larger and the mesh, ∆x =
b− a

n
,

approaches 0.
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Definition: Average (Mean) Value of a Function
The average value of an integrable function f on [a, b] is

1
b− a

∫ b

a
f (x) dx

The average value of a positive function has a nice geometric in-
terpretation. Imagine that the area under f (see margin) represents a
liquid trapped above by the graph of f and on the other sides by the
x-axis and the lines x = a and x = b. If we remove the “lid” (the graph
of f ), the liquid would settle into the shape of a rectangle with the same
area as the region under the graph of f . If the height of this rectangle
is H, then the area of the rectangle is H · (b− a), so:

H · (b− a) =
∫ b

a
f (x) dx ⇒ H =

1
b− a

∫ b

a
f (x) dx

The average value of a positive function f is the height H of the rectan-
gle whose area is the same as the area under f .

Example 4. Find the average value of sin(x) on the interval [0, π].

Solution. Using our definition, the average value is:

1
π − 0

∫ π

0
sin(x) dx =

1
π

[
− cos(x)

]π

0
=

1
π
[(1)− (−1)] =

2
π
≈ 0.6366

A rectangle with height
2
π
≈ 0.64 on the interval [0, π] encloses the

same area as one arch of the sine curve. J

If the interval in the previous Example had been [0, 2π], the average
value would be 0. (Why?)

Practice 2. During a nine-hour work day, the production rate at time
t hours was r(t) = 5 +

√
t cars per hour. Find the average hourly

production rate.

Function averages, involving means as well as more complicated
techniques, are used to “smooth” data so that underlying patterns
become more obvious and to remove high frequency “noise” from
signals. In these situations, the value of the original function f at a
point is replaced by some “average of f ” over an interval including
that point. If f is the graph of rather jagged data (see margin), then the
10-year average of f is the integral:

g(x) =
1
10

∫ x+5

x−5
f (t) dt

an average of f over a timespan of five years on either side of x.
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The figure below shows the graphs of a monthly average (rather
“noisy” data) of surface-temperature data, an annual average (still rather
“jagged”) and a five-year average (a much smoother function):

Typically this “moving average” function reveals a pattern much more
clearly than the original data.

This “moving average” of “noisy” data
is frequently used with data such as
weather information and stock prices.

Work

In physics, the amount of work done on an object is defined as the force
applied to the object times the displacement of the object (the distance
the object is moved while the force is applied). Or, more succinctly:

work = (force) · (displacement)

If you lift a three-pound book two feet, then the force is 3 pounds (the
weight of the book), and the displacement is 2 feet, so you have done
(3 pounds) · (2 feet) = 6 foot-pounds of work. When the applied force
and the displacement are both constants, calculating work is simply a
matter of multiplication.

Practice 3. How much work is done lifting a 10-pound object from the
ground to the top of a 30-foot building?

If either the force or the displacement varies, however, we need to
use integration.

Example 5. How much work is done lifting a 10-pound object from
the ground to the top of a 30-foot building using a cable that weighs 2
pounds per foot?
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Solution. This is more challenging situation. We know the work
needed to move the object is (10)(30) = 300 foot-pounds, but once
we start pulling the cable onto the roof, we need to do less and less
work to pull the remaining part of the cable.

Let’s partition the cable into small increments so the displacement of
each small piece of the cable is roughly constant. If we break the cable

into n small pieces, each piece has length ∆x =
30
n

, so its weight (the
force required to move it) is:

(∆x ft) ·
(

2
lbs
ft

)
= 2∆x lbs

If this small piece of cable is initially ck feet above the ground, then
its displacement is 30− ck feet, so the work done on this small piece
is 2(30− ck)∆x ft-lbs and the total work done on the entire cable is
(approximately):

n

∑
k=1

2(30− ck)∆x −→
∫ 30

0
2(30− x) dx

Once again we have formed a Riemann sum, which converges to a
definite integral as we chop the cable into smaller and smaller pieces.
This integral represents the work needed to lift the cable to the roof:∫ 30

0
2(30− x) dx =

∫ 30

0
(60− 2x) dx = 60x− x2

∣∣∣∣30

0

= [1800− 900]− [0− 0] = 900 ft-lbs

so the total work required to lift the object and the cable to the roof is
300 + 900 = 1200 ft-lbs. J

Practice 4. Suppose the building in Example 5 is 50 feet tall and the
cable weighs 3 pounds per foot.

(a) Compute the work done raising the object from the ground to a
height of 10 feet.

(b) From a height of 10 feet to a height of 20 feet.

The situation in the previous Example and Practice problems is but
one of many that arise when computing work. We will examine others
in Section 5.4.

Summary

The area, average and work applications in this section merely introduce
a few of the many applications of definite integrals. They illustrate the
pattern of moving from an applied problem to a Riemann sum, to a
definite integral and, finally, to a numerical answer. We will explore
many more applications in Chapter 5.
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4.7 Problems

In Problems 1–4, use the values in the table below
to estimate the indicated areas.

x f(x) g(x) h(x)

0 5 2 5

1 6 1 6

2 6 2 8

3 4 2 6

4 3 3 5

5 2 4 4

6 2 5 2

1. Estimate the area between f and g for 1 ≤ x ≤ 4.

2. Estimate the area between f and g for 1 ≤ x ≤ 6.

3. Estimate the area between f and h for 0 ≤ x ≤ 4.

4. Estimate the area between g and h for 0 ≤ x ≤ 6.

5. Estimate the area of the island in the figure below.

6. Estimate the area of the island in figure above if
the distances between the lines is 50 feet instead
of 40 feet.

In Problems 7–18, sketch a graph of each function
and find the area between the graphs of f and g for
x in the given interval.

7. f (x) = x2 + 3, g(x) = 1, −1 ≤ x ≤ 2

8. f (x) = x2 + 3, g(x) = 1 + x, 0 ≤ x ≤ 3

9. f (x) = x2, g(x) = x, 0 ≤ x ≤ 2

10. f (x) = 4− x2, g(x) = x + 2, 0 ≤ x ≤ 2

11. f (x) =
1
x

, g(x) = x, 1 ≤ x ≤ e

12. f (x) =
√

x, g(x) = x, 0 ≤ x ≤ 4

13. f (x) = x + 1, g(x) = cos(x), 0 ≤ x ≤ π

4

14. f (x) = (x− 1)2, g(x) = x + 1, 0 ≤ x ≤ 3

15. f (x) = ex, g(x) = x, 0 ≤ x ≤ 2

16. f (x) = cos(x), g(x) = sin(x), 0 ≤ x ≤ π

4
17. f (x) = 3, g(x) =

√
1− x2, 0 ≤ x ≤ 1

18. f (x) = 2, g(x) =
√

4− x2, −2 ≤ x ≤ 2

In Problems 19–22, use the values of f in the table
at the beginning of the page to estimate the average
value of f on the indicated interval.

19. [0.5, 4.5] 20. [0.5, 6.5] 21. [1.5, 3.5] 22. [3.5, 6.5]

In 23–26, find the average value of the function
whose graph appears below on the given interval.

23. [0, 2] 24. [0, 4] 25. [1, 6] 26. [4, 6]

In Problems 27–32, find the average value of the
given function on the indicated interval.

27. f (x) = 2x + 1, 0 ≤ x ≤ 4

28. f (x) = x2, 0 ≤ x ≤ 2

29. f (x) = x2, 1 ≤ x ≤ 3

30. f (x) =
√

x, 0 ≤ x ≤ 4

31. f (x) = sin(x), 0 ≤ x ≤ π

32. f (x) = cos(x), 0 ≤ x ≤ π

33. Calculate the average value of f (x) =
√

x on
[0, C] for C = 1, 9, 81, 100. What is the pattern?

34. Calculate the average value of f (x) = x on [0, C]
for C = 1, 10, 80, 100. What is the pattern?
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35. The figure below shows the number of telephone
calls per minute at a large company. Estimate the
average number of calls per minute:

(a) from 8:00 a.m. to 5:00 p.m.

(b) from 9:00 a.m. to 1:00 p.m.

36. The figure below shows the velocity of a car dur-
ing a five-hour trip.

(a) Estimate how far the car traveled.

(b) At what constant velocity should you drive
in order to travel the same distance in five
hours?

37. (a) How much work is done lifting a 20-pound
bucket from the ground to the top of a 30-
foot building with a cable that weighs three
pounds per foot?

(b) How much work is done lifting the same
bucket from the ground to a height of 15 feet
with the same cable?

38. (a) How much work is done lifting a 60-pound
chair from the ground to the top of a 20-foot
building with a cable that weighs 1 pound per
foot?

(b) How much work is done lifting the same chair
from the ground to a height of 5 feet with the
same cable?

39. (a) How much work is done lifting a 10-pound
calculus book from the ground to the top of
a 30-foot building with a cable that weighs 2

pounds per foot?

(b) From the ground to a height of 10 feet?

(c) From a height of 10 feet to a height of 20 feet?

40. How much work is done lifting an 80-pound in-
jured child to the top of a 20-foot hole using a
stretcher weighing 14 pounds and a cable that
weighs 1 pound per foot?

41. How much work is done lifting a 60-pound in-
jured child to the top of a 15-foot hole using a
stretcher weighing 10 pounds and a cable that
weighs 2 pound per foot?

42. How much work is done lifting a 120-pound in-
jured adult to the top of a 30-foot hole using a
stretcher weighing 10 pounds and a cable that
weighs 2 pound per foot?
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4.7 Practice Answers

1. Referring to a graph (see margin figure) and using geometry: A =
1
2
(2)(1) = 1 and B =

1
2
(4)(2) = 4 so the total area is 1 + 4 = 5.

Referring to a graph of the functions and using integrals:

A =
∫ 1

0
[(3− x)− (1 + x)] dx =

∫ 1

0
[2− 2x] dx

=
[
2x− x2

]1

0
= [2− 1]− [0− 0] = 1

B =
∫ 3

1
[(1 + x)− (3− x)] dx =

∫ 3

1
[2x− 2] dx

=
[

x2 − 2x
]3

1
= [9− 6]− [1− 2)] = 4

which also results in a total area of 1 + 4 = 5.

2. Using the average value formula:

1
9− 0

∫ 9

0

[
5 +
√

t
]

dt =
1
9

∫ 9

0

[
5 + t

1
2

]
dt =

1
9

[
5t +

2
3

t
3
2

]9

0

=
1
9

[(
45 +

2
3
· 27
)
− (0 + 0)

]
=

45 + 18
9

= 7

so the average hourly production rate is 7 cars per hour.

3. (force) · (displacement) = (10 pounds) · (30 feet) = 300 foot-pounds

4. (a) The work required to move the object a distance of 10 feet is
(10 pounds) · (10 feet) = 100 foot-pounds. The work required to
move the top 10 feet of the cable onto the roof is:∫ 10

0
(10− x) · 3 dx =

[
30x− 3

2
x2
]10

0
= [300− 150]− [0] = 150 ft-lbs

and the force required to move the remaining 40 feet of cable is:

(40 ft) ·
(

3
lbs
ft

)
(10 ft) = 1200 ft-lbs

so the total work required is 100 + 150 + 1200 = 1450 foot-
pounds.

(b) The work required to move the object a distance of 10 feet is again
(10 pounds) · (10 feet) = 100 foot-pounds. The work required to
move the top 10 feet of the cable onto the roof is again 150 foot-
pounds, and the force required to move the remaining 30 feet of
cable is:

(30 ft) ·
(

3
lbs
ft

)
(10 ft) = 900 ft-lbs

so the total work required is 100+ 150+ 900 = 1150 foot-pounds.
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4.8 Using Tables (and Technology) to Find Antiderivatives

Appendix I shows patterns for many antiderivatives — some of which
you should already know based on your work in this chapter. Many
reference books and Web sites contain far more than the ones listed in
the appendix. A table of integrals helps you while you are learning
calculus and serves as a reference later when you are using calculus.

Think of an integral table as a dictionary: something to use when
you need to spell a challenging word or need the meaning of a new
word. It would be difficult to write a report if you had to look up the
spelling of every word, and it will be difficult to learn and use calculus
if you have to look up every antiderivative. Tables of antiderivatives
are limited by necessity and often take longer to use than finding an
antiderivative from scratch, but they can also be very valuable and
useful.

This section shows how to transform some integrals into forms found
in Appendix I and how to use “recursion” formulas found in integral
tables. The first Examples and Practice problems illustrate some of the
techniques used to change an integral into a standard form.

These techniques are useful whether
that standard form resides in a table or
in your head.

Appendix I (like some other integral ta-
bles) omits the “+C” arbitrary constant
for conciseness, but you need to remem-
ber to include it when using the results
of the table to find an indefinite integral.

Example 1. Use Appendix I to find
∫ 1

9 + x2 dx.

Solution. The integrand is a rational function, and the first entry you
see listed in the “Rational Functions” section of Appendix I should be:∫ 1

a2 + x2 dx =
1
a

arctan
( x

a

)
+ C

This resembles the pattern we need, so replacing the a with 3 we have:∫ 1
9 + x2 dx =

∫ 1
32 + x2 dx =

1
3

arctan
( x

3

)
+ C

You can (and should) check this answer by differentiating. J

Practice 1. Use Appendix I to find
∫ 1

25 + x2 dx and
∫ 1

25− x2 dx.
Notice that a small change in the form
of the integrand (from + to − here) can
lead to a very different result.

Example 2. Use Appendix I to find
∫ 1

5 + x2 dx.

Solution. The integrand is again a rational function, and the general
form is the same as in the previous Example:∫ 1

5 + x2 dx =
∫ 1

(
√

5)2 + x2
dx =

1√
5

arctan
(

x√
5

)
+ C

but here we needed to put a =
√

5. J

The constant in the denominator of this
integrand was not a perfect square, but
the process is exactly the same — even if
the result looks a bit “messier” due to
the presence of the radical.

Practice 2. Use Appendix I to find
∫ 1

7 + x2 dx and
∫ 1

7− x2 dx.
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We often need to perform some algebraic manipulations to change
an integrand into one that exactly matches a pattern in the table.

Example 3. Use Appendix I to find
∫ 1

9 + 4x2 dx.

Solution. The integrand is again a rational function, and the general
form resembles the one used in the previous Examples, but here we
have a 4x2 where we only see x2 in the table pattern. To get the
integrand in the form we want, we can factor a 4 out of the denominator:∫ 1

9 + 4x2 dx =
∫ 1

4
( 9

4 + x2
) dx =

1
4

∫ 1( 3
2
)2

+ x2
dx

=
1
4
· 1

3
2
· arctan

(
x
3
2

)
+ C =

1
6

arctan
(

2x
3

)
+ C

Another approach involves a change of variable. First write:∫ 1
9 + 4x2 dx =

∫ 1
32 + (2x)2 dx

We have 2x where we would like to see a standalone variable. To get
that pattern, put u = 2x ⇒ du = 2 dx ⇒ dx = 1

2 du:∫ 1
32 + (2x)2 dx =

∫ 1
32 + u2 ·

1
2

du =
1
2
· 1

3
arctan

(u
3

)
+ C

=
1
6

arctan
(

2x
3

)
+ C

which yields the same result as our previous method. J

Practice 3. Use Appendix I to find
∫ 1

25 + 9x2 dx and
∫ 1

25− 9x2 dx.

Sometimes a change of variable is absolutely necessary.

Example 4. Use Appendix I to find
∫ ex

9 + e2x dx.

Solution. Here the integrand is not a rational function, but we can
transform it into one by using the substitution u = ex ⇒ du = ex dx so
that u2 = (ex)2 = e2x:∫ ex

9 + e2x dx =
∫ 1

32 + (ex)2 · e
x dx =

∫ 1
32 + u2 du

=
1
3

arctan
(u

3

)
+ C =

1
3

arctan
(

ex

3

)
+ C

If you don’t see the exact pattern you need in an integral table, try a
substitution first. J

Practice 4. Evaluate
∫ cos(x)

25 + sin2(x)
dx and

∫ cos(x)
25− sin2(x)

dx.

How should you recognize whether algebra or a change of variable
is needed? Experience and practice, practice, practice.
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Using “Recursion” Formulas

A recursion formula gives one antiderivative in terms of another an-
tiderivative. Usually the new antiderivative is somehow simpler than
the original one. For example, the first recursion formula for a trigono-
metric function listed in Appendix I states:∫

sinn(x) dx = − 1
n

sinn−1(x) cos(x) +
n− 1

n

∫
sinn−2(x) dx

This formula would allow us to write
∫

sin8(x) dx, for instance, in

terms of
∫

sin6(x) dx, which should (theoretically, at least) be easier to

compute than the original integral.

We will develop this formula from
scratch in Problem 25 of Section 8.2. For
now, you can check that it works by com-
paring the derivative of your answer to
the original integrand for an integration
problem that uses this — or any other —
recursion formula.

Example 5. Use a recursion formula to evaluate
∫

sin4(x) dx.

Solution. Applying the formula given in the discussion above:∫
sin4(x) dx = −1

4
sin3(x) cos(x) +

3
4

∫
sin2(x) dx

This new integral is one we already know how to evaluate:∫
sin2(x) dx =

∫ [1
2
− 1

2
cos(2x)

]
dx =

1
2

x− 1
4

sin(2x) + K

Putting this together with the result of the recursion formula, we get:∫
sin4(x) dx = −1

4
sin3(x) cos(x) +

3
4

[
1
2

x− 1
4

sin(2x)
]
+ C

= −1
4

sin3(x) cos(x) +
3
8

x− 3
16

sin(2x) + C

We could have used Appendix I to find
∫

sin2(x) dx instead — or even

applied the recursion formula a second time to rewrite
∫

sin2(x) dx in

terms of
∫

sin0(x) dx =
∫

1 dx. J

We could have included the “+K′′ here
but then the result at the next stage
would have included the constant terms

· · ·+ 3
4

K + C

which is also an arbitrary constant.

Practice 5. Use Appendix I to evaluate
∫

cos4(x) dx and
∫

cos4(7x) dx.

Using Technology

Many Web sites (such as Wolfram|Alpha, www.wolframalpha.com),
computer programs (wxMaxima is a good free one) and calculators
(such as the TI-89 or TI-Nspire CAS) feature computer algebra systems
that can find antiderivatives of a wide variety of functions. For example,
typing integral sin^4(x) into Wolfram|Alpha yields:

which (applying some trig idenities) agrees with our result above.

Although technology can help us find
an antiderivative and evaluate a definite
integral, in an application problem you
still need to set up the Riemann sum that
leads to the definite integral.
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4.8 Problems

In Problems 1–48, use patterns and recursion formulas from the integral table in Appendix I as necessary
(along with any other antiderivatives and integration techniques you already know) to evaluate each integral.

1.
∫ 1

4 + x2 dx 2.
∫ 5

4 + x2 dx 3.
∫ [

2x +
2

25 + x2

]
dx

4.
∫ 1

4− x2 dx 5.
∫ 2

9− x2 dx 6.
∫ [

cos(x) +
3

25− x2

]
dx

7.
∫ 1

3 + x2 dx 8.
∫ 5

7 + x2 dx 9.
∫ [

ex +
7

2 + x2

]
dx

10.
∫ 1√

4− x2
dx 11.

∫ 3√
5− x2

dx 12.
∫ 3√

4− x2
dx

13.
∫ 1

4 + 25x2 dx 14.
∫ 2√

9− 16x2
dx 15.

∫ 5√
1− 4x2

dx

16.
∫

sec(x + 5) dx 17.
∫ 2√

1 + 9x2
dx 18.

∫
x · sec(2x2 + 7) dx

19.
∫

ln(x + 1) dx 20.
∫

ln(3x− 1) dx 21.
∫

3x · ln(5x2 + 7) dx

22.
∫

ex ln (ex − 3) dx 23.
∫

cos(x) · ln (sin(x)) dx 24.
∫ 2√

x2 − 9
dx

25.
∫ √

4 + x2 dx 26.
∫ √

9 + x2 dx 27.
∫ √

16 + x2 dx

28.
∫ 1

0

1
4 + x2 dx 29.

∫ 3

1

[
2x +

2
25 + x2

]
dx 30.

∫ 2

0

2
9− x2 dx

31.
∫ 1

−1

1
3 + x2 dx 32.

∫ 1

0

[
ex +

7
2 + x2

]
dx 33.

∫ 2

1

3√
5− x2

dx

34.
∫ 1

0

1
4 + 25x2 dx 35.

∫ 0.1

0

5√
1− 4x2

dx 36.
∫ 1

0

1√
9− 4x2

dx

37.
∫ 6

0
ln(x + 1) dx 38.

∫ 3

0
3x · ln(5x2 + 7) dx 39.

∫ π
2

0
cos(x) · ln (2 + sin(x)) dx

40.
∫ 2

0

√
4 + x2 dx 41.

∫ 3

−3

√
9 + x2 dx 42.

∫ 1

0

√
16 + x2 dx

43.
∫

sin3(x) dx 44.
∫

cos3(x) dx 45.
∫

cos5(x) dx

46.
∫

sec5(x) dx 47.
∫

x2 cos(x) dx 48.
∫

x2 sin5(x) dx
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49. Before doing any calculations, predict which you
expect to be larger:

• the average value of sin(x) on [0, π]

• the average value of sin2(x) on [0, π]

Then calculate each average to see if your predic-
tion was correct.

50. Find the area of the region bounded by the graph
of f (x) = ln(x), the x-axis and the lines x = 1
and x = C when C = e, 10, 100 and 200.

51. Find the average value of f (x) = ln(x) on the
interval 1 ≤ x ≤ C when C = e, 10, 100, 200.

52. Before doing any calculations, predict which
of the following integrals you expect to be the
largest, then evaluate each integral.

(a)
∫ 1

0
ex dx (b)

∫ 1

0
xex dx

(c)
∫ 1

0
x2ex dx

53. Before doing any calculations, predict which
of the following integrals you expect to be the
largest, then evaluate each integral.

(a)
∫ 2

1
ex dx (b)

∫ 2

1
xex dx

(c)
∫ 2

1
x2ex dx

54. Before doing any calculations, predict which
of the following integrals you expect to be the
largest, then evaluate each integral.

(a)
∫ π

0
sin(x) dx

(b)
∫ π

0
x sin(x) dx

(c)
∫ π

0
x2 sin(x) dx

55. Evaluate
∫ C

0

2
1 + x2 dx for C = 1, 10, 20 and 30.

Before doing the calculation, estimate the value
of the integral when C = 40.

4.8 Practice Answers

1. The integral
∫ 1

25 + x2 dx resembles the pattern from Example 1:

∫ 1
25 + x2 dx =

∫ 1
52 + x2 dx =

1
5

arctan
( x

5

)
+ C

The integrand in
∫ 1

25− x2 dx is also a rational function, but we

need a different pattern from Appendix I (see margin) with a = 5:∫ 1
25− x2 dx =

∫ 1
52 − x2 dx =

1
10

ln
∣∣∣∣ x + 5
x− 5

∣∣∣∣+ C

∫ 1
a2 − x2 dx =

1
2a

ln
∣∣∣∣ x + a

x− a

∣∣∣∣

2. The integral
∫ 1

7 + x2 dx matches the pattern in Example 2:

∫ 1
7 + x2 dx =

∫ 1
(
√

7)2 + x2
dx =

1√
7

arctan
(

x√
7

)
+ C

For
∫ 1

7− x2 dx we need the pattern in the margin with a =
√

7:

∫ 1
7− x2 dx =

∫ 1
(
√

7)2 − x2
dx =

1
2
√

7
ln

∣∣∣∣∣ x +
√

7
x−
√

7

∣∣∣∣∣+ C
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3. For the integral
∫ 1

25 + 9x2 dx we can factor 9 from the denominator:∫ 1
25 + 9x2 dx =

∫ 1
9
( 25

9 + x2
) dx =

1
9

∫ 1( 5
3
)2

+ x2
dx

=
1
9
· 1

5
3

arctan

(
x
5
3

)
+ C =

1
15

arctan
(

3x
5

)
+ C

and proceed as before. We could proceed similarly for
∫ 1

25− 9x2 dx

or we could substitute u = 3x (see margin):∫ 1
25− 9x2 dx =

∫ 1
52 − (3x)2 dx =

∫ 1
52 − u2 ·

1
3

du

=
1
3
· 1

2 · 5 ln
∣∣∣∣u + 5
u− 5

∣∣∣∣+ C =
1
30
· ln
∣∣∣∣3x + 5
3x− 5

∣∣∣∣+ C

u = 3x ⇒ du = 3 dx ⇒ dx =
1
3

du

4. For
∫ cos(x)

25 + sin2(x)
dx, first use the substitution in the margin:

∫ cos(x)
25 + sin2(x)

dx =
∫ 1

25 + u2 du

followed by the result of the first part of Practice 1:∫ 1
25 + u2 du =

1
5

arctan
(u

5

)
+ C =

1
5

arctan
(

sin(x)
5

)
+ C

For
∫ cos(x)

25− sin2(x)
dx use the same substitution, followed by the

result from the second part of Practice 1:∫ 1
25− u2 du =

1
10

ln
∣∣∣∣u + 5
u− 5

∣∣∣∣+ C =
1

10
ln
∣∣∣∣ sin(x) + 5
sin(x)− 5

∣∣∣∣+ C

u = sin(x)⇒ du = cos(x) dx

u = 7x ⇒ du = 7 dx ⇒ dx =
1
7

du∫
cos4(7x) dx =

1
7

∫
cos4(u) du

5. For
∫

cos4(x) dx we need the recursion formula:∫
cosn(x) dx =

1
n

cosn−1(x) sin(x) +
n− 1

n

∫
cosn−2(x) dx

with n = 4:∫
cos4(x) dx =

1
4

cos3(x) sin(x) +
3
4

∫
cos2(x) dx

=
1
4

cos3(x) sin(x) +
3
4

∫ [1
2
+

1
2

cos(2x)
]

dx

=
1
4

cos3(x) sin(x) +
3
4

[
1
2

x +
1
4

sin(2x)
]
+ C

For
∫

cos4(7x) dx, first use a substitution (see margin) and then the

result of the previous integration:∫
cos4(7x) dx =

1
28

cos3(7x) sin(7x)+
3

28

[
1
2
(7x) +

1
4

sin(14x)
]
+C
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4.9 Approximating Definite Integrals

The Fundamental Theorem of Calculus tells how to calculate the exact
value of a definite integral if the integrand is continuous and if we
can find a formula for an antiderivative of the integrand. In practice,
however, we may need to compute the definite integral of a function
for which we only have table values or a graph — or of a function
that does not have an elementary antiderivative. This section presents
several techniques for getting approximate numerical values for definite
integrals without using antiderivatives. Mathematically, exact answers
are preferable and satisfying, but for most applications a numerical
answer accurate to several digits is just as useful.

The ideas behind these methods are ge-
ometric and rather simple, but using the
methods to get good approximations typ-
ically requires lots of arithmetic, some-
thing calculators and computers are very
good (and quick) at doing.

The General Approach

The methods in this section approximate the definite integral of a
function f by partitioning the interval of integration and building an
“easy” function with values close to those of f on each interval, then
evaluating the definite integrals of the “easy” functions exactly. If the
“easy” functions are close to f , then the sum of the definite integrals of
the “easy” functions should be close to the definite integral of f .

The Left, Right and Midpoint Rules approximate f with horizontal
lines on each partition interval so the “easy” functions are constant
functions, and the approximating regions are rectangles (see top margin
figure). The Trapezoidal Rule approximates f with slanted lines, so the
“easy” functions are linear and the approximating regions are trapezoids
(see middle margin figure). Finally, Simpson’s Rule approximates f
with parabolas, so the “easy” functions are quadratic polynomials (see
bottom margin figure).

The Left and Right approximation rules are simply Riemann sums
with the point ck in the k-th subinterval chosen to be the left or right
endpoint of that subinterval. They typically require a large number
of computations to get even mediocre approximations to the definite
integral of f and are seldom used in practice. Along with the Midpoint
Rule (which chooses each ck to be the midpoint of the k-th subinterval),
they are discussed near the end of the Problems for this section.

All of these methods partition the interval [a, b] into n subintervals

of equal width, so each subinterval has length h = ∆xk =
b− a

n
.

The points of the partition are x0 = a, x1 = a + h, x2 = a + 2 · h,
x3 = a + 3 · h, and so on. The k-th point in the partition is given by the
formula xk = a + k · h and the last (n-th) point is thus:

xn = a + n · h = a + n
(

b− a
n

)
= a + b− a = b
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Approximating a Definite Integral Using Trapezoids

If the graph of f is curved, then slanted lines typically come closer to
the graph of f than horizontal ones do. These slanted lines lead to
trapezoidal approximating regions.

See Problem 29.

The area of a trapezoid is (base) · (average height) so the area of the
first trapezoid in the margin figure is:

(∆x) ·
(

y0 + y1

2

)
Similarly, the areas of the next few trapezoids are:

(∆x) ·
(

y1 + y2

2

)
, (∆x) ·

(
y2 + y3

2

)
, (∆x) ·

(
y3 + y4

2

)
and so on, with the area of the last region being

(∆x) ·
(

yn−1 + yn

2

)
The sum of these n trapezoidal areas is:

Tn = (∆x)
(

y0 + y1

2

)
+ (∆x)

(
y1 + y2

2

)
+ (∆x)

(
y2 + y3

2

)
+ · · ·

. + (∆x)
(

yn−1 + yn

2

)
=

(
∆x
2

)
[(y0 + y1) + (y1 + y2) + (y2 + y3) + · · ·+ (yn−1 + yn)]

=

(
h
2

)
[y0 + 2y1 + 2y2 + 2y3 + · · ·+ 2yn−1 + yn]

=

(
h
2

)
[ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + · · ·+ 2 f (xn−1) + f (xn)]

Each f (xk) value, except the first (k = 0) and the last (k = n), is the
right-endpoint height of one trapezoid and the left-endpoint height of
the next, so it shows up in the calculation for two trapezoids and is
multiplied by 2 in the formula for the trapezoidal approximation.

Trapezoidal Approximation Rule

If f is integrable on [a, b] and [a, b] is partitioned
into n subintervals of width h = b−a

n

then the Trapezoidal approximation of
∫ b

a
f (x) dx is:

Tn =
h
2
[ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + · · ·+ 2 f (xn−1) + f (xn)]
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Example 1. Compute T4, the Trapezoidal approximation of
∫ 3

1
f (x) dx

for n = 4, with the values of f in the margin table.

Solution. The step size is h =
b− a

n
=

3− 1
4

=
1
2

so:

T4 =
h
2
[ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)]

=
0.5
2

[4.2 + 2(3.4) + 2(2.8) + 2(3.6) + (3.2)] = (0.25)(27) = 6.75

so we can say that
∫ 3

1
f (x) dx ≈ 6.75. J

x f (x)

1.0 4.2
1.5 3.4
2.0 2.8
2.5 3.6
3.0 3.2

Let’s see how well the Trapezoidal Rule approximates an integral
whose value we can compute exactly:

∫ 3

1
x2 dx =

1
3

x3
∣∣∣∣3
1
=

1
3
[27− 1] =

26
3
≈ 8.6666667

Example 2. Calculate T4 for
∫ 3

1
x2 dx.

Solution. The step size is h =
b− a

n
=

3− 1
4

=
1
2

so:

T4 =
h
2
[ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)]

=
0.5
2

[
(1.0)2 + 2(1.5)2 + 2(2.0)2 + 2(2.5)2 + (3.0)2

]
= (0.25) [1 + 2(2.25) + 2(4) + 2(6.25) + 9] = 8.75

which is within 0.1 of the exact answer. Larger values for n give better
approximations: T20 = 8.67 and T100 = 8.6668. J

Practice 1. On a summer day, the level of the pond shown in the
margin fell 0.1 feet because of evaporation. Use the Trapezoidal Rule to
approximate the surface area of the pond and then estimate how much
water evaporated.

Approximating a Definite Integral Using Parabolas

This parabolic method is known as Simp-
son’s Rule, named after British mathe-
matician and inventor Thomas Simpson
(1710–1761); Germans call it Kepler’sche
Fassregel, after Johannes Kepler, who de-
veloped it 100 years before Simpson.

If the graph of f is curved, the slanted lines from the Trapezoidal Rule
may not fit the graph of f as closely as we would like, requiring a
large number of subintervals to achieve a good approximation of the
definite integral. Curves typically fit the graph of f better than straight
lines in such situations, and the easiest nonlinear curves we know are
parabolas.

Just as we need two points to determine an equation of a line, we
will need three points to determine an equation of a parabola.
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Calling these points (x0, y0), (x1, y1) and (x2, y2), the area under a
parabolic region with evenly spaced xk values (see margin) is:

(2∆x) ·
[

y0 + 4y1 + y2

6

]
=

∆x
3

[y0 + 4y1 + y2]

Taking the subintervals in pairs, the areas of the next few parabolic
regions are:

∆x
3

[y2 + 4y3 + y4] ,
∆x
3

[y4 + 4y5 + y6] ,
∆x
3

[y6 + 4y7 + y8]

and so on, with the area of the last pair of regions being:

∆x
3

[yn−2 + 4yn−1 + yn]

so the sum of all n parabolic areas (see margin) is:

Sn =
∆x
3

[y0 + 4y1 + y2] +
∆x
3

[y2 + 4y3 + y4] + · · ·+
∆x
3

[yn−2 + 4yn−1 + yn] . +
∆x
3

[y2 + 4y3 + y4] + · · ·+
∆x
3

[yn−2 + 4yn−1 + yn]

=

(
h
3

)
[(y0 + 4y1 + y2 + y2 + 4y3 + y4 · · ·+ yn−2 + 4yn−1 + yn]

=

(
h
3

)
[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−1 + 4yn−1 + yn)]

=

(
h
3

)
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + · · ·

. + 2 f (xn−2) + 4 f (xn−1) + f (xn)]

This result is not obvious; see Problem 32

for the necessary algebra.

In order to use pairs of subintervals, the number n of subintervals
must be even. Notice that the coefficient pattern for the area under a
single parabolic region is 1–4–1, but when we put several parabolas
next to each other, they share some edges and the pattern becomes
1–4–2–4–2–· · · –2–4–1 with the shared edges getting counted twice.

Parabolic Approximation Rule (Simpson’s Rule)

If f is integrable on [a, b] and [a, b] is partitioned

into n subintervals of length h =
b− a

n
then the Parabolic approximation of

∫ b

a
f (x) dx is:

Sn =
h
3
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + · · · .....................

.......................... + 2 f (xn−2) + 4 f (xn−1) + f (xn)]x f (x)

1.0 4.2
1.5 3.4
2.0 2.8
2.5 3.6
3.0 3.2

Example 3. Calculate S4, the Simpson’s Rule approximation of
∫ 3

1
f (x) dx

for the function f with values in the margin table.
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Solution. The step size is h =
b− a

n
=

3− 1
4

=
1
2

, so:

S4 =
h
3
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)]

=
1
2
3
[4.2 + 4(3.4) + 2(2.8) + 4(3.6) + (3.2)] =

1
6
(41) =

41
6

or approximately 6.833. J

Example 4. Calculate S4 for
∫ 3

1
2x dx.

Solution. As in the previous Examples, h = b−a
n = 0.5 and x0 = 1,

x1 = 1.5, x2 = 2, x3 = 2.5 and x4 = 3.

S4 =
h
3
· [ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)]

=
1
2
3
· [ f (1) + 4 f (1.5) + 2 f (2) + 4 f (2.5) + f (3)]

=

(
1
6

) [
21 + 4

(
21.5
)
+ 2

(
22
)
+ 4

(
22.5
)
+
(

23
)]

=

(
1
6

) [
2 + 4(2

√
2) + 2(4) + 4(4

√
2) + 8

]
=

(
1
6

) [
18 + 20

√
2
]

or approximately 8.656854. The exact value of the integral is:

∫ 3

1
2x dx =

[
2x

ln(2)

]3

1
=

8
ln(2)

− 2
ln(2)

=
6

ln(2)
≈ 8.65617024533

Larger values of n give better approximations: S20 = 8.656171 and
S100 = 8.656170. J

Practice 2. Use Simpson’s Rule to estimate the surface area of the pond
in the margin figure.

Which Method Is Best?

The most difficult and time-consuming part of these approximations,
whether done by hand or by computer, is the evaluation of the function
at the xk values. For n subintervals, all of the methods require about
the same number of function evaluations. The table on the next page

illustrates how closely each method approximates
∫ 5

1

1
x

dx = ln(5) ≈
1.609437912 using several values of n. The results in the table also show
how quickly the actual error shrinks as the value of n increases: just
doubling n from 4 to 8 cuts the actual error of the Simpson’s Rule
approximation of this definite integral by a factor of 9 — a good reward
for our extra work.
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method approximation error bound actual error

T4 1.683333333 0.6666666 0.07389542

S4 1.622222222 0.5333333 0.01278431

L4 2.083333333 2.0000000 0.47389542

R4 1.283333333 2.0000000 0.32610458

M4 1.574603175 0.3333333 0.03483474

T8 1.628968254 0.1666666 0.01953034

S8 1.610846561 0.0333333 0.00140865

L8 1.828968254 1.0000000 0.21953034

R8 1.428968254 1.0000000 0.18046966

M8 1.599844394 0.0833333 0.00959352

T20 1.612624844 0.0266667 0.00318693

S20 1.609486789 0.0008533 0.00004888

L20 1.692624844 0.4000000 0.08318693

R20 1.532624844 0.4000000 0.07681307

M20 1.607849324 0.0133333 0.00158859

The “error bounds” in the third column
are discussed below.

Notice that for each value of n, the Simp-
son’s Rule approximation Sn has the
smallest error, and that the error for the
Midpoint Rule approximation Mn (dis-
cussed in the Problems) is roughly half
the error for the Trapezoidal Rule Tn. Ln
and Rn denote the Left and Right approx-
imations, respectively.

How Good Are the Approximations?

The approximation rules are valuable by themselves, but they are
particularly useful because we can find “error bound” formulas that
guarantee how close these approximations come to the exact values of
the definite integral. It is useful to know that the value of an integral
is “about 3.7,” but we can have more confidence in our approximation
if we know that value is “within 0.0001 of 3.7.” Then we can decide if
our approximation is good enough for the job at hand or if we need to
improve it.

We can also solve the formulas for the error bounds provided below
to determine how many subintervals we need to guarantee that our
approximation is within some specified distance of the exact answer.
There is no reason to use 1000 subintervals if 18 will give the needed
accuracy. Unfortunately, the formulas for the error bounds require
information about the derivatives of the integrands, so we cannot use
these error bound formulas for the approximations of integrals of
functions defined only by tables or graphs — or of continuous (hence
integrable) functions that fail to have continuous derivatives.

The “error bound” formula for the Trapezoidal Rule approximation
given at the top of the next page is just a “guarantee”: the actual error
is guaranteed to be no larger than the error bound. In fact, the actual
error is usually much smaller than the error bound (compare the error
bounds with the actual error for T4, T8 and T20 in the table above to see
this principle in action).
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The word “error” does not indicate a mistake, it simply means the
deviation or distance of the approximate answers from the exact answer.

Error Bound for Trapezoidal Approximation

If f ′′ is continuous on [a, b] and | f ′′(x)| ≤ B2

then the “error” of the Tn approximation of
∫ b

a f (x) dx satisfies:

|“error”| =
∣∣∣∣∫ b

a
f (x) dx− Tn

∣∣∣∣ ≤ (b− a)3B2

12n2

While it’s possible to prove this er-
ror bound formula using mathematics
you’ve already learned, the proof is
highly technical and sheds little or no
insight into the workings of the Trape-
zoidal Rule, so we (like the authors of
most calculus books) have omitted it.

Example 5. You can be certain that the T10 approximation of
∫ 2

0
sin(x2) dx

is within what distance of the exact value of the integral?

Solution. We know that b − a = 2, n = 10 and f (x) = sin
(

x2), so
f ′′(x) = −4x2 · sin

(
x2)+ 2 · cos

(
x2) is continuous on [0, 2]. Practice your differentiation skills by ver-

ifying this.

Notice that (a bound for) the “error” de-
pends on three things: the size of the
interval of integration (the bigger the in-
terval, the bigger the potential error); the
number of subintervals in the partition
(the more subintervals, the smaller the
potential error); and the size of the sec-
ond derivative of the integrand. We’ve
already seen that the second derivative
of a function is related to the concavity of
its graph — later on we will learn that the
second derivative helps measure the “cur-
vature” of the graph of f ; it should make
sense that the more “curvy” a function is,
the less effective a linear approximation
technique would be.

We now need an “upper bound” for | f ′′(x)|. If f ′′(x) is differentiable
(it is here) then we could use the techniques of Chapter 3 to find
its maximum value on [0, 2] but that would require finding a third
derivative of f , as well as some challenging algebra. Using the triangle
inequality and the facts that −1 ≤ sin(θ) ≤ 1 and −1 ≤ cos(θ) ≤ 1, we
can conclude:∣∣ f ′′(x)

∣∣ = ∣∣∣−4x2 · sin
(

x2
)
+ 2 · cos

(
x2
)∣∣∣ ≤ 4 · 22 · 1 + 2 · 1 = 18

so we could take B2 = 18. We can do a bit better, however, by consulting
a graph of f ′′(x) on [0, 2] (see margin); it appears clear from the graph
that | f ′′(x)| ≤ 11, so we take B2 = 11 instead.

Using these values for a, b, n and B2 in the “error bound” formula:

|“error”| =
∣∣∣∣∫ 2

0
sin(x2) dx− T10

∣∣∣∣ ≤ 23 · 11
12 · 102 =

88
1200

=
11

150
< 0.074

so we can be certain that our T10 approximation of the definite integral
is within 0.074 of the exact value:

T10 − 0.074 ≤
∫ 2

0
sin(x2) dx ≤ T10 + 0.074

Computing T10 = 0.7959247, we can be certain that the value of the
integral

∫ 2
0 sin(x2) dx is somewhere between 0.722 and 0.870. J

Practice 3. Find an error bound for the T12 approximation of
∫ 5

2

1
x

dx.

Example 6. How large must n be to be certain that Tn is within 0.001

of
∫ 2

0
sin(x2) dx?
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Solution. Here we know the “allowable error” of 0.001 and we must
find n. From Example 5 we know that b− a = 2 and B2 = 11, so we
want the error bound to be less than the allowable error of 0.001:

23 · 11
12 · n2 < 0.001 ⇒ 12 · n2

88
> 1000 ⇒ n2 >

88000
12

⇒ n >

√
22000

3
≈ 85.6

Because n must be an integer, we can take n = 86. Computing T86 ≈
0.80465, we can be certain that the exact value of the integral is between
0.80365 and 0.80565. J

As often happens, T86 is even closer than
0.001 to the exact value of the integral:∣∣∣∣T86 −

∫ 2

0
sin
(

x2
)

dx
∣∣∣∣ ≈ 0.00012

Practice 4. Determine how large n must be in order to ensure that Tn

is within 0.001 of
∫ 5

2

1
x

dx.

Error Bound for Simpson’s Parabolic Approximation

If f (4) is continuous on [a, b] and
∣∣∣ f (4)(x)

∣∣∣ ≤ B4

then the “error” of the Sn approximation of
∫ b

a f (x) dx satisfies:

|“error”| =
∣∣∣∣∫ b

a
f (x) dx− Sn

∣∣∣∣ ≤ (b− a)5B4

180n4

Example 7. Find an error bound for the S10 approximation of
∫ 2

0
sin(x2) dx.

Solution. We have b− a = 2, n = 10 and f (x) = sin(x2), so f (4)(x) =
(16x4− 12) sin(x2)− 48x2 cos(x2) is continuous on [0, 2]. From a graph
of f (4)(x) on [0, 2] (see margin), we can estimate that B4 = 165, so

|“error”| =
∣∣∣∣∫ 2

0
sin(x2) dx− S10

∣∣∣∣ ≤ 25 · 165
180 · 104 =

5280
1800000

< 0.003

and we can be certain that our S10 approximation of
∫ 2

0 sin(x2) dx is
within 0.003 of the exact value:

S10 − 0.003 ≤
∫ 2

0
sin(x2) dx ≤ S10 + 0.003

Computing S10 = 0.80537615, we are certain that the exact value of∫ 2
0 sin(x2) dx is between 0.80237615 and 0.80837615. Notice that we

achieved a much narrower guarantee using S10 compared to using T10

to approximate the same integral. J

Example 8. Determine how large n must be to ensure that Sn is within

0.001 of the exact value of
∫ 2

0
sin(x2) dx?
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Solution. We want the “error bound” to be less than 0.001 and need
to find n. We know that b− a = 2 and B4 = 165

25 · 165
180 · n4 < 0.001 ⇒ 180 · n2

5280
> 1000 ⇒ n2 >

5280000
180

=
88000

3

⇒ n >
4

√
88000

3
≈ 13.09

Because n must be an even integer, we can take n = 14 and be certain

that S14 is within 0.001 of
∫ 2

0
sin(x2) dx. J

As we have come to expect, S14 is even
closer than 0.001 to the exact value of the
integral; using advanced methods, we
can show that:∣∣∣∣∫ 2

0
sin(x2) dx− S14

∣∣∣∣ ≈ 0.00015Alternative Methods

In Section 8.7 and in Chapter 10, you will learn how to approximate
a function f over an entire interval [a, b] using a single polynomial
p(x) of degree n; you can then approximate

∫ b
a f (x) dx with

∫ b
a p(x) dx,

which is relatively easy to compute. One advantage of this method
is that (once we have found p(x)), we only need to evaluate another
polynomial (P(x) where P′(x) = p(x)) at two values (P(a) and P(b)) to
compute

∫ b
a p(x) dx ≈

∫ b
a f (x) dx and we can get better approximations

by increasing n and using polynomials of higher and higher degree;
using the Trapezoidal Rule or Simpson’s Rule requires us to evaluate
f (x) at n+ 1 points. A disadvantage of this approach is that our original
f (x) must have n continuous derivatives, which is not always the case,
and we need to be able to compute those n derivatives at a single
point. Most textbooks on Numerical Analysis offer more sophisticated
techniques for approximating definite integrals.

Using Technology

If you have written even the most basic computer code, you should
be able to write a program to compute any Trapezoidal Rule or Simp-
son’s Rule approximation you want (accurate up to the floating-point
limitations of the machine running your code). If you have a graph-
ing calculator, it likely has one or more numerical integration utili-
ties (see the margin for TI-83 output). The Web site Wolfram|Alpha
(www.wolframalpha.com) can approximate definite integrals to any de-
sired accuracy; typing integral sin(x^2) from x=0 to x=2 yields:

Wolfram|Alpha can also be used to quickly apply Simpson’s Rule:

use Simpson’s rule sin(x^2) from 0 to 2 with 10 intervals

yields an approximation of 0.804811 for
∫ 2

0 sin(x2) dx.
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4.9 Problems

1. Use the values in the table below left to approxi-
mate

∫ 6
2 f (x) dx by calculating T4 and S4.

2. Use the values in the table below left to approxi-
mate

∫ 6
2 f (x) dx by calculating T8 and S8.

x f (x)

2.0 2.1
2.5 2.7
3.0 3.8
3.5 2.3
4.0 0.3
4.5 -1.8
5.0 -0.9
5.5 0.5
6.0 2.2

x g(x)

-3.0 4.2
-2.5 1.8
-2.0 0.7
-1.5 1.5
-1.0 3.4
-0.5 4.3
0.0 3.5
0.5 -0.3
1.0 -4.6

3. Use the values in the table above right to approx-
imate

∫ 1
−3 g(x) dx by calculating T8 and S8.

4. Use the values in the table above right to approx-
imate

∫ 1
−3 g(x) dx by calculating T4 and S4.

For Problems 5–10, calculate (a) T4, (b) S4 and (c) the
exact value of the integral.

5.
∫ 3

1
x dx 6.

∫ 2

0
[1− x] dx

7.
∫ 1

−1
x2 dx 8.

∫ 6

2

1
x

dx

9.
∫ π

0
sin(x) dx 10.

∫ 1

0

√
x dx

For Problems 11–16, calculate (a) T6 and (b) S6.

11.
∫ 2

0

1
1 + x3 dx 12.

∫ 2

1
2x dx

13.
∫ 1

−1

√
4− x2 dx 14.

∫ 1

0
e−x2

dx

15.
∫ 4

1

sin(x)
x

dx 16.
∫ 1

0

√
1 + sin(x) dx

For 17–22, calculate (a) the error bound for T4, (b) the
error bound for S4, (c) the value of n so that the error

bound for Tn is less than 0.001, and (d) the value of
n so that the error bound for Sn is less than 0.001.

17.
∫ 3

1
x dx 18.

∫ 2

0
[1− x] dx

19.
∫ 1

−1
x3 dx 20.

∫ 6

2

1
x

dx

21.
∫ π

0
sin(x) dx 22.

∫ 1

0

√
x dx

23. Estimate the area of the piece of land located be-
tween the river and the road in the figure below.

24. Estimate the area of the island in the figure below.

25. Estimate the volume of water in the reservoir
shown below if the average depth is 22 feet.
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26. The table below left shows the speedometer read-
ings (in feet per minute) for a car at one-minute in-
tervals. Estimate how far the car traveled (a) dur-
ing the first 5 minutes of the trip and (b) during
the first 10 minutes of the trip.

t v(t) t v(t)

0 0 6 5200

1 2000 7 4400

2 3000 8 3000

3 5000 9 2000

4 5000 10 1200

5 6000

t v(t) t v(t)

0 0 6 520

1 420 7 440

2 540 8 360

3 300 9 260

4 500 10 180

5 580

27. The table above right shows the speed (in feet per
minute) of a jogger at one-minute intervals. Esti-
mate how far the jogger ran during her workout.

28. Use the error-bound formula for Simpson’s Rule
to show that the parabolic approximation gives
the exact value of

∫ b
a f (x) dx if f (x) = Ax3 +

Bx2 + Cx + D is a polynomial of degree 3 or less.

29. A trapezoidal region with base b and heights h1

and h2 (assume h1 6= h2) can be cut into a rect-
angle with base b and height h1 and a triangle
with base b and height h1− h2 (see figure at right).
Show that the sum of the area of the rectangle

and the area of the triangle is b ·
[

h1 + h2

2

]
.

30. Let f (m) be the minimum value of f on the inter-
val [x0, x1], f (M) be the maximum value of f on

[x0, x1], and h = x1 − x0. Show that:

h · f (m) ≤ b ·
[

f (x0) + f (x1

2

]
≤ h · f (M)

and use this result to show that the trapezoidal
approximation is between the lower and upper
Riemann sums for f . Because the limit (as h→ 0)
of these Riemann sums is

∫ b
a f (x) dx, conclude

that the limit of the trapezoidal sums must equal∫ b
a f (x) dx.

31. Let f (m) be the minimum value of f on the inter-
val [x0, x2], f (M) the maximum of f on [x0, x2]

and h = x1 − x0 = x2 − x1. Show that the value

2h ·
[

f (x0) + 4 f (x1) + f (x2)

6

]
is between 2h · f (m) and 2h · f (M) and use this
result to show that the parabolic approximation
of
∫ b

a f (x) dx is between the lower and upper Rie-
mann sums for f . Conclude that the limit of the
parabolic sums must equal

∫ b
a f (x) dx.

32. This problem guides you through the steps to show that the area
under a parabolic region (see margin) with evenly spaced xk values
(which, for the purposes of this problem we will call x0 = m− h,
x1 = m and x2 = m + h) is:

h
3
· [ f (x0) + 4 f (x1) + f (x2)] =

h
3
· [y0 + 4y1 + y2]

(a) For f (x) = Ax2 + Bx + C, verify that:

∫ m+h

m−h
f (x) dx =

A
3

x3 +
B
2

x2 +Cx
∣∣m+h
m−h = 2Am2h+

2
3

Ah3 + 2Bmh+ 2Ch
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(b) Expand each of the polynomials:

y0 = f (m− h) = A(m− h)2 + B(m− h) + C

y1 = f (m) = Am2 + Bm + C

y2 = f (m + h) = A(m + h)2 + B(m + h) + C

and use the results to verify that:

h
3
[y0 + 4y1 + y2] = 2h

[
f (m− h) + 4 f (m) + f (m + h)

6

]
= 2Am2h +

2
3

Ah3 + 2Bmh + 2Ch

(c) Compare the results of parts (a) and (b) to conclude that for any
quadratic function f (x) = Ax2 + Bx + C:∫ m+h

m−h
f (x) dx =

h
3
[y0 + 4y1 + y2]

Left-Endpoint, Right-Endpoint and Midpoint Rules

The rectangular approximation methods approximate an integrand
with horizontal lines, so that the approximating regions are rectangles
and the sum of the areas of these rectangular regions is a Riemann
sum. The Left- and Right-Endpoint Rules are easy to understand and
use, but they typically require a very large number of subintervals to
ensure good approximations of a definite integral. The Midpoint Rule
uses the value of the integrand at the midpoint of each subinterval: if
these midpoint values of f are available (for example, when f is given
by a formula) then the Midpoint Rule is often more efficient than the
Trapezoidal rule. The rectangular approximation rules are:

Ln = h · [ f (x0) + f (x1) + f (x2) + · · ·+ f (xn−1)]

Rn = h · [ f (x1) + f (x2) + f (x3) + · · ·+ f (xn)]

Mn = h · [ f (c) + f (c + h) + f (c + 2h) + · · ·+ f (c + (n− 1)h)]

where c = x0 +
h
2

so that the points c, c + h, c + 2h, etc. are the mid-
points of the subintervals. The “error bounds” for these methods are:

|“error” for Ln or Rn| ≤
(b− a)2B1

2n

|“error” for Mn| ≤
(b− a)3B2

24n2

where B1 ≥ | f ′(x)| on [a, b] and B2 ≥ | f ′′(x)| on [a, b]. Notice that
the error bound for Mn is half the error bound of Tn, the trapezoidal
approximation.
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For Problems 33–38, calculate (a) L4, (b) R4, (c) M4

and (d) the exact value of the integral.

33.
∫ 3

1
x dx 34.

∫ 2

0
[1− x] dx

35.
∫ 1

−1
x2 dx 36.

∫ 6

2

1
x

dx

37.
∫ π

0
sin(x) dx 38.

∫ 1

0

√
x dx

39. Show that the Trapezoidal approximation is the
average of the Left- and Right-Endpoint approxi-

mations: Tn =
1
2
(Ln + Rn).

The integrals in Problems 40–43 will arise in appli-
cations from Chapter 5. Use technology to approxi-
mate each integral by applying Simpson’s Rule with
n = 10 and n = 40 to approximate their values. (Is
S40 very different from S10?)

40.
1√
2π

∫ 2

−2
e−

1
2 x2

dx

41.
∫ 2

−1

√
1 + 4x2 dx

42.
∫ π

0

√
1 + cos2(x) dx

43.
∫ 2π

0

√
16 sin2(t) + 9 cos2(t) dt

4.9 Practice Answers

1. Using the Trapezoidal Rule to approximate the pond’s surface area:

T ≈ 5 ft
2
· [(0 + 2 · 12 + 2 · 14 + 2 · 16 + 2 · 18 + 2 · 18 + 0) ft] = 390 ft2

so the volume is (surface area)(depth) ≈
(

390 ft2
)
(0.1 ft) = 39 ft3.

2. Using Simpson’s Rule to approximate the pond’s surface area:

S ≈ 5 ft
3
· [(0 + 4 · 12 + 2 · 14 + 4 · 16 + 2 · 18 + 4 · 18 + 0) ft] ≈ 413 ft2

3. b− a = 3, n = 12 and f (x) =
1
x
⇒ f ′(x) = − 1

x2 ⇒ f ′′(x) =
2
x3 , so

on the interval [2, 5]: ∣∣ f ′′(x)
∣∣ = ∣∣∣∣ 2

x3

∣∣∣∣ ≤ 2
23 =

1
4

We can therefore take B2 = 1
4 , so:

|error| ≤ (b− a)3 · B2

12n2 ≤
33 · 1

4
12(12)2 =

27
6912

≈ 0.004

4. We want:

|error| ≤ (b− a)3 · B2

12n2 ≤
33 · 1

4
12 · n2 =

27
48n2 < 0.001

so solving for n:

48n2

27
> 1000⇒ n2 >

27000
48

=
1125

2
⇒ n >

√
562.5 ≈ 23.7

Using n = 24 will work. We can be certain that T24 is within 0.001
of the exact value of the integral. (We cannot guarantee that T23 is
within 0.001 of the exact value of the integral, but it probably is.)
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