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10.2 INFINITE SERIES 
 

Our goal in this section is to add together the numbers in a sequence.  Since it would take a "very long time" 

to add together the infinite number of numbers, we first consider finite sums, look for patterns in these finite 

sums, and take limits as more and more numbers are included in the finite sums. 
 

What does it mean to add together an infinite number of terms?  We will define that concept carefully in 

this section.  Secondly, is the sum of all the terms a finite number?  In the next few sections we will 

examine a variety of techniques for determining whether an infinite sum is finite.  Finally, if we know the 

sum is finite, can we determine the value of the sum?  The difficulty of finding the exact value of the sum 

varies from very easy to very, very difficult. 
 

Example 1: A golf ball is thrown 9 feet straight up into the 

air, and on each bounce it rebounds to two thirds of its 

previous height  (Fig. 1).  Find a sequence whose terms 

give the distances the ball travels during each 

successive bounce.  Represent the total distance 

traveled by the ball as a sum. 
 
Solution:  The heights of the successive bounces are  9 feet,  

 ( 
2
3  ).9 feet,  ( 

2
3  ).[( 

2
3  ).9] feet, ( 

2
3  )3 .9 feet, and so forth.  On each bounce, the ball rises and falls so 

the distance traveled is twice the height of that bounce:   
 

  18 feet, ( 
2
3  ).18 feet,  ( 

2
3  ).( 23  ).18 feet, ( 

2
3  )3 .18 feet , ( 

2
3  )4 .18 feet , . . .  . 

 
 The total distance traveled is the sum of the bounce–distances: 
 

  total distance = 18  +  ( 
2
3  ).18  +  ( 

2
3  ).( 23  ).18  +  ( 

2
3  )3 .18  +  ( 

2
3  )4 .18+ . . . 

 

   = 18 {  1  +  
2
3   +  (  

2
3   )2  +  (  

2
3   )3  +  (  

2
3   )4 +  . . .    }   

 

 At the completion of the first bounce the ball has traveled 18 feet. After the second bounce, it has 

traveled 30 feet, a total of  38 feet after the third bounce, 43 
1
3   feet after the fourth, and so on.  With a 

calculator and some patience, we see that after the  20th bounce the ball has traveled a total of 

approximately  53.996 feet, after the  30th bounce approximately  53.99994 feet, and after the 40th 

bounce approximately  53.9999989 feet. 
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Practice 1: A tennis ball is thrown 10 feet straight up  

 into the air, and on each bounce it rebounds to 40%  

 of its previous height.  Represent the total distance  

 traveled by the ball as a sum, and find the total distance 

traveled by the ball after the completion of its third  

 bounce.  (Fig. 2) 

 

 

 
Infinite Series 
 

The infinite sums in the Example and Practice are called infinite series, and they are the objects we will 

start to examine in this section. 

 
 
 Definitions 
 
  An infinite series is an expression of the form 
 

   a1 + a2 + a3 + a4 + . . .   or  ∑
k=1

∞
 ak  . 

 
  The numbers  a1, a2, a3, a4, . . .  are called the terms of the series.   (Fig. 3) 
   
 

Example 2: Represent the following series using the sigma notation.  (a)  1 + 1/3 + 1/9 + 1/27 + . . . ,   

 (b)  –1 + 1/2 – 1/3 + 1/4 – 1/5 + . . . , (c)  18( 2/3 + 4/9 + 8/27 + 16/81 + . . . ) 

 (d)  0.777 ... = 7/10 + 7 /100 + 7/1000 + ... ,  and  (e)  0.222... 
 

Solution: (a)  1 + 1/3 + 1/9 + 1/27 + . . .  =    ∑
k=0

∞
 ( 13 ) 

k
  or   ∑

k=1

∞
 ( 13 ) 

k–1
   

 (b)  –1 + 1/2 – 1/3 + 1/4 – 1/5 + . . . =   ∑
k=1

∞
 (–1) 

k 1k    (c)  18 ∑
k=1

∞
 ( 23 ) 

k
   

 (d)  0.777 ... = 7/10 + 7 /100 + 7/1000 + ...  =  ∑
k=1

∞
  7

10k      (e)     ∑
k=1

∞
  2

10k      

 

Practice 2: Represent the following series using the sigma notation.  (a)  1 + 2 + 3 + 4 + . . . , 

 (b)  –1 + 1 – 1 + 1 – . . .  (c)  2 + 1 + 1/2 + 1/4 + . . .  

 (d)  1/2 + 1/4 + 1/6 + 1/8 + 1/10 +. . . (e)  0.111... 
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In order to determine if the infinite series adds up to a finite value, we examine the sums as more and more 

terms are added. 

 
 
 Definition 

 The partial sums  sn   of the infinite series   ∑
k=1

∞
 ak     

  are the numbers 
  s1 = a1,  

  s2 = a1 + a2,  

  s3 = a1 + a2 + a3 , 
  . . . 

 In general,   sn = a1 + a2 + a3 + . . . + an  =   ∑
k=1

n
 ak    

   or , recursively, as   sn =  sn–1 + an   . 
 
 The partial sums form the sequence of partial sums  { sn } . 
    
 
 
Example 3: Calculate the first 4 partial sums for the following series.   

 (a)  1 + 1/2 + 1/4 + 1/8 + 1/16 + . . . ,  (b)   ∑
k=1

∞
 (–1) 

k
 ,  and  (c)   ∑

n=1

∞
  

1
n   . 

 
Solution: (a)  s1 = 1, s2 = 1 + 1/2 = 3/2, s3 = 1 + 1/2 + 1/4 = 7/4, s4 = 1 + 1/2 + 1/4 + 1/8 = 15/8 

  It is usually easier to use the recursive version of  sn :  

  s3  = s2  + a3  = 3/2 + 1/4 = 7/4  and  s4  = s3  + a4  = 7/4 + 1/8 = 15/8. 
 

 (b)  s1 = (–1)1 = –1,  s2 = s1 + a2 = –1 + (–1)2 = 0, s3 = s2 + a3 = 0 + (–1)3 = –1, s4 = 0. 
 
 (c)  s1 = 1, s2 = 3/2, s3 = 11/6, s4 = 25/12 . 
 
Practice 3: Calculate the first 4 partial sums for the following series.   

 (a)  1 – 1/2 + 1/4 – 1/8 + 1/16 – . . . ,  (b)   ∑
k=1

∞
 ( 13 ) 

k
 ,  and  (c)   ∑

n=2

∞
  

(–1)n
n    . 

 

If we know the values of the partial sums  sn , we can recover the values of the terms  an used to build the sn. 
 

Example 4:  Suppose  s1 = 2.1 , s2 = 2.6 , s3 = 2.84 , and s4 = 2.87  are the first partial sums of  ∑
k=1

∞
 ak  .  Find 

the values of the first four terms of  {  an } . 
 
Solution:   s1 = a1 so  a1 = 2.1 .     s2 = a1 + a2  so  2.6 = 2.1 + a2  and  a2 = 0.5 . 

  Similarly,  s3 = a1 + a2 + a3  so  2.84 = 2.1 + 0.5 + a3  and  a3 = 0.24.  Finally,  a4 = 0.03 . 
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 An alternate solution method starts with  a1 = s1  and then uses the fact that  sn = sn–1 + an   so   

 an  = sn – sn–1  .  Then 
  a2 = s2 – s1 = 2.6 – 2.1 = 0.5 . 

  a3 = s3 – s2 = 2.84 – 2.6 = 0.24,  and 

  a4 = s4 – s3 = 2.87 – 2.84 = 0.03 . 
 
Practice 4:   Suppose  s1 = 3.2 , s2 = 3.6 , s3 = 3.5 , s4 = 4, s99 = 7.3 , s100 = 7.6, and s101 = 7.8  are partial 

sums of  ∑
k=1

∞
 ak  .  Find the values of  a1, a2, a3, a4 , and a100 . 

Example 5: Graph the first five terms of the series  ∑
k=1

∞
 ( 

1
2 ) k  .  Then graph the first five partial sums. 

 

 

Solution: 

! 

a1 =
1

2

" 

# 
$ 
% 

& 
' 
1

=
1

2
, a2 =

1

2

" 

# 
$ 
% 

& 
' 
2

=
1

4
, a3 =

1

2

" 

# 
$ 
% 

& 
' 
3

=
1

8

,  

! 

a4 =
1

16
, a4 =

1

32

 

 

  

! 

s1 =
1

2
, s2 =

1

2
+

1

4
=

3

4
, s3 =

1

2
+

1

4
+

1

8
=

7

8
, 

! 

s4 =
15

16
, and s5 =

31

32
.   

 
  These values are graphed in Fig. 4. 
 
 
 
 
 
 
 
 

 

Practice 5: Graph the first five terms of the series  

∑
k=1

∞
 ( – 

1
2 ) k .  Then graph the first five partial sums. 

 
 
Convergence of a Series  
 

The convergence of a series is defined in terms of the behavior of the sequence of partial sums.  If the 

partial sums, the sequence obtained by adding more and more of the terms of the series, approaches a finite 

number, we say the series converges to that finite number.  If  the sequence of partial sums diverges (does 

not approach a single finite number), we say that the series diverges. 
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 Definitions 
 
 Let  { sn }  be the sequence of partial sums  

  of the series  ∑
k=1

∞
 ak  :    sn =   ∑

k=1

n
 ak    

 
 If  { sn }  is a convergent sequence,    (Fig. 5) 

  we say the series  ∑
k=1

∞
 ak   converges. 

    

 If the sequence of partial sums { sn }  converges to  A , 

  we say the series  ∑
k=1

∞
 ak  converges to  A 

 
  or  the sum of the series is  A ,  

  and  we write  ∑
k=1

∞
 ak   =  A. 

  
 If the sequence of partial sums { sn }  diverges,   

  we say  the series  ∑
k=1

∞
 ak     diverges. 

    
 
 

Example 6: In the next section we present a method for determining that the nth  partial sum  

 of   ∑
k=1

∞
 ( 

1
2 ) k    is  sn =  

2n – 1
2n    =  1 –  

1
2n .    Use this result to evaluate the limit of  { sn }.   

 Does the series    ∑
k=1

∞
 ( 

1
2 ) k    converge?  If so, to what value? 

Solution:    

! 

lim
n"#

 sn  =      

! 

lim
n"#

 1 –  
1
2n     =  1  (Fig. 6),  so     ∑

k=1

∞
 ( 

1
2 ) k   converges to 1:     ∑

k=1

∞
 ( 

1
2 ) k   = 1 . 

 

Practice 6: The nth partial sum of   ∑
k=1

∞
 ( – 

1
2 ) k    is  sn =  – 

1
3   +  

1
3  .( –  

1
2  )n .  Use this result to 

 evaluate the limit of  { sn }.  Does the series    ∑
k=1

∞
 ( – 

1
2 ) k    converge?  If so, to what value? 
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The next theorem says that if a series converges, then the terms of the series must approach  0.  When a series  
is convergent then the partial sums  sn  approach a finite limit  (Fig. 3)  so all of the  sn  must be close to that limit 

when  n  is large.  Then  sn  and  sn–1  must be close to each other (why?)  and  an = sn – sn–1  must be close to 0.  

 
 

 Theorem: If the series   ∑
k=1

∞
 ak   converges,  then    

! 

lim
k"#

 ak = 0. 

    
 

We can NOT use this theorem to conclude that a series converges.  If the terms of the series do approach 0, 

then the series may or may not converge –– more information is needed to draw a conclusion.  However, an 

alternate form of the theorem, called the nth Term Test for Divergence, is very useful for quickly 

concluding that some series diverge. 

 

 
 

 nth  Term Test for Divergence of a Series 
 
 If   the terms  an  of a series do not approach 0  (as  "n→∞")  
 
 then  the series diverges: 
 

  if    

! 

lim
n"#

 an ≠ 0,  then   ∑
n=1

∞
 an   diverges. 

    

 

Example 7: Which of these series diverge by the nth Term Test? 
 

 (a)    ∑
n=1

∞
 ( –1 ) n  (b) ∑

n=1

∞
 ( 

3
4 ) n    (c) ∑

n=1

∞
 ( 1 + 

1
n ) n    (d) ∑

n=1

∞
  

1
n      

Solution: (a) an = ( –1 )n  oscillates between  –1  and  +1  and does not approach 0.  ∑
n=1

∞
 ( –1 ) n  diverges. 

 (b) an = ( 
3
4  )n  approaches  0  so  ∑

n=1

∞
 ( 

3
4 ) n   may or may not converge. 

 (c) an = ( 1 + 
1
n   )n  approaches  e ≠ 0, so  ∑

n=1

∞
 ( 1 + 

1
n ) n   diverges. 

 (d) an = 
1
n   approaches  0  so  ∑

n=1

∞
  

1
n     may or may not converge. 

We can be certain that  (a)  and  (c)  diverge.  We don't have enough information yet to decide about    

(b)  and  (d).  (In the next section we show that  (b)  converges  and  (d)  diverges.) 
Practice 7: Which of these series diverge by the nth Term Test? 
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 (a)   ∑
n=1

∞
 ( –0.9 ) n  (b) ∑

n=1

∞
 ( 1.1 ) n    (c) ∑

n=1

∞
  sin( nπ )    (d) ∑

n=1

∞
  

1
n      

 
New Series From Old 
 

If we know about the convergence of a series, then we also know about the convergence of several related series. 
 

• Inserting or deleting a "few" terms, any finite number of terms, does not change the convergence or 

divergence of a series.  The insertions or deletions typically change the sum (the limit of the partial 

sums), but they do not change whether or not the series converges.  (Inserting or deleting an infinite 

number of terms can change the convergence or divergence.) 
 

• Multiplying each term in a series by a nonzero constant does not change the convergence or 

divergence of a series: 

   Suppose  c ≠ 0.    ∑
n=1

∞
   an  converges  if and only if  ∑

n=1

∞
   c.an   converges. 

 

• Term–by–term addition and subtraction of the terms of two convergent series result in convergent 

series.  (Term by term multiplication and division of series do not have such nice results.) 

 
  
 Theorem: 
 

 If ∑
n=1

∞
 an    and  ∑

n=1

∞
 bn   converge  with    ∑

n=1

∞
 an    = A   and  ∑

n=1

∞
 bn    = B , 

 

 then ∑
n=1

∞
 C.an    =  C.A  ,    

  ∑
n=1

∞
 (an + bn)     =  A + B ,   and    

  ∑
n=1

∞
 (an – bn)     =  A – B . 

    
 

The proofs of these statements follow directly from the definition of convergence of a series and from 

results about convergence of sequences (of partial sums). 
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PROBLEMS 

 
In problems 1 – 6, rewrite each sum using sigma notation starting with  k = 1. 
 

1. 1 + 
1
2  + 

1
3  + 

1
4  + 

1
5  + ... 2. 1 + 

1
4  + 

1
9  + 

1
16  + 

1
25  + ... 

 

3. 
2
3  + 

2
6  + 

2
9  + 

2
12  + 

2
15  + 

2
18  + ... 4. sin(1) + sin(8) + sin(27) + sin(64) + sin(125) + ... 

 

5. ( – 
1
2  ) + ( 

1
4  ) + ( – 

1
8  ) + ( 

1
16  ) + ( – 

1
32  ) + ... 6. ( – 

1
3  ) + ( 

1
9  ) + ( – 

1
27  ) + ( 

1
81  ) + ( – 

1
243  ) + ... 

 

In problems 7 – 14, calculate and graph the first four partial sums  s1  to  s4  of the given series   ∑
n=1

∞
  an  . 

7.  ∑
n=1

∞
  n

2  8.  ∑
n=1

∞
 (–1) n  9.  ∑

n=1

∞
 

1
n+2    

 

10.  ∑
n=1

∞
  { 

1
n   –  

1
n+1  }  11.  ∑

n=1

∞
 
1
2n  12.  ∑

n=1

∞
 ( – 

1
2 ) n   

 
In problems 13 – 18, the first five partial sums  s1  to  s5  are given.  Find the first four terms  a1  to  a4   

of the series. 
 
13. s1 = 3 , s2 = 2 , s3 = 4 , s4 = 5 , s5 = 3  14. s1 = 3 , s2 = 5 , s3 = 4 , s4 = 6 , s5 = 5  
 
15. s1 = 4 , s2 = 4.5 , s3 = 4.3 , s4 = 4.8 , s5 = 5 16. s1 = 4 , s2 = 3.7 , s3 = 3.9 , s4 = 4.1 , s5 = 4  
 
17. s1 = 1, s2 = 1.1, s3 = 1.11, s4 = 1.111, s5 = 1.1111 18. s1 = 1, s2 = 0.9, s3 = 0.93, s4 = 0.91, s5 = 0.92  

 

In problems 19 – 28 , represent each repeating decimal as a series using the sigma notation. 
 
19. 0.888 ... 20. 0.333 ... 21. 0.555 ... 22. 0.111 ... 23. 0.aaa ... 
 
24. 0.232323 ... 25. 0.171717 ... 26. 0.838383 ... 27. 0.070707 ... 28. 0.ababab ... 

 

29. Find a pattern for a fraction representation of the repeating decimal  0.abcabcabc ...  . 
 

30. A golf ball is thrown 20 feet straight up into the air, and on each bounce it rebounds to 60% of its 

previous height.  Represent the total distance traveled by the ball as a sum. 
 

31. A "super ball" is thrown 15 feet straight up into the air, and on each bounce it rebounds to 80% of its previous 

height.  Represent the total distance traveled by the ball as a sum.  
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32. Each special washing of a pair of overalls removes 80% of the radioactive particles attached to the overalls.  

Represent, as a sequence of numbers, the percent of the original radioactive particles that remain after each 

washing.  

 
33. Each week, 20% of the argon gas in a container leaks out of the container.  Represent, as a  

 sequence of numbers, the percent of the original argon gas that remains in the container at the end of 

the 1st, 2nd, 3rd, and nth weeks. 

 
34. Eight people are going on an expedition by horseback through desolate country.  The people and  

 scientific equipment (fishing gear) require 12 horses, and additional horses are needed to carry food for 

the horses.  Each horse can carry enough food to feed 2 horses for the trip.  Represent the number of 

horses needed to carry food as a sum.  (Start of a solution:  The original 12 horses will require 6 new 

horses to carry their food.  The 6 new horses require 3 additional horses to carry their food.  The 3 

additional horses require another  1.5 horses to carry food for them, etc.  ) 

 

Which of the series in problems 35 – 43, definitely diverge by the nth Term Test?  What can we conclude about 

the other series in these problems? 
 

35. 

! 

 
1

4
( )

n

n=1

"

#   36. 

! 

 
7

n

n=1

"

#  37. 

! 

 
4

3
( )

n

n=1

"

#   

 

38. 

! 

 "
7

4
( )

2

n=1

#

$  39. 

! 

 
sin(n)

n

n=1

"

#  40. 

! 

 
ln(n)

n

n=1

"

#  

 

41. 

! 

 cos
1

n
( )

n=1

"

#  42. 

! 

 
n

2"20

n
2+4

n=1

#

$  43. 

! 

 
n

2"20

n
5+4

n=1

#

$  

 
 

Practice Answers 

 

Practice 1: The heights of the bounces are  10, (0.4).10, (0.4).(0.4).10, (0.4)3.10, ...  so the distances  

traveled (up and down) by the ball are  20, (0.4).20, (0.4).(0.4).20, (0.4)3.20, ...  

 The total distance traveled is   

 20 + (0.4).20 + (0.4)2.20 + (0.4)3.20 + ... = 20{ 1 + 0.4 + (0.4)2 + (0.4)3 + ... } = 20 ∑
k=0

∞
 (0.4) k  

 After 3 bounces the ball has traveled  20 + (0.4)(20) + (0.4)2(20) = 20 + 8 + 3.2 = 31.2  feet. 
 

Practice 2: (a) ∑
k=1

∞
  k (b) ∑

k=1

∞
 (–1) k   
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 (c) 2( 1 + 
1
2  + 

1
4  + ... ) =  2 ∑

k=0

∞
 ( 

1
2 ) k   or   ∑

k=0

∞
 ( 

1
2 ) k–1   or   ∑

k=1

∞
 ( 

1
2 ) k–2  

 (d) ∑
k=1

∞
  

1
2k  (e) 

1
10  + 

1
100  + 

1
1000  + ... =  

1
10  + 

1
102  + 

1
103  + ... = ∑

k=1

∞
 ( 

1
10 ) k  or  ∑

k=1

∞
  

1
10k   

 

Practice 3: (a) Partial sums: 1, 1/2, 3/4, 5/8 (b) 
1
3  + 

1
9  + 

1
27  + ... ;  partial sums: 

1
3  , 

4
9  , 

13
27  , 

40
81   

 

 (c) 
1
2  – 

1
3  + 

1
4  – ... ;    partial sums:  

1
2  , 

1
6  , 

10
24  =  

5
12  , 

13
60  

 
Practice 4: a1 = s1 = 3.2 ,  a2 = s2 – s1 = (3.6) – (3.2) = 0.4, a3 = s3 – s2 = (3.5) – (3.6) = –0.1,  

 a4 = s4 – s3 = (4) – (3.5) = 0.5,  a100 = s100 – s99 = (7.6) – (7.3) = 0.3 

 

Practice 5: a1 = –1/2, a2 = 1/4, a3 = –1/8, a4 = 1/16, a5 =–1/32 

 s1 = a1 = – 
1
2  , s2 = a1 + a2 = – 

1
2  + 

1
4  = – 

1
4  ,  

 s3 = s2 + a3 = – 
1
4  – 

1
8   =  – 

3
8   ≈  – 0.375,  

 s4 = s3 + a4 = – 
3
8  + 

1
16   = – 

5
16   ≈  – 0.3125,  

 s5 = s4 + a5 = – 
5
16  – 

1
32   = – 

11
32   ≈  – 0.34375,  

 The graphs of  an  and  sn  are shown in Fig. 6. 

 

Practice 6:     

! 

lim
n"#

sn  =      

! 

lim
n"#

– 
1
3   +  

1
3  .(– 

1
2  )n   =  – 

1
3   + 

1
3  .0 

=  – 
1
3  .   

 The limit, as "n→∞" , of  sn  is a finite number,  so    ∑
k=1

∞
 ( – 

1
2 ) k    converges to  – 

1
3  . 

 

Practice 7: (a) ∑
n=1

∞
 ( –0.9 ) n :  an = ( –0.9 )n  approaches  0  so   ∑

n=1

∞
 ( –0.9 ) n  may converge. 

 (b) ∑
n=1

∞
 ( 1.1 ) n :  an = ( 1.1 )n  "approaches infinity"  so   ∑

n=1

∞
 ( 1.1 ) n  diverges.  

 (c) ∑
n=1

∞
  sin( nπ ) = 0 + 0 + 0 + ... :  sin( nπ ) = 0 "approaches  0" so ∑

n=1

∞
  sin( nπ ) may converge.   

 (d) ∑
n=1

∞
  

1
n   :  an =  

1
n    approaches  0  so   ∑

n=1

∞
  

1
n    may converge. 

 (Later in this chapter we will show that series (a)  and  (c)  converge  and  series (d) diverges.) 

 

42

3

1 5 6

0.5

n

an sn

–0.5

Fig. 6
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Appendix:  Programming Partial Sums of Numerical Series 
 
 

MAPLE commands for   ∑
n=1

100
 
1
n   ,  ∑

n=1

100
 
1
n2   ,  ∑

n=1

100
 
1
n!   : > sum(1/n , n=1..100) ;   (then press ENTER key) 

   > sum(1/n^2 , n=1..100) ; 

   > sum(1/(n!) , n=1..100) ; 
 

TI–85  program for   ∑
n=1

M
 
1
n   

Prgm1:NUMSUM 
Disp "NUM TERMS =" 
Input M 
1 → A 
0 → N 
Lbl ONE 
N+1→ N 
1/N → A (value of the new term) 1/N → A 
S + A → S (add new term to partial sum) S + A → S 
If N<M (test if need next term) If N<M 
Goto ONE 
Disp S 
Stop  Stop 
 

 For ∑
n=1

M
 
1
n2    change the bold line to  1/(N*N) →  A .  For ∑

n=1

M
 
1
n!    change the bold line to  A/N →  A . 


