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10.12 INTRODUCTION TO FOURIER SERIES 
 

When we discussed Maclaurin series in earlier sections we used information about the derivatives of a 

function f(x) to create an infinite series of the form 
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In this case the “building blocks” of the series were powers of x  
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,...) . and this is why the 

series is called a “power series.”  The coefficients 

! 

an =
f
(n)
(0)

n!
 of the Maclaurin series told us how much 

of each power to include in our series, and we found the formula involving derivatives that enabled us to 

calculate the values of the coefficients.  For general Taylor series the “building blocks” were powers of  

(x-c)  for some fixed center c,  and we had a similar formula to calculate the values of the coefficients for 

those series.  We then used the Taylor and Maclaurin series to approximate functions “near c” and 

sometimes even for “every value of x.” 

 

Fourier series have a number of similarities with power series: 

 we will approximate functions using “building blocks” 

 we will need to calculate the values of the coefficients of the building blocks, and 

 we will need to be concerned about where the approximations are “good.” 

But our building blocks for the Fourier series will be the trigonometric functions sin(x), sin(2x), sin(3x), 

...  and cos(x), cos(2x), cos(3x), ... and the result will be a “trigonometric series.”  Our formula for 

calculating the values of the coefficients will involve integrals rather than derivatives.  Finally, since each 

building block repeats its values every 

! 

2"  units, we will only (at first) use Fourier series to approximate 

! 

2" -periodic functions.  (This is not as serious a restriction as it might seem.) 

 

First goal:  Finding the coefficients 

 

Our first goal is to find a relationship between the function f(x) and the coefficients  

! 

an  and  

! 

bn   in the series 

 

! 

a0

2
+ {an "

n=1

#

$ cos(nx)+ bn " sin(nx)} 

 

! 

=
a0

2
+ {a1 " cos(x) + b1 " sin(x)} +{a2 " cos(2x) + b2 " sin(2x)} +{a3 " cos(3x) + b3 " sin(3x)} +  ... 

 

The key to finding the values of the coefficients depends on the following results about the integrals of the 

products of any two of our building blocks, sin(mx) and cos(nx), for positive integer values of m and n. 
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! 

sin(nx) " sin(mx) dx =

x=0

2#

$
#   if m = n   (using integral formula #13)

0   if m % n   (using integral formula #25)
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! 

cos(nx) " cos(mx) dx =

x=0

2#

$
#   if m = n   (using integral formula #14)

0   if m % n   (using integral formula #26)
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! 

sin(nx) " cos(mx) dx =

x=0

2#

$  0  for all integer values of m and n   (using integral formula #27) 

The technical term is that the set of functions { sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), ...} forms 

an “orthogonal” family on the interval  

! 

[0,2" ]:  for any two functions from this set  

 

 

! 

f(x) " g(x) dx =

x=0

2#

$
#   if  f  and g  are the same member of the set

0   if  f  and  g are different members of the set
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Example 1:  Suppose we have the function f(x) = 3 + 2cos(3x)-7sin(4x)  that is already a finite 

trigonometric series with 

! 

a0 = 6, a3 = 2, b4 = -7, and all of the other coefficients are 0.  Evaluate the 

integral of the product of f(x) with a general building block, sin(nx)  (for every value of n). 

 

Solution: 

! 

sin(nx) " f(x) dx =

x=0

2#

$ sin(nx) " ( 3 +2cos(3x) - 7sin(4x) ) dx

x=0

2#

$  

  

! 

= sin(nx) "  3 dx + sin(nx) "

x=0

2#

$ 2cos(3x) + sin(nx) "

x=0

2#

$ (-7sin(4x) ) dx

x=0

2#

$  

  = 0 + 0 + 

! 

"7#   if  n = 4

  0     if  n $ 4

% 
& 
' 

( 
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  . 

It appears that we can find the value of  

! 

bn  by dividing this last value by  

! 

" : 

 

! 

bn =
1

"
sin(nx) # f(x) dx

x=0

2"

$  

 
Practice 1:  Using the same function f(x) = 3 + 2cos(3x)-7sin(4x), evaluate the integral of the product 

with the cosine blocks, cos(nx), and show that 

 

 

! 

a3 =
1

"
cos(3x) # f(x) dx

x=0

2p

$     and   

! 

an =
1

"
cos(nx) # f(x) dx

x=0

2p

$    for  n =1, 2, 3, ... 
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The general cases for the Example and Practice problems say that if f(x) is already a trigonometric 

polynomial with 

 

! 

f(x) =
a0

2
+ {an "

n=1

#

$ cos(nx) + bn " sin(nx)} 

  

! 

=
a0

2
+ {a1 " cos(x) + b1 " sin(x)} +{a2 " cos(2x) + b2 " sin(2x)} +{a3 " cos(3x) + b3 " sin(3x)} +  ... 

then we can find the coefficients of the terms of f(x) using   

 

! 

an =
1

"
cos(nx) # f(x) dx

x=0

2"

$     and   

! 

bn =
1

"
sin(nx) # f(x) dx

x=0

2"

$  . 

 
What we have just done is similar to our beginning work with Maclaurin series in Section 10.10.  There 

we started with a polynomial P(x)  and found that the coefficients were given by the formula  

! 

an =
f
(n)
(0)

n!
  using derivatives of P(x).  Here we started with a trigonometric polynomial f(x) and found 

that the coefficients 

! 

an  and 

! 

bn  were given by formulas using integrals of products with f(x).  In Section 

10.10 we then extended the Maclaurin series to functions that were not polynomials.  Here we will make a 

similar extension of trigonometric series to functions that are not trigonometric polynomials. 

 

    

 Definition:  If f(x) is integrable on the interval 

! 

[0,2" ] , then the 

  Fourier Series of f(x)  is  

! 

a0

2
+ {an "

n=1

#

$ cos(nx)+ bn " sin(nx)}   with 

  Fourier coefficients    

! 

an =
1

"
cos(nx) # f(x) dx

x=0

2"

$    and    

     

! 

bn =
1

"
sin(nx) # f(x) dx

x=0

2"

$     for n=0, 1, 2, 3, ... 

     

 

Before going further with the development and discussion, let’s take a look at how this actually works 

with some different types of functions – a differentiable function, a function that is continuous but not 

differentiable, and a function that is not even continuous.  At the end of this section is a MAPLE program 

that automatically calculates the Fourier coefficients and builds the Fourier series. 
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Fourier Series approximation of a differentiable function  

! 

f(x) =  x
2
" (2# - x)  

 
The series of graphs below show how the higher degree Fourier series of f become better and better 

approximations of the graph of f on the interval  

! 

[0,2" ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FS5(x) = 20.67085112-12.56637062*cos(x)-12.*sin(x)-3.141592654*cos(2*x)-1.5*sin(2*x) 

  -1.396263402*cos(3*x)-.4444444444*sin(3*x)-.7853981635*cos(4*x)-.1875*sin(4*x) 

  -.5026548246*cos(5*x)-0.096*sin(5*x) 

 

Taylor and Maclaurin series require that we have a differentiable function of f or we could not calculate 

the coefficients for the series.  For Fourier series, however, we only need that the function of f be 

integrable, a much less demanding condition.  The next example illustrates the convergence of the Fourier 

series of a function that has a “corner” so it is not differentiable (at that point). 

 

Note:  We only need  f  to be an integrable function in order to be able to calculate the coefficients of the 

Fourier series, but that is not enough to guarantee that the Fourier series we get converges to f(x) for every 

value of x.  In fact, there are continuous functions for which the Fourier series does not converge to f(x) 

for an infinite number of vales of x.  The whole study of conditions that do and do not guarantee the 

convergence of Fourier series led to some very interesting, very beautiful and very deep results in 

mathematics. 
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Fourier Series approximation of a continuous function with a corner:  

! 

f(x) =  4 - |" - x | 

 
These figures illustrate that the Fourier series can converge to a function that is not differentiable at a point. 

 

Because of the symmetry of f(x) around  

! 

" , all of the sine terms, the 

! 

bn  , are 0. 

 
The next example illustrates that 

the Fourier coefficients can even 

be found for functions which have 

some discontinuities (but they can 

still be integrated), and that the 

resulting Fourier series can still 

do a good job of approximating 

the function between the breaks. 

 

Fourier series approximation of 

a discontinuous function:  

! 

f(x) =  |1.3 -  Int(x/2.3) | 
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What good are Fourier Series? 

 

Historically Fourier series were important because they provided a method of analyzing data that arose from the 

interaction of various periodic influences such as the orbits of the planets (influenced by the gravitational 

attractions of the sun and other planets whose orbits are almost periodic) or the tides (influenced by the 

attraction of the moon and also by local conditions).  More recently, Fourier series provide a way to efficiently 

store and regenerate the musical tones of various instruments.  Each tone for an instrument can be efficiently 

stored by saving only the coefficients, and we only need to save the first “several” terms of the series since the 

higher order coefficients correspond to high frequency sounds that are beyond the human hearing range.  

 

Fourier series, and variations on that idea, have also been used extensively in signal processing and to 

clean up noisy signals.  Since “random noise” is usually high frequency, the Fourier series of each piece of 

the signal can be calculated (automatically) and only the lower degree terms kept in order to reproduce a 

“clean” result.  The following figures illustrate a noisy signal that has been cleaned up in this way.  This 

might represent an attempt to reclaim voice information from a recording that has been damaged or 

originally contained a lot of background noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And Fourier series still enable us to solve problems of the type that led Fourier to develop them in the first 

place:  if we know the temperature at each point on the boundary of a region (such as a solid circular disk) 

what will the temperature become at each point on the interior of the disk?  And they are very useful for 

solving certain types of differential equations. 



10.12   Fourier Series Contemporary Calculus 7 

 

What if the function is not 2

! 

" -periodic? 

 

If the function f  is periodic with period P , we can “squeeze” f to create a new function g that does repeat 

every 2

! 

"  units.  Then after calculating the Fourier series for g, we can “unsqueeze” g  to get a series for f.   

 

Problems 

 

The point of this section was only to use the Taylor series approach to create a new kind of infinite series, 

one whose building blocks were trigonometric functions, and the to show that this approach actually 

worked to approximate functions that were not even differentiable or continuous.  There are still other 

infinite series that use different building blocks, but the point here was to illustrate that not all useful 

infinite series are power series. 

 

 

 

Main Reference 

Fourier Analysis,  T.W. Korner, Cambridge University Press, 1988  (available in paperback) 

 

This is a beautifully written book that is willing to forego some of the completeness and generalities of the 

results in order to present an understandable development of the main ideas and their applications and the 

personalities involved in this development.  The level is aimed at a university student in their 3rd or 4th 

year with a strong background in mathematics (physics helps too), but the stories and descriptions of the 

applications and the flow of ideas are mostly accessible to very good and motivated students with a year 

of calculus. 

 

 

 

 

 

 

 

 

 

 

 

 



If we drop a general function  f(x)  (e.g., 1 + x  or  |x|  or a 

step function or a function given by data ) into the FS 

machine, the output Fourier series is a trigonometric 

polynomial which approximates  the original f(x) we put in.

What's all this Taylor Series and Fourier Series "stuff"?

Attempt at an understandable answer:

Taylor (Maclauren) Series Fourier Series

Think of the TS  below as a machine that 

gives the Taylor series of any function 

dropped into it.

We know this  TS machine operates by 

creating the Taylor series

 TS[ f(x) ] = a  + a *x + a *x   + a *x   + ....1 2 30

where each    a   = 
(n)

n!
f    (x)

n

If we drop a polynomial  P(x)  into the 

TS machine, the output Taylor series is 

exactly   the polynomial  P(x) we put in.

If we drop a general function  f(x)  (e.g., 

sin(x) or e   ) into the TS machine, the 

output Taylor series is a polynomial which 

approximates  the original f(x) we put in.

x

Why bother?   Because polynomials 
are "really easy" to work with and are 
very well understood.  

TS
Taylor Series 

Machine

f(x)

TS[ f(x) ]
the Taylor 

series for f(x)

FS
Fourier Series 

Machine

f(x)

FS[ f(x) ]
the Fourier 

series for f(x)

Think of the FS  below as a machine that 

gives the Fourier series of any function 

dropped into it.

We know this  FS machine operates by 

creating the Fourier series

 FS[ f(x) ] = a
2
0

+ b  sin(x)  + b  sin(2x)  + b  sin(3x) +  ... 1 2

+ a  cos(x)  + a  cos(2x)  + a  cos(3x) 1 2

3

3

where  

a    =n
1
π cos( nx ) * f(x) dx∫

0

2π

b    =n
1
π sin( nx ) * f(x) dx∫

0

2π
and

If we drop a trigonometric polynomial  TP(x)  into 

the FS machine, the output Fourier series is exactly  the 

trigonometric polynomial  TP(x) we put in.

Why bother?   Because trigonometric 
polynomials are "really easy" to work with and 
are very well understood ( + other reasons).  

      
                    Comparing Taylor and Fourier Series
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MAPLE 

 

You don’t need a computer to calculate and graph the Fourier series of a function (your calculator can do 

the work), but Maple does a really nice job.  The following program will automatically calculate the 

coefficients, build the Fourier series and graph both the original function and its Fourier series.  One 

variation will even animate the approximation degree by degree.  To use the program you need to enter the 

formula for the function (f:=x-> ...) and the degree of the approximation you want  (N:= ...).  The 

comments in italics are not part of the program. 

 

with(plots): 

f:=x->abs(1.3-floor(x/2.3));                           the original function – pick your own 

a0:=evalf((1/Pi)*int(f(x),x=0..2*Pi)): 

PF:=plot(f(x), x=0..2*Pi, y=0..2, color=blue, thickness=3, discont=true): 

a0:=evalf((1/Pi)*int(f(x),x=0..2*Pi)): 

 

The next commands automatically construct the Fourier series 

N:=15:                                 degree of the approximating Fourier series – pick your own 

fs[0]:=a0/2; 

FSplot[0]:=plot(fs[0], x=0..2*Pi, color=red, thickness=2, title="degree = "||i): 

R[0]:=display(PF,FSplot[0], title="degree = 0"): 

for i from 1 to N do 

a:=evalf((1/Pi)*int(cos(i*x)*f(x), x=0..2*Pi)): 

b:=evalf((1/Pi)*int(sin(i*x)*f(x), x=0..2*Pi)): 

fs[i]:=fs[i-1]+a*cos(i*x)+b*sin(i*x);od: 

fs[N];                                                  prints the approximating formula of the Fourier series of degree N 

plot({f(x),fs[N]}, x=0..2*Pi, color=[red,blue], thickness=2, title="degree = "||N);    plots f and Nth degree Fourier series 

 

This set of  commands will animate the approximation degree by degree 

for i from 1 to N do 

FSplot[i]:=plot(fs[i], x=0..2*Pi, color=red, thickness=2, title="degree = "||i): 

R[i]:=display(PF, FSplot[i]): 

od: 

M:=[seq(R[i], i=0..N)]: 

display(M, axes=normal, insequence=true); 

 


