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10.3 GEOMETRIC AND HARMONIC SERIES 
 
This section uses ideas from Section 10.2 about series and their convergence to investigate some special  

types of series.  Geometric series are very important and appear in a variety of applications.  Much of the early 

work in the 17th century with series focused on geometric series and generalized them.  Many of the ideas used 

later in this chapter originated with geometric series.  It is easy to determine whether a geometric series converges 

or diverges, and when one does converge, we can easily find its sum.  The harmonic series is important as an 

example of a divergent series whose terms approach zero.  A final type of series, called "telescoping," is discussed 

briefly.  Telescoping series are relatively uncommon, but their partial sums exhibit a particularly nice pattern. 

 

Geometric Series:   ∑
k=0

∞
   C.r k =  C + C.r + C.r2 + C.r3 + . . . 

 
Example 1:  Bouncing Ball:  A "super ball" is thrown 10 feet  

 straight up into the air.  On each bounce, it rebounds to  

 four fifths of its previous height (Fig. 1)  so the sequence  

 of heights is 10 feet, 8 feet, 32/5 feet, 128/25 feet, etc.   

 (a)  How far does the ball travel (up and down) during  

 its nth bounce?  (b)  Use a sum to represent the total distance 

traveled by the ball. 

 

Solution:  Since the ball travels up and down on each bounce,  

 the distance traveled during each bounce is twice the height  
 of the ball on that bounce so d1 = 2(10 feet) = 20 feet,  

 d2 = 16 feet, d3 = 64/5 feet, and, in general,  dn = 
4
5  .dn–1 .  Looking at these values in another way, 

 

d1 = 20 ,  d2 = 
4
5  .(20) ,  d3 = 

4
5  d2 = 

4
5  .45  .20 = ( 

4
5  )2 (20) ,   d4 =  

4
5  .d3 = 

4
5  .( ( 45  )2 .(20) ) = ( 

4
5  )3 .(20) ,   

 

and, in general,  dn =  ( 
4
5  )n–1 .(20) . 

 
In theory, the ball bounces up and down forever, and the total distance traveled by the ball is the sum of the 

distances traveled during each bounce (an up and down flight):  

 (first bounce) + (second bounce) + (third bounce) + (forth bounce) + . . . 
 

 =  20 + 
4
5 (20)  +  ( 

4
5  )2 (20)  +  ( 

4
5  )3 (20)  + . . .  

 =  20.( 1 + 
4
5   +  ( 

4
5  )2 +  ( 

4
5  )3 + . . . ) =  20. ∑

k=0

∞
  ( 45 )  k . 
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Practice 1: Cake:   Three calculus students want to share a small square cake equally, but they go about it in a 

rather strange way.  First they cut the cake into 4 equal square pieces, each person takes one square, and one 

square is left (Fig. 2).  Then they cut the leftover piece into 4 equal square pieces, each person takes one square 

and one square is left.  And they keep repeating this process.  (a)  What fraction of the total cake does each 

person "eventually" get?  (b)  Represent the amount of cake each person gets as a geometric series:  (amount of 

first piece) + (amount of second piece) + . . . 

 
Each series in the previous Example and Practice problems is a Geometric series, a series in which each term is a fixed 

multiple of the previous term.  Geometric series have the form     
 

 ∑
k=0

∞
   C.r k =  C + C.r + C.r2 + C.r3 + . . .  =   C. ∑

k=0

∞
   r k  

 

with  C ≠ 0  and  r ≠ 0  representing fixed numbers.  Each term in the series is  r  times the previous term.  Geometric 

series are among the most common and easiest series we will encounter.  A simple test determines whether a 

geometric series converges, and we can even determine the "sum" of the geometric series. 

 
 
 Geometric Series Theorem 
 

  The geometric series   ∑
k=0

∞
   r k =  1 + r + r2 + r3 + ...  


 converges to  

1
1 – r if  | r | < 1

  
 diverges if  | r | ≥ 1

  

 
 
Proof:  If  | r | ≥ 1,  then  | rk | approaches  1  or  +∞  as  k becomes arbitrarily large, so the terms  ak = rk  of 

 the geometric series do not approach  0.  Therefore, by the nth term test for divergence, the series diverges. 

  
If  | r | < 1,  then  the terms  ak = rk  of the geometric series approach  0  so the series may or may not converge, and we 

need to examine the limit of the partial sums  sn = 1 + r + r2 + r3 + . . . + rn  of the series.  For a geometric series, a 

clever insight allows us to calculate those partial sums: 
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 (1 – r).sn   =  (1 – r).(1 + r + r2 + r3 + . . . + rn)  
 
  = 1.(1 + r + r2 + r3 + . . . + rn) – r.(1 + r + r2 + r3 + . . . + rn) 
 
  = (1 + r + r2 + r3 + . . . + rn) – ( r + r2 + r3 + r4 +  . . . + rn  + rn+1 ) 
 
  =  1 – rn+1   . 

 
Since  | r | < 1  we know  r ≠ 1  so we can divide the previous result by  1 – r   to get 

 

  sn  =  1 + r + r2 + r3 + . . . + rn  =  
1 – rn+1

1 – r     =  
1

1 – r   –  
rn+1

1 – r   . 
 

This formula for the nth partial sum of a geometric series is sometimes useful, but now we are interested in the 
limit of  sn  as  n  approaches infinity.  Since  | r | < 1,  rn+1  approaches  0  as n approaches infinity, so we can 

conclude that the partial sums    sn  =  
1

1 – r   –  
rn+1

1 – r    approach  

! 

1

1" r
 (as "n#$"). 

The geometric series  ∑
k=0

∞
   r k   converges to the value  

1
1 – r     when  –1 < r < 1 . 

 

Finally,   ∑
k=0

∞
   C.r k  =  C. ∑

k=0

∞
   r k  so we can easily determine whether or not  ∑

k=0

∞
   C.r k  converges and to 

what number. 

 
Example 2: How far did the ball in Example 1 travel? 
 

Solution:  The distance traveled,  20( 1 + 
4
5   +  ( 

4
5  )2 +  ( 

4
5  )3 + . . . ) ,  is a geometric series with  C = 20  and  r = 

4/5.  Since  | r | < 1, the series  1 + 
4
5   +  ( 

4
5  )2 +  ( 

4
5  )3 + . . .  converges  to  

 
1

1 – r   =  
1

1 – 4/5   = 5, so the total distance traveled  is  
 

  20( 1 + 
4
5   +  ( 

4
5  )2 +  ( 

4
5  )3 + . . . ) = 20( 5 ) = 100 feet. 

 

Repeating decimal numbers are really geometric series in disguise, and we can use the Geometric Series Theorem 

to represent the exact value of the sum as a fraction. 
 

Example 3: Represent the repeating decimals  0.4–   and  0.1–3–   as geometric series and find their sums. 
 

Solution: 0.4–   = 0.444 . . .  = 
4
10   +  

4
100   +  

4
1000   + . . .  =  

4
10   .( 1 +  

1
10   +  ( 

1
10  )2  +  (  

1
10   )3  + . . . ) 

 
which is a geometric series with  a = 4/10  and  r = 1/10.  Since  | r | < 1, the geometric series  
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converges to      
1

1 – r    =  
1

1 – 1/10   =  
10
9    ,  and  0.4–   =  

4
10 ( 

10
9  )   = 

4
9   . 

 

 Similarly,   0.1–3–   = 0.131313 ...   =  
13
100   +  

13
10000   +  

13
1000000   + . . .   

 

  =  
13
100   .( 1 +  

1
100   +  (  

1
100   )2  +  (  

1
100   )3  +  . . . ) 

 

  =  
13
100  .(  1

1 – 1/100   )  =  
13
100 (  

100
99   )   =  

13
99   . 

 

Practice 2: Represent the repeating decimals  0.3–   and  0.4–3–2–   as geometric series and find their sums. 
 

One reason geometric series are important for us is that some series involving powers of  x  are geometric series.   
 

Example 4: ∑
k=0

∞
   3x k = 3 + 3x + 3x2 + . . .    and  ∑

k=0

∞
  (2x – 5)  k  = 1 + (2x – 5) + (2x – 5)2 + . . .    

 are geometric series with  r = x  and  r = 2x – 5, respectively.  Find the values of  x  for each series 

so that the series converges. 
 

Solution:  A geometric series converges if and only if  | r | < 1,  so the first series converges if and  

 only if  | x | < 1, or, equivalently,   –1 < x < 1.  The sum of the first series is    
3

1 – x  . 
 

 In the second series  r = 2x – 5  so the series converges if and only if  | 2x – 5 | < 1.  Removing the absolute 

value and solving for  x, we get   –1 < 2x – 5 < 1,  and (adding 5 to each side and then dividing by 2)   2 < x < 3.  

The second series converges if and only if  2 < x < 3.  The sum of the second series is    
1

1 – (2x – 5)    or  

1
6 – 2x   . 

  

Practice 3: The series   ∑
k=0

∞
  (2x ) k   and  ∑

k=0

∞
  (3x – 4) k   are geometric series.  Find the ratio  r   

 for each series, and find all values of  x  for each series so that the series converges.  
 

The series in the previous Example and Practice are called "power series" because they involve powers of the 

variable  x.  Later in this chapter we will investigate other power series which are not geometric series  

(e.g., 1 + x + x2/2 + x3/3 + . . . ), and we will try to find values of  x  which guarantee that the series converge. 
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Harmonic Series:   ∑
k=1

∞
  

1
 k    

 

The series  ∑
k=1

∞
  

1
k    is one of the best known and most important divergent series.  It is called the harmonic series 

because of its ties to music  (Fig. 3).  

 

If we simply calculate partial sums of the harmonic series, it is not clear that the series diverges ––   
the partial sums  sn  grow, but as  n  becomes large,   

the values of sn  grow very, very slowly.  Fig. 4  shows  

the values of  n  needed for the partial sums  sn  to finally 

exceed the integer values 4, 5, 6, 8, 10, and 15.  To  

examine the divergence of the harmonic series, brain power  

is much more effective than a lot of computing power. 

 

        n                         s

            31        4.0224519544

            83        5.00206827268

           227        6.00436670835

        1,674        8.00048557200

       12,367      10.00004300827

  1,835,421       15.00000378267

n

Fig. 4
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We can show that the harmonic series is divergent by showing that the terms of the harmonic series can be 

grouped into an infinite number of disjoint "chunks" each of which has a sum larger than 1/2.  The series    

∑
k=1

∞
  

1
2     is clearly divergent because the partial sums grow arbitrarily large:  by adding enough of the terms 

together we can make the partial sums, sn > n/2 , larger than any predetermined number.  Then we can conclude 

that the partial sums of the harmonic series also approach infinity so the harmonic series diverges. 
 
  

 Theorem:    The harmonic series    ∑
k=1

∞
  

1
k    =  1 +  

1
2   +  

1
3   +  

1
4   + . . .    diverges. 

    
 
Proof:  (This proof is essentially due to Oresme in 1630, twelve years before Newton was born.  In 1821  

 Cauchy included Oresme's proof in a "Course in Analysis" and it became known as Cauchy's argument.) 
 

Let  S  represent the sum of the harmonic series,  S = 1 +  
1
2   +  

1
3   +  

1
4   +  . . . ,  and group the terms of the 

series as indicated by the parentheses: 
 

S = 1 +  
1
2   + ( 

1
3   +  

1
4  ) + ( 

1
5   +  

1
6   +  

1
7   +  

1
8  ) + ( 

1
9   + 

1
10   + . . . + 

1
16  ) + ( 

1
17   +. . . +  

1
32  )  + . . . 

 
 ↑ ↑ ↑ ↑ 

 2 terms, each greater 4 terms, each greater 8 terms, each greater 16 terms, each greater 
 than or equal to 1/4 than or equal to 1/8 than or equal to 1/16 than or equal to 1/32 
 

Each group in parentheses has a sum greater than  1/2,  so  
 

 S > 1  +  
1
2   +  ( 1

2  )  +  ( 
1
2  )  +  ( 

1
2  )  + . . .  and 

 

 the sequence of partial sums  { sn }  does not converge to a finite number.  Therefore, the harmonic  

series diverges. 
 

The harmonic series is an example of a divergent series whose terms,  ak = 1/k, approach  0.  If the terms of a 

series approach 0, the series may or may not converge –– we need to investigate further. 

 

Telescoping Series 
 

Sailors in the seventeenth and eighteenth centuries used telescopes (Fig. 5) 

which could be extended for viewing and collapsed for storing.  Telescoping 

series get their name because they exhibit a similar "collapsing" property.  

Telescoping series are rather uncommon.  But they are easy to analyze, and 

it can be useful to recognize them. 
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Example 5: Determine a formula for the partial sum  sn  of the series  

! 

1

k
"
1

k +1

# 

$ % 
& 

' ( 
k=1

)

*   . 

  Then find   

! 

lim
n"#

 sn  .  (Suggestion:  It is tempting to algebraically consolidate terms,  

  but the pattern is clearer in this case if you first write out all of the terms.) 
 

Solution: s1 = a1 = 1 – 
1
2  .  In later values of  sn , part of each term cancels part of the next term: 

 

! 

s2 = a1 + a2 = 1"
1

2

# 

$ 
% 

& 

' 
(  +  

1

2
"

1

3

# 

$ 
% 

& 

' 
(  =  1"

1

3
 

 

! 

s3 = a1 + a2 + a3 = 1"
1

2

# 

$ 
% 

& 

' 
( +

1

2
"
1

3

# 

$ 
% 

& 

' 
( +

1

3
"

1

4

# 

$ 
% 

& 

' 
(  =  1"

1

4
 

 
In general, many of the pieces in each partial sum "collapse" and we are left with a simple form of  sn : 
 

 

! 

sn = a1 + a2 + ...+ an"1 + an = 1"
1

2

# 

$ 
% 

& 

' 
( +

1

2
"
1

3

# 

$ 
% 

& 

' 
( + ...+

1

n - 1
"
1

n

# 

$ 
% 

& 

' 
( +

1

n
"

1

n +1

# 

$ 
% 

& 

' 
(  =  1"

1

n +1

  

Finally,   

! 

lim
n"#

sn  =  

! 

lim
n"#

1  –  
1

n+1     =  1  so the series converges to  1:    

! 

1

k
"
1

k +1

# 

$ % 
& 

' ( 
k=1

)

*  = 1 . 

 

Practice 4: Find the sum of the series   ∑
k=3

∞
   [ sin( 

1
k  ) – sin( 

1
k + 1  ) ] . 

 
PROBLEMS 

 
In problems 1 – 6, rewrite each geometric series using the sigma notation and calculate the value of the sum. 
 

1. 1 + 
1
3   +  

1
9   +  

1
27   +  . . . 2. 1 + 

2
3   +  

4
9   +  

8
27   +  . . . 

 

3. 
1
8   +  

1
16   +  

1
32   +  

1
64   +  . . . 4. 1  –  

1
2   +  

1
4   –  

1
8   +  

1
16   –  . . . 

 

5. – 
2
3   +  

4
9   –  

8
27   +  . . . 6. 1 +  

1
e   +  

1
e2   +  

1
e3   +  . . . 

 
7. Rewrite each series in the form of a sum of  rk , and then show that  
 

 (a)  
1
2  + 

1
4  + 

1
8  + ... = 1,  

1
3  + 

1
9  + 

1
27  + ... = 

1
2  , and   (b) for  a > 1,  

1
a  + 

1
a2  + 

1
a3  + ... =  

1
a – 1  . 

 
8. A ball is thrown 10 feet straight up into the air, and on each bounce, it rebounds to 60% of its  

 previous height.  (a)  How far does the ball travel (up and down) during its nth bounce.  (b)  Use a sum to 

represent the total distance traveled by the ball.  (c)  Find the total distance traveled by the ball. 
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9. An old tennis ball is thrown 20 feet straight up into the air, and on each bounce, it rebounds to 40% of its 

previous height.  (a)  How far does the ball travel (up and down) during its nth bounce?  (b)  Use a sum to 

represent the total distance traveled by the ball.  (c)  Find the total distance traveled by the ball. 
 

10. Eighty people are going on an expedition by horseback through desolate country.  The people and gear 

require 90 horses, and additional horses are needed to carry food for the original 90 horses.  Each additional 

horse can carry enough food to feed 3 horses for the trip.  How many additional horses are needed?  (The 

original 90 horses will require 30 extra horses to carry their food.  The 30 extra horses require 10 more horses 

to carry their food. etc.) 
 

11. The mathematical diet you are following says you can eat "half of whatever is on the plate,"  so first you bite off 

one half of the cake and put the other half back on the plate.  Then you pick up the remaining half from the plate 

(it’s "on the plate"), bite off half of that, and return the rest to the plate.  And you continue this silly process of 

picking up the piece from the plate, biting off half, and returning the rest to the plate.   (a)  Represent the total 

amount you eat as a series.  (b)  How much of the cake is left after 1 bite, 2 bites, n bites?  (c)  "Eventually," 

how much of the cake do you eat? 
 

12. Suppose in Fig. 6 we begin with a square with sides of length 1 (area = 1) 

and construct another square inside by connecting the midpoints of the  

 sides.  Then the new square has area  1/2.  If we continue the process of 

constructing each new square by connecting the midpoints of the sides of  

 the previous square, we get a sequence of squares each of which has  1/2  

 half the area of the previous square.  Find the total area of all of the 

squares. 
 

13. Suppose in Fig. 7 we begin with a triangle with area 1 and construct 

another triangle inside by connecting the midpoints of the sides.  

Then the new triangle has area  1/4.  Imagine that this construction 

process is continued and find the total area 

of all of the triangles. 
 

14. Suppose in Fig. 8 we begin with a  

 circle of radius 1 and construct 2 more  

 circles inside, each with radius  1/2.   

 Continue the process of constructing two new circles inside each circle from the  

 previous step and find the total area of the circles. 
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15. The construction of the Helga von Koch snowflake begins with an equilateral triangle of area 1 (Fig. 9).   

 Then each edge is subdivided into three equal lengths, and three equilateral triangles, each with area  1/9, are 

built on these "middle thirds" adding a total of  3( 1/9 ) to the original area.  The process is repeated:  at the next 

stage, 3.4  equilateral triangles, each with area  1/81, are built on the new "middle thirds" adding  3.4.(1/81) 

more area.  (a)  Find the total area that results when this process is repeated forever. 
 

number of edges # triangles added area of each triangle total area added 
 3 0 0 0 
 3.4 3 1/9 3/9 

 3.42   3.4 1/92   3.4/92  = (3/9)(4/9) 

 3.43   3.42   1/93   3.42/93  = (3/9)(42/92) 

 3.44   3.43   1/94   3.43/94  = (3/9)(43/93) 
 
 so the total added area of the snowflake is 

 1 + 
3
9   + ( 

3
9  )( 

4
9  ) + ( 

3
9  )( 

42

92  ) + ( 
3
9  )( 

43

93  )  + . . . 

  
 (b) Express the perimeter of the Koch Snowflake as 

  a geometric series and find its sum. 

 (The area is finite, but the perimeter is infinite.) 
 
16. Harmonic Tower:  The base of a tower is a cube  

 whose edges are each one foot long.  On top of it are cubes with edges of length 

1/2, 1/3, 1/4, ...  (Fig. 10).   

 (a)  Represent the total height of the tower as a series.  Is the height finite? 

 (b)  Represent the total surface area of the cubes as a series.  

 (c)  Represent the total volume of the cubes as a series. 

   (In the next section we will be able to determine if this surface area and  

  volume are finite or infinite.) 
 
17. The base of a tower is a sphere whose radius is each one foot long.  On top of  

 each sphere is another sphere with radius one half the radius of the sphere 

immediately beneath it  (Fig 11).  (a)  Represent the total height of the 

tower as a series and find its sum.  (b)  Represent the total surface area 

of the spheres as a series and find its sum.  (c)  Represent the total 

volume of the spheres as a series and find its sum. 
 

18. Represent the repeating decimals  0.6–    and   0.6–3–    

 as geometric series and find the value of each series as a simple fraction. 
 

19. Represent the repeating decimals  0.8–  , 0.9–  ,   and  0.2–8–5–7–1–4–     as geometric  

 series and find the value of each series as a simple fraction. 
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20. Represent the repeating decimals  0.a–  , 0.a–b–  ,   and  0.a–b–c–    as geometric series and find the value of  

 each series as a simple fraction.  What do you think the simple fraction representation is for  0.a–b–c–d–   ? 
 
In problems 21 – 32, find all values of  x  for which each geometric series converges. 
 

21. ∑
k=1

∞
 (2x + 1) k 22. ∑

k=1

∞
 (3 – x) k   23. ∑

k=1

∞
 (1 – 2x) k    

 

24. ∑
k=1

∞
  5xk     25. ∑

k=1

∞
 ( 7x ) k   26. ∑

k=1

∞
 ( x/3 ) k    

 

27. 1 +  
x
2   +  

x2

4    +  
x3

8    +  . . . 28. 1 + 
2
x   +  

4
x2   +  

8
x3   +  . . . 29. 1 + 2x  +  4x2  +  8x3  +  . . . 

 

30. ∑
k=1

∞
 ( 2x/3 ) k   31. ∑

k=1

∞
  sink( x ) 32. ∑

k=1

∞
  ekx  =  ∑

k=1

∞
 ( ex ) k 

 

33. One student thought the formula was  1 + x + x2 + x3 + . . .  =  
1

1 – x   .  The second student said "That  

 can't be right.  If we replace  x  with  2, then the formula says the sum of the positive numbers  

 1 + 2 + 4 + 8 + ...  is a negative number   
1

1 – 2   = – 1."  Who is right?  Why? 
 
34. The Classic Board Problem:  If you have identical 1 foot long boards, they can be arranged to hang over  

 the edge of a table.  One board can extend 1/2 foot beyond the edge (Fig. 12), two boards can extend   
 

 1/2 + 1/4 feet, and, in general, n boards can extend  

1/2 + 1/4 + 1/6 + . . . + 1/(2n)  feet beyond the edge.  

(a)  How many boards are needed  

 for an arrangement in which  

 the entire top board is beyond  

 the edge of the table? 

(b)  How many boards are needed  

 for an arrangement in which  

 the entire top two boards are  

 beyond the edge of the table? 

(c)  How far can an arrangement extend 

 beyond the edge of the table? 
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In problems  35 – 40, calculate the value of the partial sum for  n = 4  and n = 5  and find a formula for sn .   

(The patterns may be more obvious if you do not simplify each term.) 
 

35. 

! 

 
1

k
"

1

k +1

# 

$ % 
& 

' ( 
k=3

)

*  36. 

! 

 
1

k
"

1

k + 2

# 

$ % 
& 

' ( 
k=1

)

*  37. 

! 

 [k
3

k=1

"

# $ (k +1)
3
]  

38. 

! 

 ln
k

k +1

" 

# 
$ 

% 

& 
' 

k=1

(

)  39. 

! 

 [f(k)

k=3

"

# $ f(k +1)] 40. 

! 

 [g(k)

k=1

"

# $ g(k + 2)] 

 
In problems 41 – 44, calculate  s4  and  s5  for each series and find the limit of  sn  as  n  approaches infinity.   

If the limit is a finite value, it represents the value of the infinite series. 
 

41. ∑
k=1

∞
  sin( 

1
k  ) – sin( 

1
k+1  ) 42. ∑

k=2

∞
  cos( 

1
k  ) – cos( 

1
k+1  ) 43. ∑

k=2

∞
 1
k2  – 

1
(k+1)2

  

44. ∑
k=3

∞
    ln( 1 – 

1
k2  )      (Suggestion:  Rewrite  1 – 

1
k2    as  

 1 – 
1
k 

 1 –  
1

k+1  
     ) 

 
Problems 45 and 46 are outlines of two "proofs by contradiction" that the harmonic series is divergent.   

Each proof starts with the assumption that the "sum" of the harmonic series is a finite number, and then an 

obviously false conclusion is derived from the assumption.  Verify that each step follows from the assumption and 

previous steps, and explain why the conclusion is false. 
 

45. Assume that   H = 1 + 
1
2   +  

1
3   +  

1
4   +  

1
5   +  

1
6   +  

1
7   +  . . .  is a finite number, and let 

O =  1  +  
1
3   +  

1
5   +  

1
7   + . . .  be the sum of the "odd reciprocals," and  E =  

1
2   +  

1
4   +  

1
6   +  

1
8   + . . . 

be the sum of the "even reciprocals."  Then 
 
(i) H = O + E,   (ii) each term of O is larger than the corresponding term of E  so  O > E, 
 

and (iii) E =  
1
2   +  

1
4   +  

1
6   +  

1
8   + . . . =  

1
2  { 1 + 

1
2   +  

1
3   +  

1
4   + . . . }  = 

1
2  H . 

 

Therefore  H = O + E > 
1
2  H +  

1
2  H  =  H   (so "H is strictly bigger than H," a contradiction). 

 

II. Assume that   H = 1 + 
1
2   +  

1
3   +  

1
4   +  

1
5   +  

1
6   +  

1
7   +  . . .  is a finite number, and, starting with the  

 second term, group the terms into groups of three.  Then, using  
1

n–1   +  
1
n   +  

1
n+1   >  3.1n  ,  we have 

 

 H  = 1 + ( 
1
2   +  

1
3   +  

1
4  ) + ( 

1
5   +  

1
6   +  

1
7  ) + ( 

1
8   +  

1
9   +  

1
10  ) + . . .  

 > 1 +  ( 1 ) +  ( 
1
2  ) +  ( 

1
3   ) + . . . 

 = 1 +  ( 1 + 
1
2   +  

1
3   +  

1
4   + . . .  )  =  1  +  H . Therefore,  H  >  1 + H  (so "H is bigger than 1 + H"). 



10.3  Geometric and Harmonic Series Contemporary Calculus 12 

46. Jacob Bernoulli (1654–1705) was a master of understanding and manipulating series by breaking a difficult series 

into a sum of easier series.  He used that technique to find the sum of the non–geometric series  
 

 ∑
k=1

∞
 k
2k    =  1/2 + 2/4 + 3/8 + 4/16 + 5/32 + . . . + k/2k + . . .  in his book Ars Conjectandi , 1713. 

 
Show that  1/2 + 2/4 + 3/8 + 4/16 + 5/32  + . . . +  n/2n + . . .      can be written as 
 

  1/2 + 1/4 + 1/8 +  1/16 + 1/32  + . . . + 1/2n + . . .  ( a ) 

 plus  1/4+ 1/8 +  1/16 + 1/32  + . . . + 1/2n + . . .  ( b ) 

 plus   1/8 +  1/16 + 1/32  + . . . + 1/2n + . . .   ( c ) 

 plus . . .  etc. 

Find the values of the geometric series  (a), (b), (c), etc.  and then find the sum of these values (another geometric 

series).   
 

47. Bernoulli's approach in problem 46 can also be interpreted as a geometric argument for representing the area 

in Fig. 13  in two different ways.  (a)  Represent the total area in Fig. 13a  as a (geometric) sum of the areas of 

the side–by–side rectangles, and find the sum of the series.  (b)  Represent the total area of the stacked 

rectangles in Fig. 13b as a sum of the areas of the horizontal slices. 

 Since both series represent the same total area, the values of the series are equal. 
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48. Use the approach of problem 46 to find a formula for the sum of   

 (a)  the value of   ∑
k=1

∞
 k
3k    =  1/3 + 2/9 + 3/27 + 4/81  + . . . + k/3k + . . .  and 

 (b)  a formula for the value of   ∑
k=1

∞
 k
ck    =  1/c + 2/c2 + 3/c3 + 4/c4  + . . . + k/ck + . . .  for  c > 1. 

  (answers:  (a)  3/4,  (b)  c/(c–1)2  ) 

 

Practice Answers 

 

Practice 1:  (a)   Since they each get equal shares, and the whole cake is distributed, they each get 1/3 of the cake. 

 More precisely, after step 1, 1/4 of the cake remains and 3/4 was shared.  After step 2, (1/4)2  of the cake 

remains and  1 – (1/4)2  was shared.  After step n,  (1/4)n  of the cake remains and   

 1 – (1/4)n  was shared.  So after step n, each student has  ( 
1
3  )( 1 – (1/4)n ) of the cake.  "Eventually," 

each student gets (almost)  
1
3   of the cake. 

 (b) ( 
1
4  ) + ( 

1
4  )2 + ( 

1
4  )3 + ...  =   ( 

1
4  ) {  1 + ( 

1
4  ) + ( 

1
4  )2 + ... } 

 

Practice 2: 0.3–   = 0.333 ...  = 
3
10  +  

3
100  +  

3
1000  + . . .  =  

3
10   .( 1 +  

1
10   +  ( 

1
10  )2  +  (  

1
10   )3  + . . . ) 

 
which is a geometric series with  a = 3/10  and  r = 1/10.  Since  | r | < 1, the geometric series  
 

converges to 
1

1 – r    =  
1

1 – 1/10   =  
10
9    ,  and  0.3–   =  

3
10 ( 

10
9  )   =  

3
9   =  

1
3  . 

 

 Similarly,   0.4–3–2–   = 0.432432432 ...  =  
432
1000   +  

432
1000000   +  

432
1000000000   + . . .   

 

  =  
432
1000   .( 1 +  

1
1000   +  (  

1
1000   )2  +  (  

1
100   )3  +  . . . ) 

 

  =  
432
1000  .(  1

1 – 1/1000   )  =  
432
1000 (  

1000
999   )   =  

432
999   =  

16
37  . 

 

Practice 3: r = 2x :  If  |2x| < 1, then  –1 < 2x < 1  so  –1/2 < x < 1/2.   

  ∑
k=0

∞
  (2x ) k   converges  (to  

1
1 – 2x   )  when   –1/2 < x < 1/2.  

 r = 3x – 4 :  If  |3x – 4| < 1, then  –1 < 3x – 4 < 1  so  3 < 3x < 5  and  1 < x < 5/3. 

    ∑
k=0

∞
  (3x – 4) k   converges  (to  

1
1 – (3x – 4)   =  

1
5 – 3x   )  when  1 < x < 5/3 . 
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Practice 4: Let  sn  =  ∑
k=3

n
   sin( 

1
k  ) – sin( 

1
k + 1  )  

 

 = {sin( 
1
3  ) – sin( 

1
4  ) } + {sin( 

1
4  ) – sin( 

1
5  ) } + {sin( 

1
5  ) – sin( 

1
6  ) } + ... + {sin( 

1
n  ) – sin( 

1
n+1  ) }  

  

 =  sin( 
1
3  )  –  sin( 

1
n+1  ) . 

 

 Then   

! 

lim
n"#

 sn  =  

! 

lim
n"#

 {sin( 
1
3  )  –  sin( 

1
n+1  )} =  sin( 

1
3  ) so the series converges to  sin( 

1
3  ):  

    ∑
k=1

∞
   sin( 

1
k  ) – sin( 

1
k + 1  )  =  sin( 

1
3  )  ≈  0.327 . 

 
 
 
 
 
 
 
 
Appendix:  MAPLE and WolframAlpha for Partial Sums of Geometric Series 
 

MAPLE  command for 

 

   

! 

3

2
n

n=0

100

"   :   sum(3*(1/2)^n , n=0..100) ;   (then press ENTER key) 

   

! 

3

2
n

n=0

"

#    :   sum(3*(1/2)^n , n=0..infinity) ;   (then press ENTER key) 

 

WolframAlpha   (free at   http://www.wolframalpha.com ) 

Asking     sum 3/2^k , k = 1 to infinity 

 gives the sum of the infinite series and a graph of the partial sums. 

 

Asking     sum 3/2^k , k = 1 to 100 

 gives the sum as an exact fraction (strange) and as a decimal. 
 


