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9.1 POLAR COORDINATES 
 
The rectangular coordinate system is immensely useful, but it is not the only way to assign an address to a  

point in the plane and sometimes it is not the most useful.  In many experimental situations, our location is 

fixed and we or our instruments, such as radar, take readings in different directions (Fig. 1); this information 

can be graphed using rectangular coordinates (e.g., with the angle on the horizontal axis and the measurement 

on the vertical axis).  Sometimes, however, it is more useful to plot the information in a way similar to the way 

in which it was collected, as magnitudes along radial lines (Fig. 2).  This system is called  the Polar Coordinate 

System. 
 

 

 

 

 

 

 

 

 

 

In this section we introduce polar coordinates and examine some 

of their uses.  We start with graphing points and functions in polar 

coordinates, consider how to change back and forth between the 

rectangular and polar coordinate systems, and see how to find the 

slopes of lines tangent to polar graphs.  Our primary reasons for 

considering polar coordinates, however, are that they appear in 

applications, and that they provide a "natural" and easy way to 

represent some kinds of information. 

 

Example 1: SOS!  You've just received a distress signal from a ship located at  A  on your radar screen  

(Fig. 3).  Describe its location to your 

captain so your vessel can speed to the 

rescue.   
 

Solution: You could convert the relative 

location of the other ship to rectangular 

coordinates and then tell your captain to go 

due east for 7.5 miles and north for 13 miles, 
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but that certainly is not the quickest way to reach the other ship.  It is better to tell the captain to sail for 15 

miles in the direction of  60°.  If the distressed ship was at B on the radar screen, your vessel should sail 

for 10 miles in the direction 150°.  (Real radar screens have 0° at the top of the screen, but the convention 

in mathematics is to put  0°  in the direction of the positive x–axis and to measure positive angles 

counterclockwise from there.  And a real sailor speaks of "bearing" and "range" instead of direction and 

magnitude.) 
 

Practice 1: Describe the locations of the ships at  C  and  D  in 

Fig. 3  by giving a distance and a direction to those 

ships from your current position at the center of the 

radar screen. 
 

Points in Polar Coordinates 
 

To construct a polar coordinate system we need a starting point (called the origin or pole) for the magnitude 

measurements and a starting direction (called the polar axis) for the angle measurements  (Fig. 4).  
 
 A polar coordinate pair for a point  P  in the plane is an ordered pair  (r,θ)  where  r  is the directed distance 

along a radial line from  O  to  P,  and  θ is the angle formed by the polar axis and the segment OP  (Fig. 4).  

The angle  θ  is positive when the angle of the radial line  OP  is measured counterclockwise from the polar 

axis, and  θ   is negative when measured clockwise. 
 

Degree or Radian Measure for  θ?  Either degree or radian measure can be used for the angle in the polar 

coordinate system, but when we differentiate and integrate trigonometric functions of  θ  we will want all of 

the angles to be given in radian measure.  From now on, we will primarily use radian measure.  You should 

assume that all angles are given in radian measure unless the units " ° " ("degrees") are shown. 
 

Example 2: Plot the points with the given polar coordinates:  A(2, 30°), B(3, π/2), C(–2, π/6),  

 and  D(–3, 270°). 
 

Solution:  To find the location of  A, we look along the ray that makes an angle of 30° with the polar axis, and 

then take two steps in that direction  (assuming 1 step = 1 unit).  The locations of  

A  and  B  are shown in Fig. 5. 

To find the location of C, we look along the ray which makes an angle of π/6  with  

 the polar axis, and then we take two steps backwards since  r = –2  is negative.   

 Fig. 6 shows the locations of  C  and  D. 

Notice that the points  B  and  D  have different addresses, (3, π/2) and (–3, 270°), 

but the same location. 
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Practice 2: Plot the points with the given polar coordinates:  A(2, π/2),  

 B(2, –120°), C(–2, π/3),   D(–2, –135°), and  E(2, 135°).  Which two 

points coincide? 
 

Each polar coordinate pair  (r,θ)  gives the location of one point, but each 

location has lots of different addresses in the polar coordinate system: the polar 

coordinates of a point are not unique.  This nonuniqueness of addresses comes 

about in two ways.  First, the angles  θ, θ ± 360°, θ ± 2.360°, . . .  all 

describe the same radial line (Fig. 7), so the polar coordinates   

(r, θ), (r, θ ± 360°), (r, θ ± 2.360°) , . . . all locate the same point.  

Secondly, the angle  θ ± 180°  describes 

the radial line pointing in exactly the 

opposite direction from the radial line 

described by the angle  θ (Fig. 8),  so the 

polar coordinates  (r, θ)  and  (–r,  θ ± 180°)  locate the same point.  A polar 

coordinate pair gives the location of exactly one point, but the location of one 

point is described by many (an infinite number) different polar coordinate pairs. 

 

Note: In the rectangular coordinate system we use  (x, y)  and  y = f(x): first variable independent and 

second variable dependent.  In the polar coordinate system we use  (r, θ)  and  r = f(θ): first variable 

dependent and second variable independent, a reversal from the rectangular coordinate usage. 
 

Practice 3: Table 1 contains measurements to the edge of a plateau taken by a remote sensor which crashed 

on the plateau.  Fig. 9 shows the data plotted in rectangular coordinates.  Plot the data in polar coordinates 

and determine the shape of the top of the plateau. 
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angle    distance

0°         28 feet

20°         30    

40°         36    

60°         27   
80°         24    

100°         24    
130°         30    

angle    distance

150°         22 feet

230°         13    

210°         21    

180°         18   

270°         10   

340°         30   
330°         18   

Table 1
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Graphing Functions in the Polar Coordinate System 

In the rectangular coordinate system, we have worked with functions given by tables of data, by graphs, and by 

formulas.  Functions can be represented in the same ways in polar coordinates. 

• If a function is given by a table of data, we can graph the function in polar coordinates by plotting 

individual points in a polar coordinate system and connecting the plotted points to see the shape of the 

graph.  By hand, this is a tedious process; by calculator or computer, it is quick and easy. 
 

• If the function is given by a rectangular 

coordinate graph of magnitude as a function of 

angle, we can read coordinates of points on the 

rectangular graph and replot them in polar 

coodinates.  In essence, as we go from the 

rectangular coordinate graph to the polar 

coordinate graph we "wrap" the rectangular 

graph around the "pole" at the origin of the polar 

coordinate system.  (Fig. 10) 
 

• If the function is given by a formula, we (or our calculator) can graph the function to help us obtain 

information about its behavior.  Typically, a graph is created by evaluating the function at a lot of points 

and then plotting the points in the polar coordinate system.  Some of the following examples illustrate that 

functions given by simple formulas may have rather exotic graphs in the polar coordinate system. 
 

If a function is already given by a polar coordinate graph, we can use the graph to answer questions about the 

behavior of the function.  It is usually easy to locate the maximum value(s) of  r  on a polar coordinate graph, and, 

by moving counterclockwise around the graph, we can observe where  r  is increasing, constant, or decreasing. 

 
Example 3: Graph  r = 2  and  r = π – θ  in the polar coordinate system for  0 ≤ θ ≤ 2π. 
 
Solution: r = 2:  In every direction  θ , we simply move 2 units along the radial line and plot a point.   

 The resulting polar graph (Fig. 11b) is a circle centered at the origin with a radius  

 of  2.  In the rectangular coordinate system, the 

graph of a constant  y = k  is a horizontal line.  In 

the polar coordinate system, the graph of a constant  

r = k  is a circle with radius  | k | . 
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r = π – θ:  The rectangular coordinate graph of  r = π – θ  is 

shown in Fig. 12a.  If we read the values of  r  and  θ  

from the rectangular coordinate graph and plot them 

in polar coordinates, the result is the shape in Fig. 

12b.  The different line thicknesses are used in the 

figures to help you see which values from the 

rectangular graph became which parts of the loop in 

the polar graph. 
 

Practice 4: Graph  r = –2  and  r = cos(θ)  in the polar coordinate system. 
 

Example 4: Graph  r = θ  and  r = 1 + sin(θ)  in the polar coordinate system. 
 

Solution:  r = θ:  The rectangular coordinate graph of  

r = θ  is a straight line (Fig. 13a).  If we read the 

values of  r  and  θ  from the rectangular 

coordinate graph and plot them in polar 

coordinates, the result is the spiral, called an 

Archimedean spiral, in Fig. 13b. 
 

 r = 1 + sin(θ):  The rectangular coordinate graph 

of  r = 1 + sin(θ)  is shown in Fig. 14a, and it is 

the graph of the sine curve shifted up 1 unit.  In 

polar coordinates, the result of adding  1  to sine 

is much less obvious and is shown in Fig. 14b. 
 

 

 

 

 

 

     Practice 5: Plot the points in Table 2 in the polar coordinate system and  

 connect them with a smooth curve.  Describe the shape of the  

 graph in words. 

 

  angle      distance

(radians)    (meters)

0             3.0

!/3          1.6

!/4          1.7    

!/6          1.9   

!/2          2.0   

Table 2
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Fig. 15 shows the effects of adding various constants to the rectangular and polar graphs of  r =  sin(θ).  In 

rectangular coordinates the result is a graph shifted up or down by  k  units.  In polar coordinates, the result 

may be a graph with an entirely different shape  (Fig. 16). 

 

Fig. 17 shows the effects of adding a constant to the independent variable in rectangular coordinates, and the 

result is a horizontal shift of the original graph.  In polar coordinates, Fig. 18, the result is a rotation of the 

original graph.  Generally it is difficult to find formulas for rotated figures in rectangular coordinates, but 

rotations are easy in polar coordinates. 
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The formulas and names of several functions with exotic shapes in polar coordinates are given in the problems.  

Many of them are difficult to graph "by hand," but by using a graphing calculator or computer you can enjoy 

the shapes and easily examine the effects of changing some of the constants in their formulas. 

 

Converting Between Coordinate Systems 
 

Sometimes both rectangular and polar 

coordinates are needed in the same 

application, and it is necessary to change  

back and forth between the systems.  In  

such a case we typically place the two  

origins together and align the polar axis 

with the positive x–axis.  Then the 

conversions are straightforward exercises 

using trigonometry and right triangles 

(Fig. 19). 

 
  
 Polar to Rectangular  (Fig. 19a) Rectangular to Polar  (Fig. 19b) 

 x = r.cos(θ)    r2 = x2 + y2  

 y = r.sin(θ)  tan(θ)  = 
y
x    (if  x ≠ 0)  

    

 

Example 5: Convert  (a)  the polar coordinate point  P(7, 0.4)  to rectangular coordinates, and  (b)  the 

rectangular coordinate point  R(12, 5)  to polar coordinates. 
 

Solution:  (a) r = 7  and  θ = 0.4  (Fig. 20)  so  x = r.cos(θ) = 7.cos(0.4) 

! 

" 7(0.921) = 6.447  and  

  y =7.sin(0.4) 

! 

" 7(0.389) = 2.723 . 

 (b) x = 12  and  y = 5  so  r2 = x2 + y2 = 144 + 25 = 169  and   

  tan(θ)  = y/x = 5/12  so  we can take  r = 13  and   

  θ = arctan(5/12) ≈ 0.395 .  The polar coordinate addresses   

  (13, 0.395 ± n.2π)  and (–13, 0.395 ± (2n+1).π)  give the location  

  of the same point. 
 

The conversion formulas can also be used to convert function equations from  

one system to the other. 

 
 
Example 6: Convert the rectangular coordinate linear equation  y = 3x + 5  (Fig. 21) to a polar coordinate equation. 
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Solution: This simply requires that we replace  x  with  r.cos(θ)  and  y  with  

r.sin(θ).  Then 

  y = 3x + 5  becomes  r.sin(θ) = 3r.cos(θ) + 5   

 so  r.(sin(θ) – 3cos(θ)) = 5  and  r = 5/(sin(θ) – 3cos(θ)).  This final 

representation is valid only for  θ  such that sin(θ) – 3cos(θ) ≠ 0. 
 

Practice 6: Convert the polar coordinate equation  r2 = 4r.sin(θ)  to a rectangular 

coordinate equation. 
 

Example 7: Robotic Arm:  A robotic arm has a hand at the end of a 12 inch 

long forearm which is connected to an 18 inch long upper arm  

(Fig. 22).  Determine the position of the hand, relative to the 

shoulder, when  θ = 45° (π/4)  and  φ = 30° (π/6). 
 

Solution: The hand is  12.cos(π/4 + π/6) ≈ 3.1 inches to the right of the 

elbow (Fig. 23)  and 12sin(π/4 + π/6) ≈ 11.6 

inches above the elbow.  Similarly,  the elbow is  

18.cos(π/4) ≈ 12.7  inches to the right of the 

shoulder and  18.sin(π/4) ≈ 12.7  inches above the shoulder.  Finally, the hand is 

approximately  3.1 + 12.7 = 15.8 inches to the right of the shoulder and approximately   

11.6 + 12.7 = 24.3 inches above the shoulder.  In polar coordinates, the hand is 

approximately  29 inches from the shoulder, at an angle of  about  57° (about 0.994 

radians) above the horizontal. 
 

Practice 7: Determine the position of the hand, relative to the shoulder, 

    when  θ = 30°  and  φ = 45° . 

 
Graphing Functions in Polar Coordinates on a Calculator or Computer 
 

Some calculators and computers are programmed to graph polar functions simply by keying in the formula for  

r, either as a function of  θ  or of  t, but others are only designed to display rectangular coordinate graphs.  

However, we can graph polar functions on most of them as well by using the rectangular to polar conversion 

formulas, selecting the parametric mode (and the radian mode) on the calculator, and then graphing the 

resulting parametric equations in the rectangular coordinate system: 
 

To graph  r = r(θ)  for  θ  between  0  and  3π,  

define  x(t) = r(t).cos(t)  and  y(t) = r(t).sin(t) 

and graph the parametric equations  x(t), y(t)   for  t  taking values from  0  to  9.43. 
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Which Coordinate System Should You Use? 
 

There are no rigid rules.  Use whichever coordinate system is easier or more "natural" for the problem or data 

you have.  Sometimes it is not clear which system to use until you have graphed the data both ways, and some 

problems are easier if you switch back and forth between the systems. 
 

Generally, the polar coordinate system is easier if 
 

• the data consists of measurements in various directions (radar) 

• your problem involves locations in relatively featureless locations (deserts, oceans, sky) 

• rotations are involved. 
 

Typically, the rectangular coordinate system is easier if 
 

• the data consists of measurements given as functions of time or location (temperature, height) 

• your problem involves locations in situations with an established grid (a city, a chess board) 

• translations are involved.  
 
 
PROBLEMS 
 

1. Give the locations in polar coordinates (using radian measure)  of the  

 points labeled  A, B, and C  in Fig. 24. 
 

2. Give the locations in polar coordinates (using radian measure)  of the  

 points labeled  D, E, and F  in Fig. 24. 
 

3. Give the locations in polar coordinates (using radian measure)  of the  

 points labeled  A, B, and C  in Fig. 25. 
 

4. Give the locations in polar coordinates (using radian measure)  of the  

 points labeled  D, E, and F  in Fig. 25. 
 

In problems  5–8, plot the points A – D in polar coordinates, connect the 

dots by line segments in order (A to B to C to D to A), and name the 

approximate shape of the resulting figure. 
 
5. A(3, 0°), B(2, 120°), C(2, 200°),  and  D(2.8, 315°). 
 
6. A(3, 30°), B(2, 130°), C(3, 150°),  and  D(2, 280°). 
 
7. A(2, 0.175), B(3, 2.269), C(2, 2.618),  and  D(3, 4.887). 
 
8. A(3, 0.524), B(2, 2.269), C(3, 2.618),  and  D(2, 4.887). 
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In problems 9–14, the rectangular coordinate graph of a function  r = r(θ)  is shown.  Sketch the polar 

coordinate graph of   r = r(θ). 
 
9. The graph in Fig. 26. 10. The graph in Fig. 27. 11. The graph in Fig. 28. 
 
 
 
 
 
 
 
 
 
 
12. The graph in Fig. 29. 13. The graph in Fig. 30. 14. The graph in Fig. 31. 
 
 
 
 
 
 
 
 
 
 
 
15. The rectangular coordinate graph of  r = f(θ)  is shown in Fig. 32.   

 (a) Sketch the rectangular coordinate graphs of  r = 1 + f(θ),  r = 2 + f(θ),  

  and  r = –1 + f(θ). 

 (b) Sketch the polar coordinate graphs of  r = f(θ),  r = 1 + f(θ),   

  r = 2 + f(θ), and  r = –1 + f(θ). 
 
16. The rectangular coordinate graph of  r = g(θ)  is shown in Fig. 33.   

 (a) Sketch the rectangular coordinate graphs of  r = 1 + g(θ),  r = 2 + g(θ),  

  and  r = –1 + g(θ). 

 (b) Sketch the polar coordinate graphs of  r = g(θ),  r = 1 + g(θ),   

  r = 2 + g(θ), and  r = –1 + g(θ). 
 
17. The rectangular coordinate graph of  r = f(θ)  is shown in Fig. 34.   

 (a) Sketch the rectangular coordinate graphs of  r = 1 + f(θ),  r = 2 + f(θ),  

  and  r = –1 + f(θ). 

 (b) Sketch the polar coordinate graphs of  r = f(θ),  r = 1 + f(θ),   

  r = 2 + f(θ), and  r = –1 + f(θ). 
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18. The rectangular coordinate graph of  r = g(θ)  is shown in Fig. 35.   

 (a) Sketch the rectangular coordinate graphs of  r = 1 + g(θ),   

  r = 2 + g(θ), and  r = –1 + g(θ). 

 (b) Sketch the polar coordinate graphs of  r = g(θ),  r = 1 + g(θ),   

  r = 2 + g(θ), and  r = –1 + g(θ). 
 

19. Suppose the rectangular coordinate graph of  r = f(θ)  has the horizontal asymptote  r = 3  as  θ  grows 

arbitrarily large.  What does that tell us about the polar coordinate graph of  r = f(θ)  for large values of  θ? 

 
20. Suppose the rectangular coordinate graph of  r = f(θ) has the vertical asymptote θ = π/6:  

! 

lim
"#$ / 6

f(θ) = +∞.   

 What does that tell us about the polar coordinate graph of  r = f(θ)  for values of  θ  near  π/6 ? 

 
A computer or graphing calculator is recommended for the problems marked with a  * . 
 
In problems 21–40, graph the functions in polar coordinates for  0 ≤ θ ≤ 2π. 
 
21. r = –3 22. r = 5 23. θ = π/6 24. θ = 5π/3  
 
25. r = 4.sin(θ) 26. r = –2.cos(θ) 27. r = 2 + sin(θ) 28. r = –2 + sin(θ)  
 
29. r = 2 + 3.sin(θ) 30. r = sin(2θ) *31. r = tan(θ) *32. r = 1 + tan(θ) 
 

*33. r = 
3

cos(θ)  *34. r = 
2

sin(θ)  *35. r = 
1

sin(θ) + cos(θ)   36.  r = 
θ
2  

 

37. r = 2.θ 38. r = θ2   39. r = 
1
θ  40. r = sin(2θ).cos(3θ) 

 

*41. r = sin(mθ).cos(nθ)  produces lovely graphs for various small integer values of  m  and  n.  Go exploring 

with a graphic calculator to find values of  m  and  n  which result in shapes you like. 
 

*42. Graph  r =  
1

1 + 0.5.cos(θ + a)
  , 0 ≤ θ ≤ 2π, for  a = 0, π/6, π/4, and π/2.  How are the graphs related? 

 

*43. Graph  r =  
1

1 + 0.5.cos(θ – a)
  , 0 ≤ θ ≤ 2π, for  a = 0, π/6, π/4, and π/2.  How are the graphs related? 

 

*44. Graph  r = sin(nθ) , 0 ≤ θ ≤ 2π, for n = 1, 2, 3, and 4  and count the number of  "petals" on each graph.  

Predict the number of "petals" for the graphs of  r = sin(nθ)  for n = 5, 6, and 7, and then test your 

prediction by creating those graphs. 
 
*45. Repeat the steps in problem 44 but using  r = cos(nθ) . 
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In problems 46–49, convert the rectangular coordinate locations to polar coordinates. 
 
46. (0, 3), (5, 0), and (1, 2) 47. (–2, 3), (2, –3), and (0, –4). 
 
48. (0, –2), (4, 4), and (3, –3) 49. (3, 4), (–1, –3), and (–7, 12). 
 
In problems 50–53, convert the polar coordinate locations to rectangular coordinates. 
 
50. (3, 0), (5, 90°), and (1, π) 51. (–2,3), (2,–3), and (0,–4). 
 
52. (0,3), (5,0), and (1,2) 53. (2,3), (–2,–3), and (0,4). 

 
Problems  54–60 refer to the robotic arm in Fig. 36. 
 
54. Determine the position of the hand, realtive to the shoulder, when   

 θ = 60° and  φ = –45° . 
 
55. Determine the position of the hand, relative to the shoulder, when   

 θ = –30° and  φ = 30°. 
 

56. Determine the position of the hand, relative to the shoulder, when  θ = 0.6 and  φ = 1.2 . 
 
57. Determine the position of the hand, relative to the shoulder, when  θ = –0.9 and  φ = 0.4 . 
 

58. Suppose the robot's shoulder can pivot so that  –π/2 ≤ θ ≤ π/2, but the elbow is broken and  φ  is  

 always  0°.  Sketch the points the hand can reach. 
 

59. Suppose the robot's shoulder can pivot so that  –π/2 ≤ θ ≤ π/2, and the elbow can pivot so that  

 –π/2 ≤ φ ≤ π/2.  Sketch the points the hand can reach. 
 

60. Suppose the robot's shoulder can pivot so that  –π/2 ≤ θ ≤ π/2, and the elbow can pivot completely  

 so   –π ≤ φ ≤ π.  Sketch the points the hand can reach. 
 

*61. Graph  r =  
1

1 + a.cos(θ)
     for 0 ≤ θ ≤ 2π  and  a = 0.5, 0.8, 1, 1.5, and 2.  What shapes do the various 

values of  a  produce? 
 

*62. Repeat problem  61  with  r =  
1

1 + a.sin(θ)
    . 
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Some Exotic Curves (and Names) 
 
Many of the following curves were discovered and named even before polar coordinates were invented.  In  

most cases the path of a point moving on or around some object is described.  You may enjoy using your 

calculator to graph some of these curves or you can invent your own exotic shapes.  (An inexpensive source 

for these shapes and names is  A Catalog Of Special Plane Curves by  J. Dennis Lawrence,  Dover 

Publications, 1972, and the page references below are to that book ) 
 
Some Classics: 

Cissoid ("like ivy") of Diocles (about 200 B.C.): r = a sin(θ). tan(θ) p. 98 

Right Strophoid ("twisting")  of Barrow  (1670): r = a( sec(θ) – 2cos(θ) ) p. 101 

Trisectrix of Maclaurin (1742): r = a sec(θ) – 4a cos(θ) p. 105  

Lemniscate ("ribbon") of Bernoulli (1694): r 2= a2 cos(2θ) p. 122 

Conchoid ("shell") of Nicomedes (225 B.C.): r = a + b.sec(θ) p. 137 

Hippopede ("horse fetter") of Proclus (about 75 B.C.): r2 = 4b( a – b sin2(θ) ) p. 144  b = 3, a = 1, 2, 3, 4 

Devil's Curve of Cramer (1750):       r 2(sin2(θ) – cos2(θ) ) = a2 sin2(θ) – b2 cos2(θ) p. 151  a= 2, b=3 

Nephroid ("kidney") of Freeth: r = a.( 1 + 2 sin( 
θ
2  ) ) p. 175   a = 3 

 
Some of our own:  (Based on their names, what shapes do you expect for the following curves?) 

Piscatoid of Pat (1992): r =  
1

cos(θ)   – 3cos(θ)   for  –1.1 ≤ θ ≤ 1.1  Window  x: (–2, 1)  and  y: (–1, 1) 
Kermitoid of Kelcey (1992) :   
 r = 2.5.sin(2θ).(θ – 4.71).INT(θ/π)  + { 5.sin3(θ) – 3.sin9(θ)}.{ 1 – INT(θ/π) }   for  0 ≤  θ ≤ 2π 
  Window  x: (–3, 3)  and  y: (–1, 4)  
Bovine Oculoid: r = 1 + INT( θ/(2π) )   for  0 ≤ θ  ≤ 6π  (≈ 18.85)   Window x: (–5, 5) and y: (–4, 4) 

 
A Few Reference Facts 
 
The polar form of the linear equation  Ax + By + C = 0  is  r. ( A.cos(θ) + B.sin(θ) ) + C = 0 
 
The equation of the line through the polar coordinate points  (r1, θ1)  and  (r2, θ2)  is 

 r.{r1.sin(θ – θ1) + r2.sin(θ2 – θ) } = r1.r2.sin(θ2 – θ1) 
 

The graph of  r = a.sin(θ) + b.cos(θ)  is a circle through the origin with center  (b/2, a/2)  and radius  
1
2 a2 + b2    .  (Hint:  multiply each side by  r, and then convert to rectangular coordinates.) 
 

The equations  r =  
1

1 ± a.cos(θ)
    and   r =  

1
1 ± a.sin(θ)

     are conic sections with one focus at the origin. 

 
If  a < 1 , the denominator is never 0  for  0 ≤ θ < 2π  and the graph is an ellipse. 

If  a = 1 , the denominator is  0  for one value of  θ, 0 ≤ θ < 2π,  and the graph is a parabola.   

If  a > 1 , the denominator is  0  for two values of  θ, 0 ≤ θ < 2π,  and the graph is a hyperbola. 
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Section 9.1 PRACTICE  Answers 
 
Practice 1: Point  C  is at a distance of  10  miles in  
  the direction  30o.  D  is  5 miles at 270o. 
 
Practice 2: The points are plotted in Fig. 37. 
 
 
Practice 3: See Fig. 38.   

  The top of the plateau is roughly rectangular. 
 
 
Practice 4: The graphs are shown in Figs. 39 and 40. 

  Note that the graph of  r = cos(θ)  traces out a  

  circle twice;  once as  θ  goes from  0  to  π, and  

  a second time as  θ  goes from  π  to  2π. 
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Practice 5: The points are plotted in Fig. 41. 

  The points (almost) lie on a straight line. 
 
 

 

 

 

 

 

 

 

Practice 6: r2 = x2 + y2  and  r.sin(θ) = y  so   r2 = 4r.sin(θ)  becomes  x2 + y2 = 4y. 

  Putting this last equation into the standard form for a circle (by completing the square) 

  we have  x2 + (y – 2)2 = 4, the equation of a circle with center at  (0, 2)  and radius  2. 
 
 

Practice 7: See Fig. 42. 

  For point A, the "elbow," relative to O, the "shoulder:" 

     x = 18.cos(30o) ≈ 15.6 inches  and  y = 18.sin(30o) = 9 inches. 

  For point B, the "hand," relative to  A:   

   x = 12.cos(75o) ≈ 3.1 inches  and  y = 12.sin(75o) ≈ 11.6 inches. 

  Then the retangular coordinate location of the B  relative to  O  is   

   x ≈ 15.6 + 3.1 = 18.7 inches  and  y ≈ 9 + 11.6 = 20.6 inches. 

  The polar coordinate location of  B  relative to  O  is 

   r =  x2 + y2  ≈ 27.8 inches  and  

! 

"  ≈ 47.7o  (or 0.83 radians) 
 
 
 


