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13.4 TANGENT PLANES and DIFFERENTIALS 
 

In Section 2.8  we were able to use the derivative  f '  of a function  y = f(x) of one variable to find the 

equation of the line tangent to the graph of  f   at a point  (a, f(a))  (Fig. 1):  y = f(a) + f '(a).(x – a).  And 

then we used this tangent line to approximate values of  f  near the point  (a, f(a)), and we introduced the 

idea if the differential  df = f '(a).dx  of the function  f .  In this section we extend these ideas to functions  z 

= f(x,y)  of two variables.  But here we will find tangent planes (Fig. 2) rather than tangent lines, and we 

will use the tangent plane to approximate values of  f(x,y).  Finally, we will extend the concept of a 

differential to functions of two variables. 
 

Tangent Planes 
 

In Section 11.6 we saw how to use a point  ( a, b, c )  and two 

(nonparallel) vectors to determine the equation of the plane through 

the point and containing lines parallel to the given vectors  (Fig.  3): 

(1) we used the cross product of the two given vectors to find a  
 normal vector  N = 〈 n1, n2, n3 〉    to the plane, and then 

(2) we used the normal vector  N  and the point to write the  
 equation of the plane as  n1(x – a) + n2(y – b) + n3(z – c) = 0.   

 

This approach also works when we need the equation of a plane 

tangent to a surface  z = f(x,y), but we will use the formula for the 

surface to find the two needed vectors.    
 
 
 
Example 1:  Find the equation of the plane tangent to the  

 surface  f(x,y) = 2x3 + y2 + 3 at the point   

 P = (1, 2, f(1,2) ) = (1, 2, 9)  on the surface  (Fig. 4). 
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Fig. 1:  Tangent line to  y = f(x)  at  x = a
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Fig. 2: Tangent plane to  z = f(x,y)  at  (a,b)
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Solution:  We are given a point  (1, 2, 9)  on the plane, but we need two vectors.  These vectors are the 

rates of change of the surface  f(x,y)  in the x and y directions.  The rate of change of  f(x,y) in the 

x–direction is  fx(x,y) = 6x2 , and at the point  (1,2,9) we have  fx(1,2) = 6(1)2 = 6 .  Similarly, the 

rate of change of  f(x,y)  in the y–direction is  fy(x,y) = 2y , and at the point  (1,2,9) we have  

fy(1,2) = 2(2) = 4. 

  
 Then a "rate of change vector in the x–direction"  is   

 U = 〈 1, 0, 6 〉  formed by taking 1 "step" in the  

 x–direction, taking 0 "steps" in the y–direction  (y is 

constant), and then taking 6 "steps"  in the  
 z–direction  (6 = fx(1,2) = rate of change of  z  with  

 respect to increasing x–values).    Similarly, a "rate of 

change”  vector in the y–direction is   

 V = 〈 0, 1, 4 〉 .  These vectors are shown in Fig. 5. 
 
 Now a normal vector  N  to the plane we want is formed by taking   
 

  N = V x U =  
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪i j k

0 1 4
1 0 6

   =  (6)i  – (–4)j  + (–1)k  =    6i  + 4j  – 1k  

  
 (Note:  taking  N = U x V =  –6i  – 4j  + 1k  also works.) 
 
 Finally, using the point  P = (1, 2, 9)  and the normal vector  N = V x U =  6i  + 4j  – 1k ,  

 we know that the equation of the plane is   
 
 6(x – 1) + 4(y – 2) – 1(z – 9) = 0   or  z = 9 + 6(x – 1) + 4(y – 2) 
  

 Looking at the equation   

 z = 9 + 6(x – 1) + 4(y – 2)  of the plane, you should notice that the  9  is the z–coordinate of our 
original point, that the coefficient of the x variable, 6, is  fx(1,2), and that the coefficient of the y 

variable, 4, is  fy(1,2).  Fig. 6 shows the surface 

and the tangent plane. 

 

Fortunately we do not need to go through all of those 

calculations every time we need the equation of a plane 

tangent to a surface at a point:  the pattern that we noted 

about the coefficients of the variables in the tangent plane 

equation and the values of the partial derivatives holds  

for every differentiable function. 
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 Equation for a Tangent Plane 
 
 If   f(x,y)  is differentiable at the point  (a, b, f(a,b) ), 
 
 then  the equation of the plane tangent to the surface  z = f(x, y)  at the point  P(a, b, f(a,b) )   
 
   is    z = f(a,b) + fx(a,b)(x – a) + fy(a,b)(y – b) . 
     
 
Proof: The proof simply involves the steps we went through for Example 1.  U = 〈 1, 0, fx(a,b) 〉  is 

formed by taking 1 "step" in the x–direction, taking 0 "steps" in the y–direction  (y is constant), and 
then taking  fx(a,b) "steps"  in the z–direction .  Similarly,  V = 〈 0, 1, fy(a,b) 〉 .  Then 

 

 N = V x U = 
⎪
⎪
⎪

⎪
⎪
⎪i j k

0 1 fy(a,b)

1 0 fx(a,b)
  =  ( fx(a,b) )i  – ( –fy(a,b)  )j  + (–1)k  =  fx(a,b) i  + fy(a,b) j  – 1k . 

  
 Finally, using the point  (a, b, f(a,b) )  and  N = V x U = fx(a,b) i  + fy(a,b)j  – 1k ,  we have that the  

 equation of the plane is 
 
 fx(a,b)(x – a) + fy(a,b)(y – b) – 1(z – f(a,b)) = 0  or  z = f(a,b) + fx(a,b)(x – a) + fy(a,b)(y – b) . 
 

Example 2:  Find the plane tangent to the surface  z = 2x2y3 + ln( xy ) + 7  at the point  (1, 1, 9). 
 

Solution: fx(x, y) = 4xy3 + 
1
xy (y)  =  4xy3 + 

1
x      and   fy(x, y) = 6x2y2 + 

1
xy (x)  =  6x2y2 + 

1
y       

 so  fx(1, 1) = 5  and  fy(1, 1) = 7. 

 Then the equation of the tangent plane is  z = 9 + 5(x – 1) + 7(y – 1)  or  z = 5x + 7y – 3. 

 (This is much quicker than the "from scratch" method of Example 1.) 

Fig. 7 shows two views of this surface and the tangent plane –– notice that in this case the tangent 

plane cuts through the surface. 

 
Practice 1: Find the plane tangent to the surface  z = 5xy2 + 7y + sin( xy ) – 2  at the point  (0, 1, 5). 
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Differentials 
 

The following "boxed" material summarizes, from Section 2.8,  the definition and results about the 

differential  dy  of a function  y = f(x)  of one variable. 
 
 

 Definition for  y = f(x): The differential of  y = f(x)  is  dy =  f '(x) dx  =  
df
dx   dx. 

 

 Meaning of  dy: dy  is the change in the  y–value, along the tangent line to  f  obtained  

  by a step of  dx  in the x–value. 
 
 Result: If   f  is differentiable at  x = a  and  dx  is "small" 

  then f(a + dx) – f(a) ≈  dy   or  f(a + dx) ≈  f(a) + dy . 
 
 Meaning of the Result: For a small step  dx,  the actual change in  f  is approximately  

  equal to the change along the tangent line:  f(a + dx) ≈ f(a) + f '(a) dx . 
 
 

The extension to functions of two variables is given in the next "box." 

 
 
 Definition for  z = f(x,y): The differential  (or total differential)  of  z = f(x,y)  is 
 

  dz = fx(x, y) dx + fy(x, y) dy  =  
∂f
∂x  dx  +  

∂f
∂y  dy . 

 

 Meaning of  dz: dz is the change in the z–value, along the tangent plane to f, obtained  

  by a step of  dx  in the x direction and a step of  dy  in the  y  direction.  (Fig. 8) 
 

 Result: If z = f(x,y)  is differentiable at the point  (a, b), 

  then f(a + dx, b + dy) – f(a,b) ≈ dz = fx(a, b) dx + fy(a, b) dy  =  
∂f
∂x  dx  +  

∂f
∂y  dy . 

 
 Meaning of the Result: For a small step of  dx  in the  x  direction and a small step  dy  in the y  direction, 

   the change in  f  is approximately equal to the change along the tangent plane:   
   f(a + dx, b + dy) ≈  f(a,b) + dz =  f(a,b) + fx(a, b) dx + fy(a,b) dy   
    
 
Example 3: Find the differential of  z = 5 + 3x2y3    (a) in general, and  (b)  at the point  (x,y) = (2, 1) . 
 
Solution: (a) dz = fx(a, b) dx + fy(a, b) dy  =  { 6xy3 } dx + { 9x2y2 } dy 

 (b) at  (2, 1),  dz = { 6(2)(1)3} dx + { 9(2)2(1)2} dy  =  (12) dx + (36) dy . 
 

Example 4: For   z = 5 + 3x2y3  and the point  (2,1), use the result of Example 3 that   

 dz = (12) dx + (36) dy   to approximate  f( 2.02, 1.01 )  and  f( 2.01, 0.97 ).   

 Compare these approximate values with the exact values of  f(2.02, 1.01)  and  f(2.01, 0.97).  
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Solution: For  f( 2.02, 1.01 ) ,  dx = 0.02  and  dy = 0.01  so  dz = (12)(0.02) + (36)(0.01) = 0.6 . 

 Then  f( 2.02, 1.01 ) ≈ f( 2, 1) + dz = 17 + 0.6 = 17.6 . 

 Actually,  f( 2.02, 1.01 ) = 17.6121206012  so the approximation "error" using the  

  differential is  0.012 . 

 For  f( 2.01, 0.97 ) , dx = 0.01  and  dy = –0.03, so  dz = (12)(0.01) + (36)(–0.03) = –0.96 . 

 Then  f( 2.01, 0.97 )  ≈  f(2,1) + dz = 17 + (–0.96)  =  16.04 . 

 Actually,  f( 2.01, 0.97 ) =  16.0618705619  so the approximation "error" using the  

 differential is  0.022 . 
 

Practice 2: Find the differential of  z = 3 + x.sin( 2xy )    (a) in general, and  (b)  at the point (x,y) = (1, π/2). 

 (c) Use the result of part (b) to approximate  f( 1.3, 
π
2  – 0.1 )  and  f( 0.99, 

π
2   + 0.2).  

 (d) Compare the results of (c) with the exact values of  f( 1.3, 
π
2  – 0.1 )  and  f( 0.99, 

π
2   + 0.2). 

 

Examples 4 and Practice 2(c and d) compare the value of  f  found by moving along the tangent plane to the 

actual value of  f  found on the surface.  When the sideways movement is "small"  (when  dx  and  dy  are both 

small), then the  "along the tangent plane"  value of  z  is close to the  "on the surface" value of  z, the actual 

value of  f. 

 

PROBLEMS 

 
In problems 1 – 8, find an equation for the tangent plane to the given surface at the given point. 
 

1. z = x2 + 4y2  at  (2, 1, 8) 2. z = x2 – y2  at  (3, –2, 5) 
 

3. z = 5 + (x – 1)2 + (y + 2)2  at  (2, 0, 10) 4. z = sin( x + y )  at  (1, –1, 0) 
 

5. z = ln(2x + y)  at  (–1, 3, 0) 6. z = ex.ln( y )  at  (3, 1, 0) 
 
7. z = xy  at  (–1, 2, –2) 8. z = x – y   at  (5, 1, 2) 

 
In problems 9 – 18, find the differential of the given function. 
 

9. z = x2y3    10. z = x4 – 5x2y + 6xy3 + 10 
 

11. 

 

z =
1

x2 + y2
 12. z = y.exy   

 

13. u = ex.cos( xy ) 14. v = ln( 2x – 3y ) 
 

15. w = x2y + y2z 16. w = x sin( yz ) 
 

17. w = ln( x2 + y2 + z2  )   18. w =  
x + y
y + z   

 
19. If  

 

z = 5x2 + y2  and  (x, y) changes from  (1, 2) to (1.05, 2.1),  compare the values of  ∆z  and  dz. 
 

20. If  z = x2 – xy + 3y2  and  (x, y)  changes from (3, –1) to (2.96, –0.95), compare the values of  ∆z  and  dz. 
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In problems 21 – 24, use differentials to approximate the value of  f  at the given point. 
 

21. f(x, y) = x2 – y2   at  (5.01, 4.02) 22. f(x, y) = 20 – x2 – 7y2   at  (1.95, 1.08) 
 
23. f(x, y) = ln( x – 3y )  at  (6.9, 2.06) 24. f(x, y) = y.exy  at  (0.2, 1.96) 
 

25. The length and width of a rectangle are measured as 30 cm and 24 cm, respectively, with an error in 

measurement of at most 0.1 cm in each.  Use differentials to estimate the maximum error in the calculated 

area of the rectangle. 

 

26. The dimensions of a closed rectangular box are measured as 80 cm, 60 cm, and 50 cm, respectively, with a 

possible error of 0.2 cm in each dimension.  Use differentials to estimate the maximum error in calculating 

the surface area of the box. 

 

27. Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height 12 cm if the 

tin is 0.04 cm thick. 

 

28. Use differentials to estimate the amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in 

diameter if the metal in the wall is 0.05 cm thick and the metal in the top and bottom is 0.1 cm thick. 

 

29. A boundary stripe 3 in. wide is painted around a rectangle whose dimensions are 100 ft. by 200 ft.  Use 

differentials to approximate the number of square feet of paint in the stripe. 

 

30. The pressure, volume, and temperature of a mole of an ideal gas are related by the equation  PV = 8.31T, 

where P is measured in kilopascals, V in liters, and T in oK (= oC + 273).  Use differentials to find the 

approximate change in pressure if the volume increases from 12 L to 12.3 L and the temperature decreases 

from 310oK to 305oK. 

 

 

PRACTICE ANSWERS 
 
Practice 1: z = f(a,b) + fx(a,b)(x – a) + fy(a,b)(y – b)   

 with  f(x,y) = 5xy2 + 7y + sin( xy ) – 2, a = 0,  b = 1,  and  f(0,1) = 5. 
 fx(x,y) = 5y2 + y.cos( xy )  so  fx(0,1) = 5 + 1 = 6. 

 fy(x,y) = 10xy + 7 + x.cos( xy )  so  fy(0,1) = 7. 

 Then the equation of the tangent plane to  f  at  (0,1,5)  is  z = 5 + 6(x – 0) + 7(y – 1) = 6x + 7y – 2. 
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Practice 2: (a) dz = fx(a, b) dx + fy(a, b) dy  =  { x.cos( 2xy ).2y + sin( 2xy )} dx + { x.cos( 2xy ).2x } dy 

 (b) at  (1, π/2),   

 dz = {1.cos( 2.1.π/2 ).2.π/2 + sin( 2.1.π/2 )} dx + {1.cos( 2.1.π/2 ).2.1} dy   so 

 dz = (–π) dx + (–2) dy . 
 

 (c)&(d)  For  f( 1.3, 
π
2  – 0.1 ) ,  dx = 0.3  and  dy = –0.1  so  dz = (–π)( 0.3 ) + (–2)( –0.1) ≈ –0.742 .   

 Then  f( 1.3, 
π
2  – 0.1 ) ≈ f(1, 

π
2  ) + dz  = 3 + (– 0.742) = 2.258 . 

  Actually,  f( 1.3, 
π
2  – 0.1 ) = 2.18006691401  so the approximation "error" is 0.078,  

  an "error" of less than 4%. 
 

 For   f( 0.99, 
π
2   + 0.2) , dx = –0.01  and  dy = 0.2  so  dz = (–π)(–0.01) + (–2)(0.2) = –0.369 . 

  Then  f( 0.99, 
π
2   + 0.2) ≈ f(1, 

π
2  ) + dz  = 3 + (– 0.369) = 2.631 . 

  Actually,  f( 0.99, 
π
2   + 0.2) = 2.64700487061  so the approximation "error" is 0.016,  

  an "error" of less than 1%. 

 
Selected Answers 
 

1. 4x + 8y – z = 8 3. 2x + 4y – z + 6 = 0 

 

5. 2x + y – z = 1 7. 2x – y – z + 2 = 0 

 

9. dz = 2xy3 dx + 3x2y2 dy 11. dz = –2x(x2 + y2)–2 dx – 2y(x2 + y2)–2 dy 

 

13. du = ex.( cos( xy ) – y.sin( xy ) ) dx – x.ex.sin( xy ) dy 

 

15. dw = 2xy dx + (x2 + 2yz) dy + y2 dz 17. dw = (x2 + y2 + z2)–1( x dx + y dy + z dz)  

 

19. ∆z = 0.9225  and  dz = 0.9 21. 2.99 23. –0.28 

 

25. 5.4 cm2 27. 16 cm3 

 

29. 150 
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Appendix:  Maple commands to create figures 
 
In the following Maple routines: 
 xa and ya are the  x and  y coordinates, respectively, of the point of tangency,  
 the formula for  za  is our function (in terms of  xa  and  ya),   
 fx is  fx  (in terms of  xa  and  ya), and   
 fy is  fy  (in terms of  xa  and  ya). 
 L  is the length and width of one of the rectangles making up the plane, and 
 N is the number of rectangles in the plane to each side of the point. 
 xmin, xmax, ymin, ymax, zmin, and zmax specify the viewing "rectange in 3D. 
 orientation= [θ degrees, φ degrees]  is the viewing position in spherical coordinates. 
 
> with(plots); 
 
> MAKES FIG. 2 

xa:=.6: ya:=2:za:=16-2*xa^2-ya^2: 
fx:=-4*xa: fy:=-2*ya: 
L:=0.3:N:=2: 
xmin:=0: xmax:=1.5: ymin:=0: ymax:=3: zmin:=0: zmax:=16: 
SURF:=plot3d(16-2*x^2-y^2, x=xmin..xmax, y=ymin..ymax, axes=normal, grid=[9,17], color=red): 
PT:=pointplot3d( {[xa,ya,za]}, color=black, symbol=circle): 
TANPL:=plot3d( [u,v,za+fx*(u-xa)+fy*(v-ya)], u=xa-N*L..xa+N*L, v=ya-N*L..ya+N*L, color=blue, 
grid=[2*N+1,2*N+1], thickness=2): 
display3d( {SURF, PT, TANPL }, orientation=[25,80], tickmarks=[2,2,4], view=0..16); 

 
MAKES FIG. 4  (these commands also do all of the work for figures 5 and 6) 

To modify these commands for your own function at a point you pick, you 
only need to change the part of the routine in boldface type. 

> xa:=1: ya:=2:za:=2*xa^3+ya^2+3: 
fx:=6*xa^2: fy:=2*ya: 
L:=0.3:N:=2: 
xmin:=0: xmax:=2: ymin:=0: ymax:=3: zmin:=0: zmax:=25: 
SURF:=plot3d(2*x^3+y^2+3, x=xmin..xmax, y=ymin..ymax, axes=normal, grid=[9,17], color=red): 
PT:=pointplot3d( {[xa,ya,za]}, color=black, symbol=circle): 
TANPL:=plot3d( [u,v,za+fx*(u-xa)+fy*(v-ya)], u=xa-N*L..xa+N*L, v=ya-N*L..ya+N*L, color=blue, 
grid=[2*N+1,2*N+1], thickness=2): 
DX:=spacecurve( [u,ya,za+fx*(u-xa)],u=xa..xa+3*L, color=black, thickness=2): 
DY:=spacecurve( [xa,v,za+fy*(v-ya)],v=ya..ya+3*L, color=black, thickness=2): 
display3d( {SURF, PT }, orientation=[25,80], tickmarks=[3,3,4], view=0..zmax); 

 
> MAKES FIG. 5 

display3d( {SURF, PT, DX, DY }, orientation=[25,80], tickmarks=[3,3,4], view=0..zmax); 
 
> MAKES FIG. 6  two views 

display3d( {SURF, PT, DX, DY, TANPL }, orientation=[25,80], tickmarks=[3,3,4], view=0..zmax); 
display3d( {SURF, PT, DX, DY, TANPL }, orientation=[70,57], tickmarks=[3,3,4], view=0..zmax); 

 
MAKES FIG. 7  two views 

> xa:=1: ya:=1:za:=2*xa^2*ya^3+ln(xa*ya)+7: 
fx:=4*xa*ya^3 +1/xa: fy:=6*xa^2*ya^2+1/ya: 
L:=0.3:N:=2: 
xmin:=.1: xmax:=2: ymin:=.1: ymax:=2: zmin:=0: zmax:=30: 
SURF:=plot3d(2*x^2*y^3+ln(x*y)+7, x=xmin..xmax, y=ymin..ymax, axes=normal, grid=[9,17], 
color=red): 
PT:=pointplot3d( {[xa,ya,za]}, color=black, symbol=circle): 
TANPL:=plot3d( [u,v,za+fx*(u-xa)+fy*(v-ya)], u=xa-N*L..xa+N*L, v=ya-N*L..ya+N*L, color=blue, 
grid=[2*N+1,2*N+1], thickness=2): 
display3d( {SURF, PT, TANPL}, orientation=[30,80], tickmarks=[3,3,4], view=0..zmax); 
display3d( {SURF, PT, TANPL}, orientation=[10,25], tickmarks=[3,3,4], view=0..zmax); 


