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10.11 APPROXIMATION USING TAYLOR POLYNOMIALS 
 

The previous two sections focused on obtaining power series representations for functions, finding their 

intervals of convergence, and using those power series to approximate values of functions, limits, and 

integrals.  In the cases where the power series resulted in an alternating numerical series, we were also able 

to use the Estimation Bound for Alternating Series (Section 10.6) to get a bound on the "error:" 
 
 "error" = | {exact value} – {partial sum approximation} |  <  | next term in the series | . 
 

If the power series did not result in an alternating numerical series, we did not have a bound on the size of 

the error of the approximation. 
 

In this section we introduce Taylor Polynomials (partial sums of the Taylor Series) and obtain a bound on the 

approximation error, the value  |{ exact value of  f(x) } – { Taylor Polynomial approximation of f(x) }| .  
The bound we get is valid even if the Taylor series is not an alternating series, and the pattern for the error 

bound looks very much like the next term in the series, the first unused term in the partial sum of the Taylor 

series.  In mathematics, this error bound is important for determining which functions are approximated by 

their Taylor series.  In computer and calculator applications, the error bound is important to designers to 

ensure that their machines calculate enough digits of functions such as  ex  and  sin(x)  for various values of  

x.  In general, knowing this error bound can help us work efficiently by allowing us to use only the number of 

terms we really need. 
 

We also examine graphically how well the Taylor Polynomials of  f(x)  approximate f(x)  
 
 
Taylor Polynomials 
 

If we add a finite number of terms of a power series, the result is a polynomial. 

 
 
 Definition 
 
 For a function  f, the  nth degree Taylor Polynomial (centered at  c),  written  Pn(x), is  

 the partial sum of the terms up to the nth degree of the Taylor Series for  f: 
 

  Pn(x)  = ∑
k=0

n
 
f(k)(c)

k!   (x–c) k     

 

         = f(c) + f '(c)(x–c) +  
f ''(c)

2!  (x–c) 2  +  
f '''(c)

3!  (x–c) 3  +  
f(4)(c)

4!  (x–c) 4  + ... +  
f (n)(c)

n!  (x–c) n   
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Example 1: Write the first four Taylor Polynomials , P0(x) to P3(x), centered at 0  for  ex, and then 

graph them for  –1 < x < 1. 
 

Solution: The Maclaurin series for  ex  is  ex  =  1 + x +  
x2

2!  +  
x3

3!  +  
x4

4!  +  
x5

5!  + ...  =   ∑
n=0

∞
 
xn

n!      so 

 

 P0(x) =  1,  P1(x) =  1 + x,  P2(x) =  1 + x +  
x2

2   ,  and  P3(x) =  1 + x +  
x2

2   +  
x3

6    . 
 
 The graphs of  ex  and  P1(x), P2(x), and  P3(x)  are shown in Fig. 1. 

  

Notice that P0(x)  and  ex  agree in value when  x = 0,   

  P1(x) , ex , and their first derivatives agree in value when  x = 0, 

  P2(x) , ex , their first derivatives, and their second derivatives agree in value when  x = 0. 
 
Practice 1: Write the Taylor Polynomials  P0(x), P2(x), and P4(x)  centered at 0  for  cos(x), and then 

graph them for  –π < x < π.  Write the Taylor Polynomials  P1(x)  and  P3(x). 
 

When we center the Taylor Polynomial at  x = c ≠ 0, the Taylor Polynomials approximate the function and 

its derivatives well for  x  close to  c. 
 
Example 2: Write the Taylor Polynomials  P0(x), P2(x), and P4(x)  centered at 3π/2  for  sin(x), and 

then graph them for  2 < x < 8.   
 
Solution: The Taylor series, centered at  3π/2, for  sin(x)  is   
 

 sin(x) =  –1 + 
1
2! (x – 3π/2) 2 – 

1
4! (x – 3π/2) 4 + 

1
6! (x – 3π/2)  + ...  =   ∑

n=0

∞
 (–1) n+1 

1
(2n)! (x – 3π/2) 2n  . 

 Then   P0(x) =  –1 , P2(x) =  –1 + 
1
2 (x – 3π/2) 2 , and P4(x) =  –1 + 

1
2 (x – 3π/2) 2 – 

1
24 (x – 3π/2) 4 . 

 
 The graphs of  sin(x), P0(x), P2(x), and P4(x)  are shown in Fig. 2. 
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Practice 2: Write the Taylor Polynomials  P0(x), P1(x), and P3(x)  centered at π/2  for  cos(x), and 

then graph them for  –1 < x < 4.   

 

The Remainder 
 

Approximation formulas such as the Taylor Polynomials are useful by themselves, but in many applied 

situations we want to know how good the approximation is or how many terms of a series are required to 

obtain a needed level of accuracy.  If  2  terms of a series give you the needed level of accuracy for your 

application, it is a waste of time and money to use 100 terms.  On the other hand, sometimes even 100 

terms may not give the accuracy you need.  Fortunately, it is possible to obtain a guarantee on how close a 

particular Taylor Polynomial approximation is to the exact value.  Then we can work efficiently and use the 

number of terms that we need.  The next theorem gives a pattern for the amount of "error" in our Taylor 

Polynomial approximation and can be used to obtain a bound on the size of the "error." 

 
 
 Taylor's Formula with Remainder 
 
 If   f  has  n+1  derivatives in an interval  I  containing  c, and  x  is in  I,   
 
 then  there is a number  z , strictly  between  c  and  x,  so that 
 

   f(x) = Pn(x) +  Rn(x)           where   Rn(x)  =  
f(n+1)(z)
(n+1)!  (x–c) n+1  . 

    
 

This says that  f(x) is equal to the nth degree Taylor Polynomial plus a Remainder, and the Remainder  
Rn(x)  has the form given in the theorem.  Notice that the pattern for  Rn  looks like the pattern for the  

(n+1)st  term of the Taylor series for  f(x)  except that it contains  f(n+1)( z ) instead of  f(n+1)( c ) .  This 
particular pattern for  Rn(x)  is called the Lagrange form of the remainder, and is named for the French–

Italian mathematician and astronomer  Joseph Lagrange (1736–1813). 

 

The main idea of the proof of the Taylor's Formula with Remainder is straightforward, but the technical 

details are rather complicated.  The main idea and the technical details are given in the Appendix. 
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The pattern for the remainder,    
f(n+1)(z)
(n+1)!  (x–c) n+1  , contains three pieces,  (n+1)! , (x–c)n+1 , and  

f(n+1)(z)  for some  z  between  x  and  c.  The Taylor Remainder Formula is typically used in two ways: 
 

In one type of use, the Taylor Polynomial is given so x, c, and  n  are known, and we can evaluate  

(n+1)!  and  (x–c)n+1  exactly.  That leaves the piece  f(n+1)(z)  for some  z  between  x  and  c.  If 

we can find a bound for the value of  | f(n+1)(z) |  for all  z  between  x  and  c, then we can put it 
together with the values of  (n+1)!  and  (x–c)n+1  to obtain a bound for the remainder term  Rn(x) .   
 
In the other common usage, the amount of acceptable "error" is given, so x, c, and Rn(x) are known, 

and we need to find a value of  n  that guarantees the required accuracy. 
 
 
  
 Corollary:  A Bound for the Remainder  Rn(x) 
 
 If   f  has  n+1  derivatives in an interval  I  containing  c, and  x  is in  I,  and   

  |  f(n+1)(z) | ≤ M  for all  z  between  x  and  c,  
 

 then "error" = | f(x) – Pn(x)  |  = | Rn(x) | ≤ M. 
|x–c|n+1

(n+1)!    . 
    
 

Example 3: We plan to approximate the values of  ex   with  P3(x) =  1 + x +  
x2

2   +  
x3

6    .  Find a bound 

for the "error" of the approximation , R3(x) , if  x  is in the interval   

 (a)  [–1, 1]  ,  (b) [ –3, 2]  and  (c) [ –0.2, 0.3] . 
 

Solution: f(x) = ex  , c = 0  (a Maclaurin series),  n = 3, and  f(n+1)(x) = f(4)(x) = ex . 
 
 (a) For  x  in the interval  [ –1, 1] : 

  | (x–c)n+1 |  = | x4 | ≤ | 14 | = 1.    (n+1)! = 4! = 24. 

  For  x  in [ –1, 1],   | f(n+1)(x) | = | ex |  ≤ e1 .  A "crude" but "easy to use" bound for  e1 is   

   e1 < (3)1 = 3 = M.  (A more precise bound is  e1 < (2.72)1 < 2.72 .) 
 

  Then  | R3(x) | < M. 
|x–c|n+1

(n+1)!    <  3. 
1
24   =  0.125 . 

  For all  –1 < x < 1,  P3(x) =  1 + x +  
x2

2   +  
x3

6    is  within  0.125  of  ex . 
 
 (b) For  x  in the interval  [ –3, 2] :  | (x–c)n+1 |  = | x4 | ≤ | (–3)4 | = 81 and   (n+1)! = 4! = 24. 

  For  x  in [ –3, 2],   | f(n+1)(x) | = | ex |  ≤ e2 .  A "crude" but "easy to use" bound for  e2 is   

   e2 < (3)2 = 9 = M.    (A more precise bound is  e2 < (2.72)2 < 7.4 .) 
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  Then  | R3(x) | < M. 
|x–c|n+1

(n+1)!    <  9. 
81
24   = 30.375 .  Obviously we cannot have  

  much confidence in our use of  P3(x)  to  approximate  ex  on the interval  [ –3, 2] . 
 
 (c) For  x  in the interval  [ –0.2, 0.3] :  | (x–c)n+1 |  = | x4 | ≤ | 0.34 | = 0.0081 .     

  (n+1)! = 4! = 24. 

  For  x  in [ –0.2, 0.3],   | f(n+1)(x) | = | ex |  ≤ e0.3 .  A  bound for  e0.3 is   

   e0.3 < (2.72)0.3 < 1.4 = M  –– obtained using a calculator . 

  Then  | R3(x) | < M. 
|x–c|n+1

(n+1)!    <  1.4. 
0.0081

24    = 0.0004725. 

  For all  –0.2 < x < 0.3,  P3(x) =  1 + x +  
x2

2   +  
x3

6    is  within  0.0004725  of  ex . 
 
When the interval is small, we can be confident that  P3(x)  provides a good approximation of  ex , but 

as the interval grows, so does our bound on the remainder.  To guarantee a good approximation on a 

larger interval, we typically need  (n+1)!  to be larger so we need to use a higher degree Taylor 
Polynomial  Pn(x) . 
 

Practice 3: Find a value of  n  to guarantee that  Pn(x)  is within  0.001  of  ex  for  x  in the interval  [ –3, 2]. 
 

Example 4: We want to approximate the values of  f(x) = sin(x)  on the interval  [ –π/2, π/2 ]  with an 

error less that  10–10.  How many terms of the Maclaurin series for  sin(x)  are needed? 

 

Solution: For every value of  n,  | f(n+1)(x) |  is  | sin(x) |  or  | cos(x) |  so  M = 1 in the Bound for the 

Remainder.  Then  "error" = | Rn(x) | < 1. 
|x–0|n+1

(n+1)!    ≤ 
( π/2 )n+1

(n+1)!   ,  and we need to find a value of  n  so 

that   
( π/2 )n+1

(n+1)!    is less than  10–10.  A bit of numerical experimentation on a calculator shows that   
 

  
( π/2 )14

14!   ≈ 6.39 x 10–9 ,   
( π/2 )15

15!   ≈ 6.69 x 10–10 ,  and  
( π/2 )16

16!   ≈ 6.57 x 10–11  

 

 so we can take  n = 15:  P15(x) =  x –  
x3

3!   +  
x5

5!   –  
x7

7!   +  
x9

9!   –  
x11

11!   +  
x13

13!   –  
x15

15!   . 
 
 If  –π/2 ≤ x ≤ π/2,  then  | P15(x) – sin(x) | < 10–10 . 

 

Practice 4: How many terms of the Maclaurin series for  ex  are needed to approximate  ex  to within  

10–10  for  0 ≤ x ≤ 1 ? 
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Calculator Notes 
 
Imagine that you are in charge of designing or selecting an algorithm for a calculator to use when the SIN  

button is pushed.  (Smartest move:  find a mathematician who knows about "numerical analysis" and the 

design and implementation of algorithms.)  You know that if the value of  x  is relatively close to  0, then  

SIN( x )  can be quickly approximated to 10 digits (the size of the display of the calculator) by using a 

"few" terms of the Taylor series for sin(x):  if  –1.57 ≤ x ≤ 1.57, then   
 

 x  –  
x3

3!   +  
x5

5!   –  
x7

7!   +  
x9

9!   –  
x11

11!   +  
x13

13!  –  
x15

15!     
 

 =  x( 1 – 
x2

2.3 ( 1 – 
x2

4.5 ( 1 – 
x2

6.7 ( 1 – 
x2

8.9 ( 1 – 
x2

10.11 ( 1 – 
x2

12.13 ( 1 –  
x2

14.15  )  ))))) )  

 
gives the value of  sin( x )  with 10 digits of accuracy.   

(The second pattern looks more complicated, but is usually preferred because it uses fewer multiplications 

and avoids very large values such as  x15  and  15!)  But you also want your algorithm to give 10 digits of 

accuracy even when  x  is  larger, say 10 or 101.7.  Rather than computing many more terms of the Maclaurin 

series for sine, some algorithms simply shift the problem closer to  0.  First they use the fact that  sin( x ) = 

sin( x – 2π ) to keep shifting the problem until the argument is in the interval  [0, 2π]: 

 sin( 10 ) = sin( 10 – 2π ) = sin( 3.71681469 ) 

 sin( 101.7 ) = sin( 101.7 – 2π ) = sin( 101.7 – 4π ) = ... = sin( 101.7 – 32π ) = sin( 1.169035085 ). 

Once the argument is between  0  and  2π, additional trigonometric facts are used: 

if the new value of  x  is larger than  π, use  sin(x) = –sin( x – π )  to replace  "x"  with  "x – π"  (and 

keep track of the change in sign of the answer).  The new  x  value is in the interval  [0, π]. 

Finally, we can shift the problem into the interval  [0, π/2]: 

 if the new value of  x  is larger than  π/2, use  sin(x) = sin( π – x ) to replace  "x"  with  "π – x." 

This new  x  value is in the interval  [0, π/2] ≈ [0, 1.57]  and the 7 terms of the sine series shown above 

are sufficient to approximate  sin(x) with 10 digits of accuracy. 
 

There are, however, major problems when calculators encounter the sine or exponential of a very large 

number.  Since calculators only store the leading finite number of digits of a number (usually 10 or 12 digits), 

the calculator can not distinguish large numbers that differ past that leading number of stored digits:  one 

calculator correctly says that  (10^12+1) – 10^12 = 1,  but it incorrectly reports that   

(10^13+1) – 10^13 = 0.  Since it calculates  "10^13+1 = 10^13", it also would falsely report the same values 

for  sin( 10^13+1 )  and sin( 10^13 ).  In fact, the people who programmed this particular type of calculator 

recognized the problem, and the calculator gives an error message if it is asked to calculate   

sin( 10^11).  This particular calculator reports  e^230 ≈ 7.7 x 1099 .  It reports an error for  e^231  since the 

largest number it can display is  9.9 x 1099 and  e^231 exceeds that value.  What happens on your calculator? 
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PROBLEMS 
 
In problems 1 – 10, calculate the Taylor polynomials  P0 , P1 , P2 , P3 , and  P4 for the given function  

centered at the given value of c.  Then graph the function and the Taylor polynomials on the given interval. 
 
1. f(x) = sin(x), c = 0, [–2, 4] 2. f(x) = cos(x), c = 0, [–2, 4] 
 
3. f(x) = ln(x), c = 1, [0.1, 3] 4. f(x) = arctan(x), c = 0, [–3, 3] 
 
5. f(x) = x  , c = 1, [0, 3] 6. f(x) = x  , c = 9, [0, 20] 
 
7. f(x) = (1 + x)–1/2 , c = 0, [–2, 3] 8. f(x) = e2x , c = 0, [–2, 4] 
 
9. f(x) = sin(x), c = π/2, [–1, 5] 10. f(x) = sin(x), c = π, [–1, 5] 

 
In problems 11 – 18, a function  f(x)  and a value of  n  are given.  Determine a formula for  Rn(x)  and  

find a bound for  | Rn(x) |  on the given interval.  This bound for  | Rn(x) |  is our "guaranteed accuracy" for 

Pn  to approximate  f(x) on the given interval.  (Use  c = 0.) 
 
11. f(x) = sin( x ) , n = 5, [ –π/2 , π/2] 12. f(x) = sin( x ) , n = 9, [ –π/2 , π/2] 
 
13. f(x) = sin( x ) , n = 5, [ –π , π] 14. f(x) = sin( x ) , n = 9, [ –π , π] 
 
15. f(x) = cos( x ) , n = 10, [ –1 , 2] 16. f(x) = cos( x ) , n = 10, [ –1 , 5] 
 

17. f(x) = ex , n = 6, [ –1 , 2] 18. f(x) = ex , n = 10, [ –1 , 3] 

 
In problems 19 – 24, determine how many terms of the Taylor series for  f(x)  are needed to approximate  f   

to within the specified error on the given interval.  (For each function use the center  c = 0.) 
 
19. f(x) = sin( x ) within 0.001  on [ –1, 1] 20. f(x) = sin( x ) within 0.001  on [ –3, 3] 
 
21. f(x) = sin( x ) within 0.00001  on [ –1.6, 1.6] 22. f(x) = cos( x ) within 0.001  on [ –2, 2] 
 

23. f(x) = ex  within 0.001  on [ 0, 2] 24. f(x) = ex  within 0.001  on [ –1, 4] 
 

Series Approximations of π 
 
The following problems illustrate some of the ways series have been used to obtain very precise  

approximations of π.  Several of these methods use the series for arctan(x), 
 

 arctan( x ) =  x – 
x3

3    +  
x5

5    –  
x7

7    +  
x9

9    – ...  =   ∑
n=0

∞
 (–1) n 

x2n+1

2n+1   , 

which converges rapidly if  | x |  is close to zero. 
 

Method I: tan( 
π
4  ) = 1  so  

π
4   = arctan( 1 ) =  1 – 

1
3   +  

1
5   –  

1
7   +  

1
9   – ...  =   ∑

n=0

∞
 (–1) n 

1
2n+1    and 

 π = 4{ 1 – 
1
3   +  

1
5   –  

1
7   +  

1
9   – ...  } .  
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25. (a) Approximate  π  as  4{ 1 – 
1
3   +  

1
5   –  

1
7   +  

1
9   }  and compare this value with the value your  

  calculator gives for  π. 

(b) The series for arctan( 1 )  is an alternating series so we have an "easy" error bound.  Use the error bound 

for an alternating series to find a bound for the error if 50 terms of the arctan( 1 ) series are used. 

(c) Using the error bound for an alternating series, how many terms of the arctan( 1 ) series are needed to 

guarantee that the series approximation of  π  is within 0.0001  of the exact value of  π?   

 (The arctan( 1 )  series converges so slowly that it is not used to approximate  π.) 
 

Method II: tan( a + b ) = 
tan(a) + tan(b)
1 – tan(a)tan(b)    so  tan( arctan( 

1
2  ) + arctan( 

1
3  ) ) =  

1
2 + 

1
3

1 – 
1
2 . 

1
3

   =   1.  Then 

 
π
4   = arctan( 1 ) = arctan( 

1
2  ) + arctan( 

1
3  ) , and the series for arctan( 

1
2  )  and  arctan( 

1
3  )   

 converge much more rapidly than the series for arctan( 1 ). 
 
26. (a) Approximate  π  as   

  4{ (sum of the first 4 terms of the arctan( 
1
2  ) series) + (sum of the first 4 terms of the arctan( 

1
3  ) series) } . 

  Then compare this value with the value your calculator gives for  π. 

(b) The series for arctan( 
1
2  )  and  arctan( 

1
3  )  are each alternating series.  Use the error bound for an 

alternating series to find a bound for the error if 10 terms of each series are used. 

(c) How many terms of each series are needed to guarantee that the series approximation of  π  is within 

0.0001  of the exact value of  π?   
 

Other Methods:  We will not justify these methods, but they converge to π more rapidly than the first  

   two methods. 
 

  A: 
π
4   =  4.arctan( 

1
5  ) – arctan( 

1
239  ) (due to Machin in 1706) 

  B: π = 48.arctan( 
1
18  ) + 32.arctan( 

1
57  ) – 20.arctan( 

1
239  ) 

 

27. (a) Use the first 3 terms of each series in formula A to approximate π.  How much does it differ from the  

  value your calculator gives you? 

(b) Why does formula A  converge more rapidly (using fewer terms) than methods I and II? 
 

28. (a) Use the first 3 terms of each series in formula B to approximate π.  How much does it differ from the  

  value your calculator gives you? 

(b) Why does formula B  converge more rapidly (using fewer terms) than Methods I and II and formula A? 
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Practice Answers 
 

Practice 1: cos(x) = 1 – 
x2

2!   +  
x4

4!   –  
x6

6!   +  
x8

8!   –  
x10

10!   +  ...  =   ∑
n=0

∞
 (–1) n 

x2n

(2n)!     so 

 

 P0(x) = 1, P2(x) = 1 – 
x2

2    ,  and  P4(x) =  1 – 
x2

2    +  
x4

24  .  Their graphs are shown in Fig. 3. 
 

 P1(x) = 1, P3(x) = 1 – 
x2

2    ,  and  P5(x) =  1 – 
x2

2    +  
x4

24  .  
 

 

 

 

Practice 2:

 cos(x) = –(x – π/2) + 
1
3!(x – π/2) 3 – 

1
5!(x – π/2) 5 + 

1
7!(x – π/2) 7 –  ...   

   =   ∑
n=0

∞
 (–1) n+1 

1
(2n+1)! (x – π/2) 2n+1  . 

 

Then   P0(x) = 0 , P1(x) = –(x – π/2) , and P3(x) = –(x – π/2) + 
1
6(x – π/2) 3 .  The graphs of  

cos(x), P1(x), and P3(x)  are shown in Fig. 4.   
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Practice 3: For  x  in the interval  [ –3, 2],   | (x–c)n+1 |  = | x3 | ≤ | (–3)3 | = 27 . 

 For  x  in [ –3, 2],   | f(n+1)(x) | = | ex |  ≤ e2 .  A "crude" bound for  e2 is  e2 < (3)2 = 9 = M.  

Then  | Rn(x) | < M. 
(x–c)n+1

(n+1)!    <  9. 
27
n!    , and we want a value of  n  so  9. 

27
n!    ≤ 0.001 :   

 we want  n! ≥ 
(9)(27)
0.001    =  243,000 .  Using a calculator, we see that  8! = 40,320  is not 

large enough, but  9! = 362,880 > 243,000  so we can use  n = 9. 

For  x  in the interval [ –3, 2],  P9(x) =  1 + x +  
x2

2!  +  
x3

3!  +  
x4

4!  +  
x5

5!  +  
x6

6!  +  
x7

7!  +  
x8

8!  +  
x9

9!    is 

within  0.001  of  ex . 
 

Practice 4: Rn(x) ≤ 10–10 .  f(x) = ex , c = 0,  and for every  n,  f(n+1)(x) = ex .  For  0 ≤ x ≤ 1,   
 
 | f(n+1)(x) |  = | ex | ≤ e < 2.72  = M.  We want to find a value for  n  so  
 

 M. 
(x–c)n+1

(n+1)!    = 2.72. 
(1–0)n+1

(n+1)!    < 10–10.  Some numerical experimentation on a calculator  
  

 shows that    2.72. 
1

15!   ≈ 1.58 10–9  and  2.72. 
1

16!   ≈ 9.9 10–11  so we can take  n = 15. 

For  0 ≤ x ≤ 1,  P15(x) =  1 + x +  
x2

2!  +  
x3

3!  +  
x4

4!   + ... +  
x15

15!    is within  10–10  of  ex . 
 
Appendix:  Idea and details of a Proof of Taylor's Formula with Remainder 
 
Main idea of the proof:   

We define a new differentiable function  g(t) and show that  g(x) = 0  and  g(c) = 0.   

Then, by Rolle's Theorem, we can conclude that there is a number  z , between  x  and  c, so that  g '( z ) = 0.  
Finally,  we set  g '( z ) = 0  and algebraically obtain the given formula for  Rn(x) . 
 
 
Let  Rn(x)  =  f(x) – Pn(x)  be the difference between  f(x)  and the  nth Taylor polynomial for  Pn(x) . 
 
Define a differentiable function  g(t)  to be 
 

g(t) = f(x) – { f(t) + f '(t)(x–t) +  
f ''(t)

2!  (x–t) 2 +  
f '''(t)

3!  (x–t) 3 + ...+  
f(n)(t)

n!  (x–t) n } –  

! 

Rn(x) 
(x – t)n+1

(x – c)n+1   . 

 
This may seem to be a strange way to define a function, but it turns out to have the properties we need: 
 

 g( x ) = f(x) – { f( x ) + 0 + 0 + 0 + ... + 0 } – Rn(x) 
0

(x – c)n+1   =  f(x) – f(x) = 0 , and 

 g( c ) = f(x) – {f(c) + f '(c)(x–c) +  
f ''(c)

2!  (x–c) 2 +  
f '''(c)

3!  (x–c) 3 +  
f(4)(c)

4!  (x–c) 4 +  
f (n)(c)

n!  (x–c) n}  

   – Rn(x) 
(x–c)n+1

(x–c)n+1    

  = f(x) – Pn(x) – Rn(x)  =  0   since  Rn(x)  =  f(x) – Pn(x) . 
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Then, by Rolle's Theorem, there is a number  z, strictly between  x  and  c, so  g '(z) = 0. 
 

Notice that  g  is defined to be a function of  t  so we treat  x  and  c  as constants and differentiate with 

respect to  t.  The key pattern is that when we differentiate a term such as   
f '''( t )

3!   .(x – t)3  with respect  

to t, we need to use the product rule.  The resulting derivative has two terms: 
 

 
d

d t  { 
f '''( t )

3!  (x – t) 3 } =  
f '''( t )

3!   
d

d t (x – t) 3  +   (x – t)3 . 
d

d t 
f '''( t )

3!    

  =  
f '''( t )

3!  (3)(x – t) 2 (–1)  +  
f(4)( t )

3!  (x – t) 3 = –  
f '''( t )

2!  (x – t) 2  +  
f(4)( t )

3!  (x – t) 3 . 
 

When we differentiate  g(t)  with respect to  t, we get a complicated pattern, but most of the terms cancel: 

 g '(t)  =  
d

d t  g(t) = 0 – { f '(t) 
 
  – f '(t)  +  f ''(t)(x – t)  

  –  f ''(t)(x – t)  +   
f '''( t )

2!  (x – t) 2  

  – 
f '''( t )

2!  (x – t) 2  +  
f(4)( t )

3!  (x – t) 3  

  –  . . .  – 
f(n)( t )
(n–1!)  (x – t) n–1  +  

f(n+1)( t )
n!  (x – t) n } – Rn(x).(n+1). 

(x–t)n (–1)
(x–c)n+1     

   =  –  
f(n+1)( t )

n!  (x – t) n  +  Rn(x).(n+1). 
(x–t)n

(x–c)n+1    

   =  (x – t)n { Rn(x).(n+1). 
1

(x–c)n+1   –   
f(n+1)( t )

n!    } . 

 
By Rolle's Theorem, there is a value  z , between  x  and  c, for the variable  t  so  g '( z ) = 0.  Then 

 (x – z)n { Rn(x).(n+1). 
1

(x–c)n+1   –   
f(n+1)( z )

n!    } = 0 . 

 

z  is strictly between  x  and  c  so  z ≠ x  and we can divide each side by  (x – z)n   to get   

  Rn(x).(n+1). 
1

(x–c)n+1   –   
f(n+1)( z )

n!     = 0 . 

 

Finally,  Rn(x).(n+1). 
1

(x–c)n+1   =  
f(n+1)( z )

n!     so  Rn(x) = 
f(n+1)( z )
n!(n+1)   .(x–c)n+1 =  

f(n+1)( z )
(n+1)!   (x–c) n+1  , 

 
the result we wanted to prove. 
 
 
 
MAPLE command to plot cos(x) and 

! 

P3(x) . 
 
plot({1-x^2/2+x^4/24,cos(x)},x=-3..3,y=-2..2,color=[blue,red],thickness=3); 


