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10.8 POWER SERIES:  ∑
n=0

∞
  anxn   and  ∑

n=0

∞
  an(x – c)n   

 

So far most of the series we have examined have consisted of numbers (numerical series), but the most  

important series contain powers of a variable, and they define functions of that variable.   

 
 

 Definition of Power Series  

 A power series is an expression of the form  ∑
n=0

∞
  anxn  = a0 + a1x + a2x2 + a3x3 + ... + anxn + ... 

 where  a0, a1, a2, a3, ... are constants, called the coefficients of the series, and  x is a variable. 
   

(Note: For n = 0 we use the convention for power series that  x0 = 1 even when x = 0.  This convention 

simply makes it easier for us to represent the series using the summation notation.) 
 

For each value of the variable, the power series is simply a numerical series that may converge or diverge.  

If the power series does converge, the value of the function is the sum of the series, and the domain of the 

function is the set of  x values for which the series converges.  Power series are particularly important in 

mathematics and applications because many important functions such as sin(x), cos(x), ex, and ln(x) can be 

represented and approximated by power series. 
 

The following are examples of power series: 
 

f(x) = 1 + x + x2 + x3 + x4 + ... =  

 

 
n= 0

!

" xn     (an = 1 for all n) 

 

g(x) = 1 + x + 
x2

2!  + 
x3

3!  + 
x4

4!  + ... =  

 

 
xn

n!
n= 0

!

"   ( 

 

an = 1
n!

 for all n and with the definition that 0! = 1) 

 

h(x) = x  –  
x3

3!   +  
x5

5!   –  
x7

7!   + ... =   (!1)n " x2n+1

(2n+1)!n=0

#

$   (an =
(!1)n

(2n+1)!
for all n.) 

 

Power series look like long (very long) polynomials, and in many ways they behave like polynomials. 
 

This section focuses on what a power series is and on determining where a given power series converges.  

Section 10.9 looks at the arithmetic  (sums, differences, products) and calculus (derivative and integrals) of 

power series.  Section 10.10 examines how to represent particular functions such as sin(x) and  ex  and 

others as power series. 
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Finding Where a Power Series Converges 
 

The power series  f(x) =  ∑
n=0

∞
  anxn  always converges at  x = 0:  f(0) =  ∑

n=0

∞
  an(0)n  = a0 .   To find which 

other values of  x  make a power series converge, we could try  x  values one–by–one, but that is very 

inefficient and time consuming.  Instead, the Ratio Test allows us to get answers for lots of  x values all at 
once.  (Since we are using  an  to represent the coefficient of the  nth term  anxn , we let  cn = anxn  

represent the nth term and we use the ratio  
cn+1
cn    . ) 

 

Example 1: Find all of the values of  x  for which the power series  

 

 
n=0

!
" (2n +1) # xn  converges. 

 
Solution: cn = (2n+1).xn  so  cn+1 = (2(n+1) +1).xn+1  = (2n +3).xn+1 .  Then, using the Ratio Test, 

 

 |  
cn+1
cn    |  =  |  

(2n +3).xn+1

(2n+1).xn    |  =  |  
2n+3
2n+1  . x

n+1

xn    |  =  |  
2n+3
2n+1   . x  |  →  | x | = L . 

 From the Ratio Test we know the series converges if  L < 1: if  |x| < 1  or, in other words,   –1 < x < 1.   

 We also know the series diverges if  L > 1 so the series diverges if  |x| > 1: if x > 1 or x < –1. 

 Finally, we need to check the two remaining values of  x:  the endpoints  x = –1  and  x = 1. 

  When x = 1,  ∑
n=0

∞
 (2n+1) .xn = ∑

n=0

∞
 (2n+1) .1n = ∑

n=0

∞
 (2n+1)   which diverges since the  

  terms do not approach 0.  When  x = –1,  ∑
n=0

∞
 (2n+1) .xn = ∑

n=0

∞
 (2n+1) .(–1)n  which also  

  diverges because the terms do not approach 0.  

 The power series  ∑
n=0

∞
 (2n+1) .xn  converges if and only if  –1 < x < 1.  In other words, the series 

converges when  x is in the interval  (–1, 1) and it diverges when  x  is outside the interval  (–1, 1). 
 

Example 2: Find all of the values of  x  for which the power series   

 

 
xn

n ! 3n
n=1

"
#   converges. 

 

Solution: cn = 
xn

n.3n   so  cn+1 =  
xn+1

(n+1).3n+1   .  Using the Ratio Test, 

 

 |  
cn+1
cn    |  =  

 

 

xn+1

(n + 1) ! 3n+1

xn

n ! 3n

   =  |  
n

n+1  . 3n

3n+1  . x
n+1

xn    |  =  |  
n

n+1  . 13   .x |    →  | x3  | = L . 



10.8 Power Series Contemporary Calculus 3 

 Solving  | 
x
3  | < 1, we have  –1 < 

x
3  < 1  or  –3 < x < 3.  The series converges for  –3 < x < 3  and it  

 diverges for  x < –3  and for x > 3.   

 Finally, we need to check the two remaining values of x:  the endpoints  x = –3  and  x = 3. 
 

  When  x = –3,   Error! Not a valid embedded object. =   

 

 (-3)n

n ! 3n
n=1

"
#   =   

 

 (!1)n

nn=1

"
#    which 

converges by the  

   Alternating Series Test. 

  When  x = 3, 

 

 
xn

n ! 3n
n=1

"
#  =   

 

 (3)n

n ! 3n
n=1

"
#   =   ∑

n=1

∞
 
1
n   , the harmonic series,  which diverges. 

 

 In summary, the power series  

 

 
xn

n ! 3n
n=1

"
#    converges if  –3 ≤ x < 3,  if  x is in the interval  [–3, 3). 

 

Note: The Ratio Test is very powerful for determining where a power series converges:  put  cn = an xn , 

 calculate the limit of the ratio  | 
cn+1
cn    | , and then solve the resulting absolute value inequality for  x.   

 Typically, we also need to check the endpoints of the interval by replacing  x  with the two endpoint 

values and then determining if the resulting numerical series converge or diverge at these endpoints.  

The Ratio Test does not help with the endpoints. 
 

Practice 1: Find all of the values of  x  for which the series  

 

 
5n ! xn

nn=1

"
#   converges. 

 
Interval of Convergence, Radius of Convergence 
 
In each of the previous examples, the values of x  for which the power series converge form an interval.   

The next theorem says that always happens. 
 
 
 Interval of Convergence Theorem for Power Series 
 

 The values of  x  for which the power series  

 

 
n=0

!
" anxn   converges form an interval.  

  (i) If this power series converges for  x = c, then the series converges for all satisfying  |x| < |c|. 

  (ii) If this power series diverges for  x = d, then the series diverges for all satisfying  |x| > |d|. 
   
 
A proof of the Interval of Convergence Theorem is given after the Practice Answers. 
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Meaning of the Interval of Convergence Theorem:  If a power series   ∑
n=0

∞
  anxn  converges for a value x = c, 

then the series also converges for all values of  x  closer to the origin than  c.  If the power series diverges 

for a value  x = d, then the power series diverges for all values of  x  farther from the origin than  d.   

This guarantees that the values where the power 

series converges form an interval, from –|c| to |c|.  

This Theorem does not tell us about the 

convergence of the power series at the endpoints of 

the interval –– we need to check those two points 

individually.  This Theorem also does not tell us 

about the convergence of the power series for 

values of  x  with  |c| < |x| < |d|.  See Fig. 1. 
 

Example 3: Suppose we know that a power series   ∑
n=0

∞
  anxn  converges at  x = 4  and  diverges at x = 9.  

What can we conclude (converge or diverge or not enough information)  about the series  

 when  x = 2, –3, –4, 5, –6, 8, –9, 10, –11?   
 

Solution: We know the power series converges at  x = 4 (c = 4) so we can conclude that the series 

 converges for  x = 2  and  x = –3  since  |2|<|4|  and  |–3|<|4|. 

 We know the power series diverges at  x = 9 (d = 9) so we can conclude that the series diverges  

  for  x = 10  and  x = –11 since  |10|>|9|  and  |–11|>|9|. 

 The remaining values of  x  (–4, 5, –6, 8, and –9)  do not satisfy  |x| < 4  or  |x| > 9  so the  

  series may converge or may diverge –– we don't  

  have enough information. 

  

 

 Fig. 2 shows the regions where 

convergence of this power series is 

guaranteed, where divergence is 

guaranteed, and where we don't have 

enough information. 
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Practice 2: Suppose we know that a power series  ∑
n=0

∞
  anxn  converges at  x = 3  and  diverges at x = –7. 

 What can we say about the convergence of the series for  x = –1, 2, –3, 4, –6, 7, –8, and 17? 

 Sketch the regions of known convergence and known divergence. 
 

 Definition: The interval of convergence of a power series    ∑
n=0

∞
  anxn  is the interval of  

 values of  x  for which the series converges. 
    
 

From Example 1 we know the interval of convergence of   ∑
n=0

∞
 (2n+1) .xn  is  (–1, 1).   

From Example 2 we know the interval of convergence of   ∑
n=1

∞
 

xn

n.3n   is  [–3, 3). 

   

 Definition:  

 For each power series   ∑
n=0

∞
  anxn  there is a  

 number  R, called the radius of convergence, so that 

the series  

 converges for  |x| < R  and diverges when  |x| > R.   

 (The series may converge or may diverge at  |x| = R.)  

(Fig. 3) 
    
 
The radius of convergence is half of the length of the interval of convergence. 
 
 
Example 4: What is the radius of convergence of each series in Examples 1 and 2? 
 

Solution:   The power series  ∑
n=0

∞
 (2n+1) .xn  converges if  –1 < x < 1  so  R = 1. 

 The power series  ∑
n=1

∞
 

xn

n.3n   converges if  –3 ≤ x < 3,  so  R = 3. 

 

The convergence or divergence of a power series at the endpoints of the interval of convergence does not 

affect the value of the radius of convergence  R,  and the value of  R  does not tell us about the convergence 

of the power series at the endpoints of the interval of convergence, at  x = R  and  x = –R. 
 
Practice 3: What is the radius of convergence of the series in Practice 1? 
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 Summary 

 For a power series   

 

 
n=0

!
" anxn    exactly one of these three situations occurs: 

 (i) the series converges only for  x = 0.  (Then we say the radius of convergence is 0.) 

 (ii) the series converges for all x  with  |x| < R and diverges for all x with  |x| > R.  (Then we  

    say the radius of convergence is R.) 

 (iii) the series converges for all values of  x.  (Then we say the radius of convergence is infinite.) 
    
 

The following list shows the intervals and radii of convergence for several power series.  Four of the series 

in the list have the same radius of convergence, R = 1, but slightly different intervals of  convergence. 
(The 

 

!   below simply means a series whose starting index is some finite value of n and whose upper index is  

 

! .) 

 
 Series Radius Interval Series converges for x Values 
  of Convergence of Convergence in the Shaded Intervals 
    
 

 

 n!!xn"  R = 0 { 0 }, a single point 

      
 

 

 xn!  R = 1 (–1, 1) 

       
 

 

 
xn

n!  R = 1 [–1, 1) 

     
 

 

 (-1)n xn

n!  R = 1 (–1, 1] 

    
 

 

 
xn

n2!  R = 1 [–1, 1] 

 

 

 

 
xn

2n!  R = 2 (–2, 2) 

 

 

 

 
xn

n!!  R = ∞ (– ∞, ∞) 

 

 

Power Series Centered at c 
 

Sometimes it is useful to "shift" a power series.  These shifted power series contain powers of  "x – c"  

instead of powers of  "x," but many of the properties we have examined still hold. 
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 Definition: A power series centered at c  is a series of the form  

 ∑
n=0

∞
  an(x – c)n  = a0 + a1(x – c) + a2(x – c)2 + a3(x – c)3 + ... + an(x – c)n + ... 

 where  a0, a1, a2, a3, ... are constants, called the coefficients of the series, and  x is a variable. 

    
 

Note: As usual for power series, for n = 0 we use the convention that  (x–c)0 = 1, even when x = c. 
 

A power series centered at c always converges for  x = c, and  

the interval of convergence is an interval centered at  c.   

The radius of convergence is half the length of the interval of 

convergence  (Fig. 4). 
 

If a power series centered at  c  converges for a value of  x,   

then the series converges for all values closer to  c.  If a  

power series centered at  c  diverges for a value of  x, then  

the series diverges for all values farther from c. 
 

Example 5: Suppose we know that a power series   ∑
n=0

∞
  an(x – 4)n  converges at  x = 6  and  diverges at  

 x = 0.  What can we conclude (converge or diverge or not enough information) about the 

series when  x = 3, 9, –1, 2, and 7?   
 

Solution: We know the power series converges at  x = 6  so we can conclude that the series converges for  

values of  x  closer to  4  than  |6 – 4| = 2  units:  the series converges at  x = 3. 

 We know the power series diverges at  x = 0  so we can conclude that the series diverges  

 for  values of  x  farther from  4  than  |0 – 4| = 4 units: the series diverges at x = 9 and -1. 

 The remaining values of  x   (2 and 7)  do not satisfy  |x – 4| < 2  or  |x – 4| > 4  so the  

 series may converge or may diverge. 
  

Fig. 5  shows the regions where convergence of this power  

series is guaranteed, where divergence is guaranteed, and  

where we don't have enough information. 
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Practice 4: Suppose we know that a power series   ∑
n=0

∞
  an(x + 5)n  converges at  x = –1  and  diverges  

 at x = 1.  What can we conclude about the series when  x = –2, –9, 0, –11, and 3?  
 

The Ratio Test is still our primary tool for finding an interval of convergence of a power series, even if the 

power series is centered at  c  rather than at  0. 
 

Example 6: Find the interval and radius of convergence of    

 

 
(x - 5)n

n !2n
n=1

"
#  . 

 

Solution: cn = 
(x–5)n

n.2n    so  cn+1 = 
(x–5)n+1

(n+1).2n+1  .  The ratio  |  
cn+1
cn    |  for the Ratio Test appears to  

 be messy, but if we group the similar pieces algebraically, the ratio simplifies nicely: 
 

 |  
cn+1
cn    | = 

 

 
 

(x - 5)n+1

(n + 1) !2n+1  

(x - 5)n

n !2n

  = |  
n

n+1  . 2n

2n+1  . (x–5)n+1

(x–5)n
   | = |  

n
n+1  . 12  . (x–5) |   →  | 

(x–5)
2   | = L . 

 Solving  | 
(x–5)

2   | < 1, we have  –1 < 
(x–5)

2   < 1  so  –2 < x–5 < 2  and  3 < x < 7.  The series 

converges for  3 < x < 7,  and it diverges for  x < 3  and for x > 7.   

 Finally, we need to check the two remaining values of x:  the endpoints  x = 3  and  x = 7. 
 

  When  x = 3, 

 

 
(x - 5)n

n !2n
n=1

"
# =   

 

 
n=1

!
" (#2)n

n $2n
 =   

 

 
n=1

!
" (#1)n

n
   which converges by the  

   Alternating Series Test. 

 

  When  x = 7, 

 

 
(x - 5)n

n !2n
n=1

"
#  =  

 

 
n=1

!
" (2)n

n #2n
 =  

 

 
n=1

!
" 1

n
 , the harmonic series,  which diverges. 

 
 

 The power series 

 

 
(x - 5)n

n !2n
n=1

"
#  converges if  3 ≤ x < 7.  The interval of convergence is  [3, 7), and the 

radius of convergence is  R =  
1
2 ( length of the interval of convergence)  =  

1
2 ( 7 – 3)  = 2.  

 

Practice 5:  Find the interval and radius of convergence of     

 

 
n ! (x - 3)n

5n
n=0

"
#  . 
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A power series looks like a very long polynomial.  However, a regular polynomial with a finite number of 

terms is defined at every value of  x, but a power series may diverge for many values of the variable  x.  As 

we continue to work with power series we need to be alert to where the power series converges (and 

behaves like a finite polynomial) and where the power series diverges.  We need to know the interval of 

convergence of the power series, and, typically, we use the Ratio Test to find that interval. 

 
PROBLEMS 
 

In problems 1 – 24, (a)  find all values of  x  for which each given power series converges, and (b)  graph 

the interval of convergence for the series on a number line. 
 

1. ∑
n=1

∞
  x

n   2. ∑
n=1

∞
 (x – 3) n   3. ∑

n=1

∞
 (x + 2) n   4. ∑

n=1

∞
 (x + 5) n    

 

5. ∑
n=3

∞
 
xn

n      6. ∑
n=3

∞
 
(x – 2)n

n     7. ∑
n=1

∞
 
(x + 3)n

n     8. ∑
n=1

∞
 
(x – 5)n

n2    

 

9. ∑
n=1

∞
 
(x – 7)2n+1

n2   10. ∑
n=1

∞
 
(x + 1)2n

n3   11. ∑
n=2

∞
 ( 2x ) n   12. ∑

n=2

∞
 ( 5x ) n   

 

13. ∑
n=1

∞
 ( 

x
3 ) 2n+1   14. ∑

n=1

∞
  n( 

x
4  )2n+1   15. ∑

n=1

∞
 (2x – 6) n   16. ∑

n=1

∞
 (3x + 1) n    

 

17. ∑
n=0

∞
 
xn

n!     18. ∑
n=0

∞
 
(x – 5)n

n!     19. ∑
n=1

∞
 
n2.xn

3n     20. ∑
n=1

∞
 
n5.xn

3n    

 

21. ∑
n=1

∞
  n!.xn   22. ∑

n=1

∞
  n!.(x + 2)n   23. ∑

n=3

∞
  n!.(x – 7)n   24. ∑

n=0

∞
 
3n.xn

n!     

 

In problems 25 – 34, the letters  "a"  and  "b"  represent positive constants.  Find all values of  x  for which each 

given power series converges. 
 

25. ∑
n=1

∞
 (x – a) n    26. ∑

n=1

∞
 (x + b) n   27. ∑

n=1

∞
 
(x – a)n

n     28. ∑
n=1

∞
 
(x – a)n

n2    

 

29. ∑
n=1

∞
 ( ax ) n 30. ∑

n=1

∞
 ( 

x
a ) n   31. ∑

n=1

∞
 ( ax – b ) n   32. ∑

n=1

∞
 ( ax + b ) n   
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33. A friend claimed that the interval of convergence for a power series of the form  ∑
n=1

∞
  an

.(x – 4)n   is the  

 interval  (1, 9).  Without checking your friend's work, how can you be certain that your friend is wrong? 
 
34. Which of the following intervals are possible intervals of convergence for the power series in problem 33? 

 (2, 6), (0, 4), x = 0, [1, 7], (–1, 9], x = 4, [3, 5), [–4, 4), x = 3 . 
 

35. Which of the following intervals are possible intervals of convergence for   ∑
n=1

∞
  an

.(x – 7)n    ? 

 (3, 10), (5, 9), x = 0, [1, 13], (–1, 15], x = 4, [3, 11), [0, 14), x = 7 . 
 
36. Fill in each blank with a number so the resulting interval could be the interval of convergence for the power  

 series   ∑
n=1

∞
  an

.(x – 3)n  :   (0, ___ ), ( ___ , 7), [1, ___ ], ( ___ , 15], [ ___ , 11), [0, ___ ), x = ___  . 

 
37. Fill in each blank with a number so the resulting interval could be the interval of convergence for the power  

 series   ∑
n=1

∞
  an

.(x – 1)n  :   (0, ___ ), ( ___ , 7), [1, ___ ], ( ___ , 5], [ ___ , 11), [0, ___ ), x = ___  . 

 
In problems  38 – 45, use the patterns you noticed in the earlier problems and examples to build a power series  

with the given intervals of convergence.  (There are many possible correct answers –– find one.) 
 
38. ( –5, 5) 39. [ –3, 3) 40. [ –2, 2] 41. ( 0, 6) 
 
42. [ 0, 8) 43. [ 2, 8) 44. [ 3, 7] 45. x = 3 
 

In problems  46 – 59, find the interval of convergence for each series.  For x in the interval of convergence, find 

the sum of the series as a function of  x.  (Hint:  You know how to find the sum of a geometric series.) 
 

46. ∑
n=0

∞
  x

n   47. ∑
n=0

∞
 ( x – 3 ) n   48. ∑

n=0

∞
 ( 2x ) n   49. ∑

n=0

∞
 ( 3x ) n    

 

50. ∑
n=0

∞
   x

2n    51. ∑
n=0

∞
   x

3n     52. ∑
n=0

∞
 ( 

x – 6
2  ) n    53. ∑

n=0

∞
 ( 

x – 6
5  ) n 

 

54. ∑
n=0

∞
 ( 

x
2 ) n    55. ∑

n=0

∞
 ( 

x
5 ) n    56. ∑

n=0

∞
 ( 

x
3 ) 2n    57. ∑

n=0

∞
 ( 

x
2  ) 3n   

 

58. ∑
n=0

∞
 ( 

1
2 sin(x) ) n   59. ∑

n=0

∞
 ( 

1
3 cos(x) ) n    
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Practice Answers 
 

Practice 1: cn = 
5n.xn

n    so  cn+1 =  
5n+1.xn+1

n+1    .  Then, using the Ratio Test, 

 |  
cn+1
cn    |  =  

 

 
 5n+1xn+1

n +1
 

5n xn

n

   =  |  
n

n+1  . 5
n+1

5n   . x
n+1

xn    |  =  |  
n

n+1  . 5 .x |    →  | 5x | = L . 

 Solving  | 5x | < 1, we have  –1 < 5x < 1  or  –1/5 < x < 1/5.  The series converges for  –1/5 < x < 1/5   

 and it diverges for  x < –1/5  and for x > 1/5. 

   Finally, we need to check the two remaining values of x:  the endpoints  x = –1/5  and  x = 1/5. 
 

  When  x = –1/5, 

 

 
5n xn

nn=1

!
"  =   

 

 5n(-1/5)n

nn=1

!
"  =   

 

 (-1)n

nk =1

!
"    which converges by the  

   Alternating Series Test. 

  When  x = 1/5, 

 

 
5nxn

nn=1

!
"   =  

 

 5n(1/5)n

nn=1

!
"  =  

 

 1
nk =1

!
"  , the harmonic series,  which diverges. 

 In summary, the power series 

 

 
5nxn

nn=1

!
"  converges if  –1/5 ≤ x < 1/5,  if  x is in the interval  [–1/5, 1/5). 

 

Practice 2: The series converges at  x = –1  and  x = 2. 

 The convergence is unknown at   

  x = –3 (endpoint?), 4, –6, and 7 (endpoint?) 

 The series diverges at  x = –8  and  x = 17. 

 The regions of known convergence and known 

divergence are shown in Fig. 6. 

 

Practice 3: The radius of convergence is  1/5 . 

 

Practice 4: The series converges at  x = –2 . 

 The convergence is unknown at   

 x = –9 (endpoint?), 0, and –11 (endpoint?) 

 The series diverges at  x = 3 . 

 The regions of known convergence and known 

divergence are shown in Fig. 7. 
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Practice 5: cn = 
n.(x – 3)n

5n    so  cn+1 =  
(n+1).(x – 3)n+1

5n+1    .  Then, using the Ratio Test, 

 

 |  
cn+1
cn    | = 

 

 
 (n + 1) ! (x " 3)n+1

5n+1  

n ! (x " 3)n

5n

  = |  
n+1

n   . 5n

5n+1  . (x – 3)n+1

(x – 3)n
  | = | 

n+1
n   . 15  .(x–3)| → | x–3

5   | = L . 

 Solving  | 
x–3

5   | < 1, we have  –1 < 
x–3

5   < 1  so  –5 < x – 3 < 8.  The series converges for  –2 < x < 8   

 and it diverges for  x < –2  and for x > 8.  The radius of convergence is  5.   

 To find the interval of convergence we still need to check the endpoints  x = –2  and  x = 8  : 
 

  When  x = –2, 

 

 
n ! (x - 3)n

5n
n=0

"
#  =  

 

 n ! (-5)n

5n
n=1

"
#  = 

 

 n ! (-1)n

n=1

"
#   which diverges by the nth Term Test. 

 

  When  x = 8, 

 

 
n ! (x - 3)n

5n
n=0

"
#  = 

 

 n ! (5)n

5n
n=1

"
#  =  

 

 n
n=1

!
"     which diverges by the nth Term Test. 

 
 The interval of convergence is  –2 < x < 8  or  ( –2, 8 ) . 

   

Appendix:  Proof of the Interval of Convergence Theorem 
 

 (i) Suppose the power series   ∑
n=0

∞
  anxn  converges at  x = c:   ∑

n=0

∞
  ancn  converges. 

 Then the terms of the series  ancn  must approach  0, 

 

lim
n!"

ancn = 0,  so there is a number N  so that 

if  n ≥ N,  then  | ancn | < 1  and   |an| < 
1

|cn|
    for all  n > N. 

 If  |x| < |c|,  then ∑
n=0

∞
  | anxn | = { |a0| + |a1x| + ... + |aN–1xN–1| } + {  |aNxN| + |aN+1xN+1| + ... } . 

 The first piece, |a0| + |a1x| + ... + |aN–1xN–1| , consists of a finite number of terms so it is a finite number.  

The second piece,   |aNxN| + |aN+1xN+1| + ...  is less than a convergent geometric series: 

 

  |aNxN| + |aN+1xN+1| + |aN+2xN+2| + |aN+3xN+3|   + ...   
 

     

 

<
1
cN

xN  +  1
cN +1 xN +1  +  1

cN + 2 xN + 2  +  1
cN + 3 xN + 3  + ... 

 

  

 

=  x
c

N
 +  x

c

N +1
 +  x

c

N + 2
 +  x

c

N + 3
 +  ...  which converges since  |x| < |c|  and  | xc  | < 1. 

 

 If  |x| < |c|,  then ∑
n=0

∞
  | anxn |  converges  so  ∑

n=0

∞
  anxn  converges. 
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 (ii) This part follows from part (i) of the Theorem.  Suppose that the power series   ∑
n=0

∞
  anxn  diverges  

  at  x = d:   ∑
n=0

∞
  andn  diverges.  If the series converges for some  x0  with  |x0| > |d|, we can put  c = x0  and 

conclude from part (i) that the series must converge at  x = d  because  |c| = |x0| > |d|.  This contradicts the 

fact that the series diverges at  x = d, so the series cannot converge for any  x0  with  |x0| > |d| .   

  If   ∑
n=0

∞
  andn  diverges and  |x| > |d|, then the power series   ∑

n=0

∞
  anxn  diverges. 


