# 11.1 Selected Answers

- 5. (b)  $|\mathbf{U}| = \sqrt{17}$ ,  $|\mathbf{V}| = \sqrt{13}$ direction of U is  $\langle 1/\sqrt{17} , 4/\sqrt{17} \rangle$ , direction of V is  $\langle 3/\sqrt{13} , 2/\sqrt{13} \rangle$ 
  - (c) slope of U is 4/1 = 4, slope of V is 2/3angle of U with x-axis is  $\theta = \arctan(4) = 1.326 (\approx 76^{\circ})$ angle of V with x-axis is  $\theta = \arctan(2/3) = 0.588 (\approx 33.7^{\circ})$

7. (b) 
$$|\mathbf{U}| = \sqrt{29}$$
,  $|\mathbf{V}| = \sqrt{58}$   
direction of U is  $\langle -2/\sqrt{29} \rangle$ ,  $5/\sqrt{29} \rangle$ , direction of V is  $\langle 3/\sqrt{58} \rangle$ ,  $-7/\sqrt{58} \rangle$ 

(c) slope of U is -5/2, slope of V is -7/3angle of U with x-axis is  $\theta = \arctan(-5/2) = -1.190 ~(\approx -68.8^{\circ})$ angle of V with x-axis is  $\theta = \arctan(-7/3) = -1.166 ~(\approx -66.8^{\circ})$ 

9. (b) 
$$|\mathbf{U}| = \sqrt{25} = 5$$
,  $|\mathbf{V}| = \sqrt{25} = 5$   
direction of U is  $\langle -4/5, -3/5 \rangle$ , direction of V is  $\langle 3/5, -4/5 \rangle$ 

(c) slope of U is 3/4, slope of V is -4/3 angle of U with x-axis is  $\theta = \arctan(3/4) = 0.643 ~(\approx 36.9^{\circ})$ angle of V with x-axis is  $\theta = \arctan(-4/3) = -0.927 ~(\approx -53.1^{\circ})$ 

13. 
$$\mathbf{U} = \mathbf{A} + \mathbf{B} - \mathbf{C} = \langle -1, 3 \rangle$$
,  $\mathbf{V} = \mathbf{A} - \mathbf{B} + \mathbf{C} = \langle 3, 5 \rangle$   
15.  $\mathbf{V} = 3 \langle 0.6, 0.8 \rangle = \langle 1.8, 2.4 \rangle$   
17.  $\mathbf{V} = \langle 4.10, 2.87 \rangle$   
19.  $\mathbf{V} = \langle 7/\sqrt{10}, 21/\sqrt{10} \rangle$  or  $\langle -7/\sqrt{10}, -21/\sqrt{10} \rangle$   
21.  $\mathbf{V} = \langle 1/\sqrt{26}, 5/\sqrt{26} \rangle$  or  $\langle -1/\sqrt{26}, -5/\sqrt{26} \rangle$   
23.  $\mathbf{V} = \langle 1, 0 \rangle$  or  $\langle -1, 0 \rangle$   
25.  $\mathbf{V} = \langle 1, 0 \rangle$  or  $\langle -1, 0 \rangle$   
31. shadow on x-axis  $1\mathbf{i} + 0\mathbf{j}$ , on y-axis is  $0\mathbf{i} + 4\mathbf{j}$   
33. shadow on x-axis  $5\mathbf{i} + 0\mathbf{j}$ , on y-axis is  $0\mathbf{i} - 2\mathbf{j}$   
37.  $\mathbf{C} = \langle -4, -6 \rangle$   
38.  $\mathbf{C} = \langle 3, 7 \rangle$   
39.  $\langle 25.36, 0 \rangle$  and  $\langle 0, 54.37 \rangle$   
40.  $\langle 96.59, 0 \rangle$  and  $\langle 0, 25.88 \rangle$   
41. magnitude = 119.5 pounds, angle  $\approx 39.2^{\circ}$   
42. magnitude = 139 pounds, angle  $\approx 21.4^{\circ}$   
43. magnitude = 268.45 pounds, angle  $\approx 23.9^{\circ}$   
44. (a) path =  $\langle 230, 40 \rangle$  (b) aim  $11.5^{\circ}$  south of east  
46. (a) You are 19.6 miles from home (b) You should hike in the direction  $34.6^{\circ}$  west of south  
47. (a) The tension in each rope is  $90.45$  pounds.

(b) The tension in the short rope is 97.1 pounds, The tension in the long rope is 59.2 pounds.

### 11.2 **Selected Answers**

- 13. dist(A,B) =  $\sqrt{5}$ , dist(A,C) =  $\sqrt{11}$ , dist(A,d) = 5, dist(B,C) =  $\sqrt{6}$ , dist(B,D) =  $\sqrt{8}$ , dist(C,D) =  $\sqrt{18}$ No three of these points are colinear.
- 15. dist(A,B)= 6, dist(A,C)= 3, dist(A,d)= $\sqrt{6}$ , dist(B,C)= 9, dist(B,D)= $\sqrt{50}$ , dist(C,D)= $\sqrt{11}$ The points A, B, and C are colinear.
- 17. corners: (1,2,3), (4,2,3), (4,4,3), (4,4,1), (1,4,1). volume = (3)(2)(2) = 12
- 19. corners: (1,4,0), (1,5,0), (4,4,0), (4,4,3), (4,5,3). volume = (3)(1)(3) = 9
- 25.  $(x-4)^2 + (y-3)^2 + (z-5)^2 = 9$ 26.  $x^2 + (y-3)^2 + (z-6)^2 = 4$
- 29. center (3, -4, 1), radius = 4 27.  $(x-5)^2 + (y-1)^2 + z^2 = 25$
- 31. center (2, 3, 4), radius = 10 30. center (-2, 0, 4), radius = 5
- 33. empty set (no intersection), a point, a line 34. empty set (no intersection), a line, a plane

- 35. empty set (no intersection), a point, a circle 36. empty set (no intersection), a point, a circle, a sphere
- 45. (a)  $\frac{16\pi}{3}$  (for half sphere) (b)  $\frac{8\pi}{3}$  (for quarter sphere) (c)  $\frac{4\pi}{3}$  (for 1/8 sphere)
- 46. (a)  $18\pi$  (b)  $9\pi$  (c)  $\frac{9\pi}{2}$
- S1. (1, 2, 0) on xy-plane, (1, 0, 3) on xz-plane, (0, 2, 3) on yz-plane
- S2. (4, 1, 0) on xy-plane, (4, 0, 2) on xz-plane, (0, 1, 2) on yz-plane
- S3. (a, b, 0) on xy-plane, (a, 0, c) on xz-plane, (0, b, c) on yz-plane
- S4. (4, 2, 0) to (1, 3, 0) on xy-plane, (4, 0, 1) to (1, 0, 3) on xz-plane, (0, 2, 1) to (0, 3, 3) on yz-plane
- S7. xy-plane: line segment from (0,0,0) to (4,0,0). yz-plane: line segment from (0,0,0) to (0,0,3), xz-plane: triangle with vertices (0,0,0), (4,0,3), and (4,0,2)
- S8. xy-plane: triangle with vertices (1,2,0), (4,3,0), and (2,3,0)xz-plane: triangle with vertices (1,0,3), (4,0,1), and (2,0,4)yz-plane: triangle with vertices (0,2,3), (0,3,1), and (0,3,4)
- S11. (a) 0 (b) 12 S10. (a) 0 (b) 10

## 11.3 Selected Answers

- 5.  $\mathbf{W} = \langle 6, -3, 18 \rangle$ ,  $|\mathbf{U}| = 7$ ,  $|\mathbf{V}| = 11$ ,  $|\mathbf{W}| = \sqrt{369} \approx 19.21$ { dir. of  $\mathbf{U}$ } =  $\mathbf{U}/|\mathbf{U}| = \langle 2/7, 3/7, 6/7 \rangle$ , { dir. of  $\mathbf{V}$ } =  $\mathbf{V}/|\mathbf{V}| = \langle 2/11, -9/11, 6/11 \rangle$ { dir. of  $\mathbf{W}$ } =  $\mathbf{W}/|\mathbf{W}| = \langle 6/\sqrt{369}, -3/\sqrt{369}, 18/\sqrt{369} \rangle \approx \langle 0.31, -0.16, 0.94 \rangle$
- 7.  $\mathbf{W} = \langle 14, -3, 32 \rangle$ ,  $|\mathbf{U}| = 15$ ,  $|\mathbf{V}| = 9$ ,  $|\mathbf{W}| = \sqrt{1229} \approx 35.06$ { dir. of  $\mathbf{U}$ } =  $\mathbf{U}/|\mathbf{U}| = \langle 5/15, 2/15, 14/15 \rangle$ , { dir. of  $\mathbf{V}$ } =  $\mathbf{V}/|\mathbf{V}| = \langle 4/9, -7/9, 4/9 \rangle$ { dir. of  $\mathbf{W}$ } =  $\mathbf{W}/|\mathbf{W}| = \langle 14/\sqrt{1229}, -3/\sqrt{1229}, 32/\sqrt{1229} \rangle \approx \langle 0.40, -0.09, 0.91 \rangle$

9. 
$$\mathbf{W} = \langle 21, 18, -2 \rangle$$
,  $|\mathbf{U}| = 11$ ,  $|\mathbf{V}| = 9$ ,  $|\mathbf{W}| = \sqrt{769} \approx 27.73$   
{ dir. of  $\mathbf{U}$ } =  $\mathbf{U}/|\mathbf{U}| = \langle 9/11, 6/11, 2/11 \rangle$ , { dir. of  $\mathbf{V}$ } =  $\mathbf{V}/|\mathbf{V}| = \langle 1/3, 2/3, -2/3 \rangle$   
{ dir. of  $\mathbf{W}$ } =  $\mathbf{W}/|\mathbf{W}| = \langle 21/\sqrt{769}, 18/\sqrt{769}, -2/\sqrt{769} \rangle \approx \langle 0.76, 0.65, -0.07 \rangle$ 

11. 
$$\mathbf{W} = \langle 26, 25, -2 \rangle$$
,  $|\mathbf{U}| = 15$ ,  $|\mathbf{V}| = 9$ ,  $|\mathbf{W}| = \sqrt{1305} \approx 36.12$   
{ dir. of  $\mathbf{U} \} = \mathbf{U}/|\mathbf{U}| = \langle 10/15, 11/15, 2/15 \rangle$ , { dir. of  $\mathbf{V} \} = \mathbf{V}/|\mathbf{V}| = \langle 2/3, 1/3, -2/3 \rangle$   
{ dir. of  $\mathbf{W} \} = \mathbf{W}/|\mathbf{W}| = \langle 26/\sqrt{1305}, 25/\sqrt{1305}, -2/\sqrt{1305} \rangle \approx \langle 0.72, 0.69, -0.06 \rangle$   
13.  $\mathbf{C} = \langle -8, -6, 6 \rangle$   
14.  $\mathbf{C} = \langle 4, 1, -4 \rangle$   
15.  $\mathbf{C} = \langle -3 - e, -9 - \pi, -1 \rangle$   
17. smallest magnitude is  $\mathbf{C}$ , largest magnitude is  $\mathbf{D}$ 

- 18. smallest magnitude is **D**, largest magnitude is **C**
- 23. (0, 1, 0), (0, 0, 1), (0, 3, -4) are all perpendicular to A as is ever non-zero vector with x-coordinate equal to 0 (= vectors that lie in the yz-plane). There are an infinite number of nonparallel vectors that are perpendicular to A.
- 24. (1, 0, 0 ), (0, 3, 0 ), (5, -4, 0 ) are all perpendicular to B as is ever non-zero vector with z-coordinate equal to 0 (= vectors that lie in the xy-plane). There are an infinite number of nonparallel vectors that are perpendicular to B.
- 25.  $\langle 0, 0, 2 \rangle$ ,  $\langle -2, 1, 0 \rangle$ ,  $\langle 2, -1, 7 \rangle$  are all perpendicular to **C**. There are an infinite number of nonparallel vectors that are perpendicular to **C**.

31. 
$$x(t) = 3 + 4t$$
,  $y(t) = 5 - t$ ,  $z(t) = 1$ 

- 32. x(t) = 1 + 4t, y(t) = 2 2t, z(t) = 3 + 2t
- 33. x(t) = 2 + 3t, y(t) = 3, z(t) = 6 5t

## 11.4 Selected Answers

- 1.  $\mathbf{A} \bullet \mathbf{B} = 3$ ,  $\mathbf{B} \bullet \mathbf{A} = 3$ ,  $\mathbf{A} \bullet \mathbf{A} = 14$ ,  $\mathbf{A} \bullet (\mathbf{B} + \mathbf{A}) = 17$ , and  $(2\mathbf{A} + 3\mathbf{B}) \bullet (\mathbf{A} 2\mathbf{B}) = -101$
- 2.  $\mathbf{A} \bullet \mathbf{B} = 2$ ,  $\mathbf{B} \bullet \mathbf{A} = 2$ ,  $\mathbf{A} \bullet \mathbf{A} = 41$ ,  $\mathbf{A} \bullet (\mathbf{B} + \mathbf{A}) = 43$ , and  $(2\mathbf{A} + 3\mathbf{B}) \bullet (\mathbf{A} 2\mathbf{B}) = -94$
- 3.  $\mathbf{U} \bullet \mathbf{V} = 2$ ,  $\mathbf{U} \bullet \mathbf{U} = 41$ ,  $\mathbf{U} \bullet \mathbf{i} = 6$ ,  $\mathbf{U} \bullet \mathbf{j} = -1$ ,  $\mathbf{U} \bullet \mathbf{k} = 2$ , and  $(\mathbf{V} + \mathbf{k}) \bullet \mathbf{U} = 8$
- 4.  $\mathbf{U} \bullet \mathbf{V} = 0$ ,  $\mathbf{U} \bullet \mathbf{U} = 22$ ,  $\mathbf{V} \bullet \mathbf{i} = 2$ ,  $\mathbf{V} \bullet \mathbf{j} = 4$ ,  $\mathbf{V} \bullet \mathbf{k} = -3$ , and  $(\mathbf{V} + \mathbf{k}) \bullet \mathbf{U} = 2$

5. 
$$\mathbf{S} \bullet \mathbf{T} = -3$$
,  $\mathbf{T} \bullet \mathbf{U} = -4$ ,  $\mathbf{T} \bullet \mathbf{T} = 35$ ,  $(\mathbf{S} + \mathbf{T}) \bullet (\mathbf{S} - \mathbf{T}) = -14$ , and  $(\mathbf{S} \bullet \mathbf{T}) \mathbf{U} = \langle -3, -9, -6 \rangle$ 

- 7. angle between **A** and **B** is  $1.39 (\approx 79.9^{\circ})$ , angle between **A** and x-axis is  $1.30 (\approx 74.5^{\circ})$ angle between **A** and y-axis is  $1.01 (\approx 57.7^{\circ})$ , angle between **A** and z-axis is  $0.641 (\approx 36.7^{\circ})$
- 9. angle between U and V is  $1.51 (\approx 86.7^{\circ})$ , angle between U and x-axis is  $0.36 (\approx 20.4^{\circ})$ angle between U and y-axis is  $1.73 (\approx 98.98^{\circ})$ , angle between U and z-axis is  $1.25 (\approx 71.8^{\circ})$
- 11. angle between **S** and **T** is  $1.68 (\approx 96.3^{\circ})$ , angle between **S** and x-axis is  $1.12 (\approx 64.1^{\circ})$ angle between **S** and y-axis is  $2.63 (\approx 150.5^{\circ})$ , angle between **S** and z-axis is  $1.35 (\approx 77.4^{\circ})$
- 13. angle between **A** and **B** is  $1.57 (\approx 90^{\circ})$ , angle between **A** and x-axis is  $1.24 (\approx 71.1^{\circ})$ angle between **A** and y-axis is  $2.08 (\approx 119.1^{\circ})$ , angle between **A** and z-axis is  $0.624 (\approx 35.8^{\circ})$
- 15. angle between **A** and **B** is 2.59 ( $\approx 148.7^{\circ}$ ), angle between **A** and x-axis is 0.38 ( $\approx 21.8^{\circ}$ ) angle between **A** and y-axis is 1.95 ( $\approx 111.8^{\circ}$ ), angle between **A** and z-axis is 1.57 ( $\approx 90^{\circ}$ )
- 17. angle between U and V is  $1.43 (\approx 81.9^{\circ})$ , angle between U and x-axis is  $1.25 (\approx 71.6^{\circ})$ angle between U and y-axis is  $1.57 (\approx 90^{\circ})$ , angle between U and z-axis is  $0.322 (\approx 18.4^{\circ})$
- 19.  $0.124 ~(\approx 7.13^{\circ})$  20.  $2.48 ~(\approx 142.1^{\circ})$  21.  $0.785 ~(\approx 45^{\circ})$
- 22.  $1.23 \ (\approx 70.5^{\circ})$  23.  $0.897 \ (\approx 51.4^{\circ})$  24.  $0 \ (=0^{\circ})$
- 25. 0  $(=0^{\circ})$  26. 1.57  $(\approx 90^{\circ})$  27. 0.32  $(\approx 18.4^{\circ})$
- 29.  $\mathbf{N} = \langle -2, -1, 0 \rangle$  is one correct answer. 30.  $\mathbf{N} = \langle 3, 0, 5 \rangle$  is one correct answer.
- 31.  $\mathbf{N} = \langle 3, -7 \rangle$  is one correct answer. 32.  $\mathbf{N} = \langle 3, 7 \rangle$  is one correct answer.
- 33.  $N = \langle -1, 1, 1 \rangle$  is one correct answer. 34.  $N = \langle -5, 0, 1 \rangle$  is one correct answer.
- 36.  $\mathbf{N} = \langle 0, 2, -3 \rangle$  is one correct answer. 37.  $\mathbf{N} = \langle 1, 1, 2 \rangle$  is one correct answer.
- 38.  $\mathbf{N} = \langle 1, 0, 6 \rangle$  is one correct answer. 39.  $\mathbf{N} = \langle 3, 2 \rangle$  is one correct answer.
- 40.  $\mathbf{N} = \langle -2, 3 \rangle$  is one correct answer. 41.  $\mathbf{N} = \langle 2, 3 \rangle$  is one correct answer.

| 43. | $N = \langle 3, 2 \rangle$ is one correct answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45. $\mathbf{N} = \langle 1, -4 \rangle$ is one correct answer.                                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46. | $N = \langle 5, 1 \rangle$ is one correct answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47. <b>N</b> = $\langle 0, 3 \rangle$ is one correct answer.                                                                                                                                   |
| 57. | $\mathbf{Proj}_{\mathbf{B}} \mathbf{A} = \langle 25/34, 0, -15/34 \rangle,  \mathbf{Proj}_{\mathbf{A}} \mathbf{B} = \langle -15/34 \rangle,  \mathbf{Proj}_{\mathbf{A}} B$ | $-1,2,0\rangle$                                                                                                                                                                                |
| 59. | $\operatorname{Proj}_{\mathbf{B}} \mathbf{A} = \langle 0, 0, 0 \rangle$ , $\operatorname{Proj}_{\mathbf{A}} \mathbf{B} = \langle 0, 0, 0 \rangle$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>A</b> and <b>B</b> are perpendicular.                                                                                                                                                       |
| 61. | $\operatorname{Proj}_{\mathbf{B}} \mathbf{A} = \langle 0, 0, 0 \rangle$ , $\operatorname{Proj}_{\mathbf{A}} \mathbf{B} = \langle 0, 0, 0 \rangle$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>A</b> and <b>B</b> are perpendicular.                                                                                                                                                       |
| 63. | $\operatorname{Proj}_{\mathbf{B}} \mathbf{A} = \langle 0, -2, 0 \rangle,  \operatorname{Proj}_{\mathbf{A}} \mathbf{B} = \langle -1/7, 2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/7, -2/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -3/7〉                                                                                                                                                                                          |
| 65. | $ \operatorname{Proj}_{\mathbf{B}}\mathbf{A}  = \left  \frac{\mathbf{A} \cdot \mathbf{B}}{ \mathbf{B} } \right , \operatorname{Proj}_{\mathbf{A}}\mathbf{B} = \left  \frac{\mathbf{A} \cdot \mathbf{B}}{ \mathbf{A} } \right  = \left  \frac{\mathbf{A} \cdot \mathbf{B}}{ \mathbf{A} } \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\mathbf{A} \cdot \mathbf{B}}{3  \mathbf{B} } = \frac{1}{3} \left  \frac{\mathbf{A} \cdot \mathbf{B}}{ \mathbf{B} } \right .  \mathbf{Proj}_{\mathbf{B}} \mathbf{A}  \text{ is larger.}$ |
| 67. | distance is $3/\sqrt{2} \approx 2.12$ 68. distance is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.88 69. distance is 3.06                                                                                                                                                                      |
| 70. | distance is 0.95 71. distance is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.40                                                                                                                                                                                           |
| 73. | distance is 15.4 feet 74. distance is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.78 inches 75. 9.18 m                                                                                                                                                                         |
| 77. | work = $\frac{5000}{\sqrt{141}} \approx 421$ foot-pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78. work = $842$ foot-pounds                                                                                                                                                                   |
| 79. | work = 480 foot-pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80. work = 240 foot-pounds                                                                                                                                                                     |
| 81. | work = 1212.1 foot-pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82. A work = 2349 ft-lbs, B work = 2441 ft-lbs                                                                                                                                                 |
| 83. | $\mathbf{A} \bullet \mathbf{B} = 15$ , angle $\approx 1.05 (= 60^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84. $\mathbf{A} \bullet \mathbf{B} = 16$ , angle $\approx 1.21 \ (\approx 69.3^{\circ})$                                                                                                       |
| 85. | angle $\approx 112^{\circ}$ , "different"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86. angle $\approx 19.9^{\circ}$ , "very alike"                                                                                                                                                |
| 87. | angle $\approx 9.45^{\circ}$ , "very alike"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88. angle = $90^{\circ}$ , "different"                                                                                                                                                         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                |

### 11.5 **Selected Answers**

| 1.  | 7                                 | 2.        | 7             | 3.  | 2x - 5y     | 4.  | 15 – ab      |
|-----|-----------------------------------|-----------|---------------|-----|-------------|-----|--------------|
| 5.  | 1                                 | 6.        | -1            | 7.  | -6          | 8.  | -42          |
| 9.  | x + 7y - 5z                       | 10.       | 4a + 10b - 6c | 11. | -77         | 12. | $3x - 3x^2$  |
| 13. | (a) $\langle -10, -5, 10 \rangle$ | $\rangle$ | (b) 0         |     | (c) 0       | (d) | 15           |
| 15. | (a) $\langle -24, -8, 0 \rangle$  | )         | (b) 0         |     | (c) 0       | (d) | $\sqrt{640}$ |
| 17. | (a) $\langle 3, -11, -5 \rangle$  |           | (b) 0         |     | (c) 0       | (d) | ≈12.45       |
| 19. | scalar                            | 20.       | not defined   | 21. | not defined | 22. | not defined  |

25. The angle between a vector **A** and itself is 0 so  $AxA = |A| |A| \sin(0) = 0$ . Alternately, |AxA| = the area of the parallelogram determined by A and A, and that area is 0.

26.  $|\mathbf{A}\mathbf{x}\mathbf{B}| = |\mathbf{A}||\mathbf{B}||\sin(\theta)|$  which is maximum when  $|\sin(\theta)| = 1$ , and  $|\sin(\theta)| = 1$  when  $\theta = \pm \pi/2$ .

31. (a) torque = 
$$\mathbf{A}\mathbf{x}\mathbf{B} = \langle 12\cos(-30^{\circ}), 12\sin(-30^{\circ}), 0 \rangle \mathbf{x}\langle 0, 70, 0 \rangle$$
  
=  $\{840\cos(-30^{\circ})\}\mathbf{k} \approx 727.46\mathbf{k}$  inch-pounds  
(b) torque =  $\mathbf{A}\mathbf{x}\mathbf{B} = \langle 8\cos(-30^{\circ}), 8\sin(-30^{\circ}), 0 \rangle \mathbf{x} \langle 20\cos(40^{\circ}), 20\sin(40^{\circ}), 0 \rangle$   
=  $\{160\cos(-30^{\circ})\sin(40^{\circ}) - 160\sin(-30^{\circ})\cos(40^{\circ})\}\mathbf{k} \approx 150.35\mathbf{k}$  inch-pounds

- 33. Yes. {torque on **A** by **B**} + {torque on **A** by **C**} = AxB + AxC = Ax(B+C) ={torque on **A** by (B+C) }
- 34. parallelogram area =  $|\mathbf{A}\mathbf{x}\mathbf{B}| = 18$ , triangle area = 9

35. parallelogram area = 
$$|AxB| = 6$$
, triangle area = 3

37. triangle area = 
$$\frac{\sqrt{180}}{2} \approx 6.71$$
 38. triangle area =  $\frac{\sqrt{(bc)^2 + (ac)^2 + (ab)^2}}{2}$ 

39. parallelpiped volume = 
$$|(\mathbf{A}\mathbf{x}\mathbf{B}) \bullet \mathbf{C}| = 17$$
 40. parallelpiped volume =  $|(\mathbf{A}\mathbf{x}\mathbf{B}) \bullet \mathbf{C}| = 78$ 

41. parallelpiped volume = 
$$| (\mathbf{A}\mathbf{x}\mathbf{B}) \bullet \mathbf{C} | = |\mathbf{a}| \cdot |\mathbf{b}| \cdot |\mathbf{c}| = |\mathbf{a}\mathbf{b}\mathbf{c}|$$
 cubic units

- 42. tetrahedron volume =  $\frac{1}{6} | 36\mathbf{k} | = 6$  cubic units 43. tetrahedron volume =  $\frac{15}{6}$  cubic units
- 44. tetrahedron volume = 8 cubic units 4

47. 
$$A_{xy} = 4$$
,  $A_{xz} = 4$ ,  $A_{yz} = 8$ , and  $A_{xyz} = \sqrt{96}$ 

45. tetrahedron volume = 
$$\frac{|abc|}{6}$$
 cubic units

$$\sqrt{96}$$
 48.  $A_{xy} = 4$ ,  $A_{xz} = 6$ ,  $A_{yz} = 12$ , and  $A_{xyz} = \sqrt{196} = 14$ 

#### 11.6 **Selected Answers**

- x(t) = 2 + 3t, y(t) = -3 + 4t, z(t) = 1 + 2t 3. x(t) = -2 + 5t, y(t) = 1, z(t) = 4 3t1.
- x(t) = 2 + t, y(t) = -1 + 5t, z(t) = 3 5t7. x(t) = 3, y(t) = -2 + 6t, z(t) = 1 2t5.
- Lines intersect at the point (2, -1, 3) when t = 0,  $\theta = \arccos\left(\frac{9}{\sqrt{6}\sqrt{21}}\right) \approx \arccos(0.802) \approx 0.604 \ (\approx 36.7^{\circ})$ 9.
- 11. L(0) = (1, 5, -2) = K(-2). The lines intersect at the point (1, 5, -2).  $\theta = \arccos\left(\frac{18}{5\sqrt{14}}\right) \approx \arccos(0.962) \approx 0.277 \ (\approx 15.8^{\circ})$
- $14. \quad 3x + y 5z = 22$ 13. 5(x-2) + (-2)(y-3) + 4(z-1) = 0 or 5x - 2y + 4z = 8 $16. \quad 2x - 2y + z = 0$ 15. 0(x+3) + 3(y-5) + 0(z-6) = 0 or 3y = 1517. (-6)(x-1) + (-6)(y-2) + (-12)(z-3) = 0 or x + y + 2z = 9 18. y = 5
- 19. 20x + 28y + 25z = 101
- 22. x = 2 23. 3x 2y + 5z = 2321. z = 7
- 24. 2x + 3y z = 0 25. 5x 3y + 2z = 23 26. y = 7
- 27. They intersect along the y-axis 29. Plane intersects the x-axis at x=10
- 31. They intersect at the point (4, 2, 1) 32. y-axis never intersects the plane z = 3

20. -x + 2y - z = 0

- 33. x(t) = -26 + t, y(t) = -57 + 3t, z(t) = t.  $N_1 = \langle 4, -2, 2 \rangle$ ,  $N_2 = \langle 3, -2, 3 \rangle$  $\theta = \arccos\left(\frac{22}{\sqrt{24}\sqrt{22}}\right) \approx \arccos(0.957) \approx 0.294 \ (\approx 16.8^{\circ})$

34. 
$$x(t) = 9 + 6t$$
,  $y^{*}(t) = -9t$ ,  $z(t) = t$ .  $\theta \approx 1.066 \ (\approx 61.1^{\circ})$ 

35. 
$$\mathbf{x}(t) = 12 - \frac{22}{5}t, \ \mathbf{y}(t) = 2 + \frac{1}{5}t, \ \mathbf{z}(t) = t.$$
  $\mathbf{N_1} = \langle 0, 5, -1 \rangle, \ \mathbf{N_2} = \langle 1, 2, 4 \rangle$   
 $\theta = \arccos\left(\frac{6}{\sqrt{26}\sqrt{21}}\right) \approx 1.311 \ (\approx 75.1^{\circ})$ 

- 37. They intersect at the point (-11/3, -1/3, -58/3).  $\arccos\left(\frac{3}{\sqrt{30}\sqrt{21}}\right) \approx 1.451 \ (\approx 83.1^{\circ})$  so the angle of intersection is  $\theta = \pi/2 - 1.451 \approx 0.120 \ (\approx 6.9^{\circ})$
- 38. They intersect at the point (0, 6, -7). Angle of intersection is approximately 0.222 ( $\approx 12.7^{\circ}$ )
- 39. They intersect at the point (0, 8, 5). Angle of intersection is approximately 0.271 ( $\approx 15.5^{\circ}$ )
- 41. Yes 42. Yes 43. x(t) = -7t, y(t) = 4t, z(t) = 3 + 9t
- 44. (a)  $\approx 1.30 \ (\approx 74.5^{\circ})$  (b)  $\approx 1.01 \ (\approx 57.7^{\circ})$  (c)  $\approx 0.64 \ (\approx 36.7^{\circ})$

45. 
$$\theta = \arccos\left(\frac{c}{\sqrt{a^2 + b^2 + c^2}}\right)$$
 with the xy-plane.  $\theta = \arccos\left(\frac{b}{\sqrt{a^2 + b^2 + c^2}}\right)$  with the xz-plane.  
 $\theta = \arccos\left(\frac{a}{\sqrt{a^2 + b^2 + c^2}}\right)$  with the yz-plane.

- 47. (a)  $\theta = \arctan(481/378) \approx 0.905 \ (\approx 51.8^{\circ})$  (b)  $\cos(\varphi) \approx 0.382$  so  $\varphi \approx 1.179 \ (\approx 84.8^{\circ})$ (c)  $\alpha = \arctan(481/534.6) \approx 0.733 \ (\approx 42.0^{\circ})$
- 51. distance  $\approx 4.879$  52. distance  $\approx 2.145$  53. distance  $\approx 1.18$  54. distance  $\approx 6.164$
- 55. distance  $\approx 1.32$  56. distance  $\approx 1.35$
- 57. (a) The objects "crash" at the point (15, 24, 13) when t=6. (b) Paths intersect fo {min. dist.} = 0
  (c) No, the objects crash, and their paths intersect.
- 58. (a) The objects "crash" at the point (2, 3, 4) when t=3.
- 59. (a) The objects do not crash. They are never at the same point at the same time.
  - (b) The paths of the objects intersect: object A is at (0,1,5) when t=1 and B is at (0,1,5) when t=2.
  - (c) {minimum distance between objects}  $\approx 0.85$ , {min. distance between paths} = 0 since paths intersect.
- 61. (a) The objects do not crash. They are never at the same point at the same time.
  - (b) The paths of the objects do not intersect.
  - (c) {minimum distance between objects when t=2.2}  $\approx 1.67$ , {min. distance between paths} = 1
- 63. (a) Shortest distance between the airplane and the car is √58 ≈ 7.62.
  (b) Shortest distance between paths is 13/√5 ≈ 5.81.

### 11.7 Selected Answers

1.  $\mathbf{V} = \langle 2, -1 \rangle$ ,  $\mathbf{N} = \langle 3, 1 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle \frac{3}{2}, \frac{1}{2} \rangle$ ,  $\mathbf{R} = \mathbf{V} - 2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle -1, -2 \rangle$ .

Point is (1, 3) and the line is x(t) = 1 - t, y(t) = 3 - 2t.

2. 
$$\mathbf{V} = \langle -1, 1 \rangle$$
,  $\mathbf{N} = \langle 3, 1 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle -\frac{3}{5}, -\frac{1}{5} \rangle$ ,  $\mathbf{R} = \langle \frac{1}{5}, \frac{7}{5} \rangle$ 

Point is (1, 3) and the line is  $x(t) = 1 + \frac{1}{5}t$ ,  $y(t) = 3 + \frac{7}{5}t$ .



3.  $\mathbf{V} = \langle 2, 3 \rangle$ ,  $\mathbf{N} = \langle 5, -2 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \left\langle \frac{20}{29}, -\frac{8}{29} \right\rangle$ ,  $\mathbf{R} = \mathbf{V} - 2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \left\langle \frac{18}{29}, \frac{103}{29} \right\rangle$ .

Point is (3, 4) and the line is  $x(t) = 3 + \frac{18}{29}t$ ,  $y(t) = 4 + \frac{103}{29}t$ .

4. 
$$\mathbf{V} = \langle 0, -2 \rangle$$
,  $\mathbf{N} = \langle 5, -2 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \left\langle \frac{20}{29}, -\frac{8}{29} \right\rangle$ ,  $\mathbf{R} = \left\langle -\frac{40}{29}, -\frac{42}{29} \right\rangle$ .  
Point is (3, 4) and the line is  $\mathbf{x}(t) = 3 - \frac{40}{29}t$ ,  $\mathbf{y}(t) = 4 - \frac{42}{29}t$ .

5. 
$$\mathbf{V} = \langle -3, 2 \rangle$$
,  $\mathbf{N} = \langle 1, 0 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle -3, 0 \rangle$ ,  $\mathbf{R} = \mathbf{V} - 2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle 3, 2 \rangle$ .  
Point is (0, 3) and the line is  $\mathbf{x}(t) = 3t$ ,  $\mathbf{y}(t) = 3 + 2t$ .

6. 
$$\mathbf{V} = \langle 3, -1 \rangle$$
,  $\mathbf{N} = \langle 0, 1 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle 0, -1 \rangle$ ,  $\mathbf{R} = \langle 3, 2 \rangle$   
Point is (2, 0) and the line is  $x(t) = 2 + 3t$ ,  $y(t) = 2t$ .

7. 
$$\mathbf{V} = \langle -3, 1 \rangle$$
,  $\mathbf{N} = \langle -0.622, -1.567 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle -0.065, -0.164 \rangle$ ,  
 $\mathbf{R} = \mathbf{V} - 2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle -2.869, 1.329 \rangle$ . Point is (1.243, 0.783) and the  
line is  $x(t) = 1.243 - 2.869t$ ,  $y(t) = 0.783 + 1.329t$ .

8. 
$$\mathbf{V} = \langle 2, 1 \rangle$$
,  $\mathbf{N} = \langle 0.622, 1.527 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle 0.615, 1.55 \rangle$ ,  
 $\mathbf{R} = \langle 0.77, -2.1 \rangle$ . Point is (1.243, 0.783) and the line is  
 $\mathbf{x}(t) = 1.243 + 0.77t$ ,  $\mathbf{y}(t) = 0.783 - 2.1t$ .

9. 
$$\mathbf{V} = \langle 2, 1 \rangle$$
,  $\mathbf{N} = \langle -12, 4 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle 1.5, -0.5 \rangle$ ,  
 $\mathbf{R} = \mathbf{V} - 2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle -1, 2 \rangle$ . Point is (4, 8) and the line is  
 $\mathbf{x}(t) = 4 - t$ ,  $\mathbf{y}(t) = 8 + 2t$ .

- 10.  $\mathbf{V} = \langle -1, 1 \rangle$ ,  $\mathbf{N} = \langle -12, 4 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle -1.2, 0.4 \rangle$ ,  $\mathbf{R} = \langle 1.4, 0.2 \rangle$ . Point is (4, 8) and the line is  $\mathbf{x}(t) = 4 + 1.4t$ ,  $\mathbf{y}(t) = 8 + 0.2t$ .
- 11.  $\mathbf{V} = \langle -1, 1 \rangle$ ,  $\mathbf{N} = \langle -4, 1 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle -1.176, 0.294 \rangle$ ,  $\mathbf{R} = \mathbf{V} 2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle 1.353, 0.412 \rangle$ . Point is (2, 4) and the line is x(t) = 2 + 1.353t, y(t) = 4 + 0.412t.
- 12.  $\mathbf{V} = \langle 2, 1 \rangle$ ,  $\mathbf{N} = \langle -4, 1 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle 1.647, -0.412 \rangle$ ,  $\mathbf{R} = \langle -1.294, 1.824 \rangle$ . Point is (2, 4) and the line is x(t) = 2 - 1.294t, y(t) = 4 + 1.824t.













13. 
$$\mathbf{V} = \langle 2, 6, 3 \rangle, \mathbf{N} = \langle 1, 2, 3 \rangle, \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \left\langle \frac{23}{14}, \frac{23}{7}, \frac{69}{14} \right\rangle,$$
  
 $\mathbf{R} = \mathbf{V} - 2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \left\langle -\frac{9}{7}, -\frac{4}{7}, -\frac{48}{7} \right\rangle.$  Point is (2, 4, 1) and the  
line is  $\mathbf{x}(t) = 2 - \frac{9}{7}t$ ,  $\mathbf{y}(t) = 4 - \frac{4}{7}t$ ,  $\mathbf{z}(t) = 1 - \frac{48}{7}t$ .  
14.  $\mathbf{V} = \langle 4, 1, 3 \rangle, \mathbf{N} = \langle 3, -2, 4 \rangle, \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \left\langle \frac{66}{29}, -\frac{44}{29}, \frac{88}{29} \right\rangle,$   
 $\mathbf{R} = \left\langle -\frac{16}{29}, \frac{117}{29}, -\frac{89}{29} \right\rangle.$   
Point is (1, 3, 2) and the line is  $\mathbf{x}(t) = 1 - \frac{16}{29}t$ ,  $\mathbf{y}(t) = 3 + \frac{117}{29}t$ ,  $\mathbf{z}(t) = 2 - \frac{89}{29}t$ .  
15.  $\mathbf{V} = \langle 3, 2, 1 \rangle, \mathbf{N} = \langle 1, 0, 0 \rangle, \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle 3, 0, 0 \rangle,$   
 $\mathbf{R} = \mathbf{V} - 2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle -3, 2, 1 \rangle.$   
Point is (0, 4, 2) and line is  $\mathbf{x}(t) = -3t$ ,  $\mathbf{y}(t) = 4 + 2t$ ,  $\mathbf{z}(t) = 2 + t$ 

16. 
$$\mathbf{V} = \langle 2, -3, -1 \rangle$$
,  $\mathbf{N} = \langle 0, 0, 1 \rangle$ ,  $\operatorname{Proj}_{\mathbf{N}} \mathbf{V} = \langle 0, 0, -1 \rangle$ ,  $\mathbf{R} = \langle 2, -3, 1 \rangle$ .  
Point is  $(2, -3, -1)$  and line is  $x(t) = 2 + 2t$ ,  $y(t) = -3 - 3t$ ,  $z(t) = -1 + t$ .



