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9.2 CALCULUS IN THE POLAR COORDINATE SYSTEM 
 

The previous section introduced the polar coordinate system and discussed how to plot points, how to 

create graphs of functions (from data, a rectangular graph, or a formula), and how to convert back and forth 

between the polar and rectangular coordinate systems.  This section examines calculus in polar coordinates:  

rates of changes, slopes of tangent lines, areas, and lengths of curves.  The results we obtain may look 

different, but they all follow from the approaches used in the rectangular coordinate system. 

 

Polar Coordinates and Derivatives 
 

In the rectangular coordinate system, the derivative  dy/dx  measured both the rate of change of  y  with 

respect to  x  and the slope of the tangent line.  In the polar coordinate system two different derivatives 

commonly appear, and it is important to distinguish between them. 

 

    

! 

dr

d"
 measures the rate of change of  r  with respect to  θ.   

 The sign of  
d r
dθ   tells us whether  r  is increasing or decreasing as  θ  increases. 

 

    
dy
dx  measures the slope   

∆y
∆x    of the tangent line to the polar graph of  r. 

    
 

We can use our usual rules for derivatives to calculate the derivative of a polar 

coordinate equation  r  with respect to  θ, and  dr/dθ  tells us how  r  is changing 

with respect to (increasing) θ.  For example, if  dr/dθ  > 0 then the directed 

distance  r  is increasing as θ  increases  (Fig. 1).  However,  dr/dθ  is NOT the 

slope of the line tangent to the polar graph of  r.  For the simple spiral  r = θ   

(Fig. 2),  
d r
dθ   = 1 > 0  for all values of  θ; but the slope of the tangent 

 line,  
dy
dx  ,  may be positive (at  A and C) or negative (at B and D).   

 

 
Similarly, 

! 

dx

d"
  is the rate of change of the x-coordinate of the graph with respect to 

(increasing) 

! 

"  ,  and 

! 

dy

d"
  is the rate of change of the y-coordinate of the graph with 

respect to (increasing) 

! 

"  .  The values of the derivatives  dy/dθ  and  dx/dθ  depend 

on the location on the graph.  They will also be used to calculate the slope  
dy
dx   of the 

tangent line, and also to express the formula for arc length in polar coordinates. 
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Example 1: State whether the values of  dr/dθ, dx/dθ , dy/dθ , and  dy/dx  are  + (positive), 

– (negative), 0 (zero), or  U (undefined) at the points  A  and B on the graph in Fig. 3. 

Solution: The values of the derivatives at  A  and  B  are given in Table 1. 

 

Practice 1: Fill in the rest of Table 1 for points labeled  C  and  D. 
 

When  r  is given by a formula  we can calculate  dy/dx  , the slope of  

the tangent line, by using the polar–rectangular conversion formulas  

and the Chain Rule.  By the Chain Rule   
dy
dθ   =  

dy
dx  

dx
dθ ,   so we can  

solve for  
dy
dx    by dividing each side of the equation by   

dx
dθ  .   

 

Then  the slope  
dy
dx    of the line tangent to the polar coordinate graph of  r(θ)  is 

(1)  
dy
dx     = 

  
dy
dθ  

  
dx
dθ  

    =    
   

 d (r.sin(θ) )
dθ    

   
 d (r.cos(θ) )

dθ    
     .  

  Since  r  is a function of  θ, r = r(θ),  we may use the product rule and the Chain Rule  

  for derivatives to calculate each derivative and to obtain 
 

(2) 
dy
dx    =   

 r.cos(θ) + r '.sin(θ) 
 –r.sin(θ) + r '.cos(θ) 

    (with  r ' = dr/dθ )  .   

   

The result in  (2)  is difficult to remember, but the starting point  (1)  and derivation are straightforward. 
 

Example 2: Find the slopes of the lines tangent to the spiral  r = θ  (shown in Fig. 2)  at the points  

P(π/2, π/2)  and  Q(π, π) . 
 

Solution: y = r.sin(θ)  = θ.sin(θ)  and  x = r.cos(θ) =  θ.cos(θ)   so 
 

dy
dx   =  

   
 d (r.sin(θ))

 dθ   

   
 d (r.cos(θ))

 dθ   
     =  

  
  d (θ.sin(θ)) 

 dθ   

  
  d (θ.cos(θ)) 

 dθ   
     =  

 θ.cos(θ) + 1.sin(θ) 
 –θ.sin(θ) + 1.cos(θ) 

   . 

At the point  P,  θ = π/2  and  r = π/2  so   
dy
dx   =  

 
π
2.0 + 1.(1) 

 – 
π
2.(1) + 1.(0) 

    =  – 
2
π   ≈  – 0.637 . 

At the point  Q,  θ = π  and  r = π  so   
dy
dx   =  

 π.(–1) + 1.(0) 
 – π.(0) + 1.(–1) 

    =   
–π
–1   =  π  ≈  3.142 . 

The function   r = θ  is steadily increasing, but the slope of the line tangent to the polar graph can 

negative or positive or zero or even undefined (where?). 

Table 1

d r

d ! 

d x

d ! 

d y

d ! 

d y

d x 
Point

A

B

C

D

0

+
–

+ + +
– 0
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Practice 2: Find the slopes of the lines tangent to the cardioid   

 r = 1 – sin(θ)  (Fig. 4)  when  θ = 0, π/4, and π/2. 

 

Areas in Polar Coordinates 
 

The patterns for calculating areas in rectangular and polar coordinates 

look different, but they are derived in the same way:  partition the area 

into pieces, calculate areas of the pieces, add the small areas together to 

get a Riemann sum, and take the limit of the Riemann sum to get a definite 

integral.  The major difference is the shape of the pieces:  we use thin 

rectangular pieces in the rectangular system and thin sectors (pieces of pie) 

in the polar system.  The formula we need for the area of a sector can be 

found by using proportions (Fig. 5): 
 

 
area of sector

area of whole circle   =  
sector angle

angle of whole circle   =  
θ

2π    
 

 so  (area of sector) = 
θ

2π (area of whole circle)   =   
θ

2π ( π r2 )  = 
1
2  r2 θ .  

 

Figures 6 and 7 refer to the area discussion after the figures. 
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 Area in Rectangular Coordinates  (Fig. 6) Area in Polar Coordinates  (Fig. 7) 

   

Partition the domain  x  of the rectangular coordinate 

function into small pieces of width  ∆x . 

Partition the domain  θ  of the polar coordinate 

function into small pieces of angular width  ∆θ . 

 

Build rectangles on each piece of the domain. Build "nice" shapes (pieces of pie shaped sectors)  

along each piece of the domain. 

 

Calculate the area of each piece (rectangle): 
 
   areai = (basei).(heighti) = f(xi) .∆xi   . 

 

Calculate the area of each piece (sector): 
 

   areai = 
1
2 (radiusi) 

2 (anglei)  =  
1
2  ri

2 ∆θi  . 
 

Approximate the total area by adding the small  

areas together, a Riemann sum: 
 

   total area ≈  ∑ areai   =  ∑ f(xi) .∆xi  . 

 

Approximate the total area by adding the small areas 

together, a Riemann sum: 
 

   total area ≈  ∑ areai   =  ∑ 
1
2 ri

2 ∆θi .  

 

The limit of the Riemann sum is a definite integral: 
 

     Area  =  ⌡⌠

x=a

b
  f(x) dx  . 

The limit of the Riemann sum is a definite integral: 
 

     Area  =  ⌡⌠

θ=α

β

 
1
2 r2(θ) dθ  . 

  

 

If  r  is a continuous function of  θ , then the limit of the Riemann sums is a finite number, and we have a 

formula for the area of a region in polar coordinates. 

 
  
 Area In Polar Coordinates 
 
  The area of the region bounded by a continuous function  r(θ)  and radial lines at  
 
  angles  

! 

" =  α and  

! 

" =  β  is   
   

     area  =   ⌡⌠

θ=α

β

 
1
2 r2(θ) dθ  . 
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Example 3: Find the area inside the cardioid  r = 1 + cos(θ) .  (Fig. 8) 
 
Solution: This is a straightforward application of the area formula. 
 

 Area =  ⌡⌠

θ=0

2π
  

1
2 ( 1 + cos(θ) ) 2 dθ  =  

1
2 ⌡⌠

θ=0

2π
   { 1 + 2.cos(θ) + cos2(θ) } dθ  

 

  =  
1
2   { θ + 2.sin(θ) + 

1
2  [ θ + 

1
2  sin(2θ) ] } |2π

0
   

 

  =  
1
2  { [ 2π + 0 + 

1
2 ( 2π + 0 )  ] – [ 0 + 0 + 0] }  =  

3
2  π . 

 

We could also have used the symmetry of the region and determined 

this area by integrating from  0  to  π  (Fig. 9)  and multiplying the 

result by  2. 

 
Practice 3: Find the area inside one "petal" of the rose  r = sin(3θ).  (Fig. 10) 

 

We can also calculate the area between curves in polar coordinates. 

 
  
 The area of the region (Fig. 11)  between the continuous curves    
 r1(θ) ≤ r2(θ)  for   α ≤  θ ≤ β  is 
 

 ⌡⌠

θ=α

β

 
1
2 r2

2(θ) dθ  –  ⌡⌠

θ=α

β

 
1
2 r1

2(θ) dθ    

 

  =  ⌡⌠

θ=α

β

 
1
2 { r2

2(θ) – r1
2(θ)} dθ  . 

    

 

It is a good idea to sketch the graphs of the curves to help determine the  

endpoints of integration. 
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Example 4: Find the area of the shaded region in Fig. 12. 
 

Solution: A1  =  area between the circle and the origin = ⌡⌠

θ=0

π/2
    

1
2  12 dθ  

  = 
1
2  θ |

π/2

0
   =  

π
4   ≈  0.785 . 

 A2  =  area between the cardioid and the origin = ⌡⌠

θ=0

π/2
    

1
2 ( 1 + cos(θ) ) 2 dθ  

 

 =  
3
4  θ  + sin(θ) + 

1
8  sin(2θ)  |

π/2

0
  = { 

3π
8   + 1 + 0 } – { 0 + 0 + 0 } ≈  

2.178 . 

 The area we want is   A2 – A1  = 1 + 
3π
8    –  

π
4   = 1 + 

π
8   ≈  1.393 . 

 

Practice 4: Find the area of the region outside the cardioid  1 + cos(θ)  and  

 inside the circle  r = 2.  (Fig. 13) 

 

 

Arc Length in Polar Coordinates 
 

The patterns for calculating the lengths of curves in rectangular and polar coordinates look different, but 

they are derived from the Pythagorean Theorem and the same sum we used in Section 5.2  (Fig. 14): 

 

 length  ≈  ∑  (∆x)2 + (∆y)2     =   ∑  ( 
∆x
∆θ )2 + ( 

∆y
∆θ )2     ∆θ   . 

 

If  x  and  y  are differentiable functions of  θ, then as  ∆θ  approaches  0,  ∆x/∆θ  

approaches  dx/dθ  , ∆y/∆θ  approaches  dy/dθ , and the Riemann sum approaches 

the definite integral 
 

 length  =    ⌡
⌠

θ=α

β
   ( 

dx
dθ )2 + ( 

dy
dθ )2    dθ  .   

 

Replacing  x  with  r.cos(θ)  and  y  with  r.sin(θ),  we have  dx/dθ  = –r.sin(θ) + r '.cos(θ)  and   

dy/dθ = r.cos(θ) + r '.sin(θ).  Then  ( dx/dθ )2 + ( dy/dθ )2  inside the square root simplifies to  r2 + ( r ' )2  

and we have a more useful form of the integral for arc length in polar coordinates. 
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 Arc Length 
 
 If  r  is a differentiable function of  θ  for  α ≤ θ  ≤ β ,  then the length of the graph of  r  is 
 

  Length  =   ⌡
⌠

θ=α

β
   ( r )2 + ( 

d r
dθ )2    dθ    . 

      

 

Problems 

 
Derivatives 
 

In problems  1–4, fill in the table for each graph with  + (positive),  

– (negative), 0 (zero), or  U (undefined) for each derivative at each  

labeled point. 

 

1. Use Fig. 15.  Point   
d r
dθ     

dx
dθ      

dy
dθ       

dy
dx     

        
  A 
  B 
  C 
  D 
  E 

 

2. Use Fig. 16.  Point   
d r
dθ     

dx
dθ      

dy
dθ       

dy
dx     

        
  A 
  B 
  C 
  D 
  E 

 

3. Use Fig. 17.  Point   
d r
dθ     

dx
dθ      

dy
dθ       

dy
dx     

        
  A 
  B 
  C 
  D 
  E 
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4. Use Fig. 18.  Point   
d r
dθ     

dx
dθ      

dy
dθ       

dy
dx     

        
  A 
  B 
  C 
  D 
  E 

 

In problems 5–8, sketch the graph of the polar coordinate function  

r = r(θ)  for  0 ≤ θ ≤ 2π, label the points with the given polar coordinates on the graph, and calculate the 

values of    
d r
dθ   and  

dy
dx   at the points with the given polar coordinates. 

 
5. r = 5  at  A(5, π/4), B(5, π/2), and  C(5, π). 
 

6. r = 2 + cos(θ)   at  A(2 + 
2

2   , π/4), B(2, π/2), and  C(1, π). 
 
7. r = 1 + cos2(θ)   at  A(2, 0), B(3/2, π/4), and  C(1, π/2). 
 

8. r =  
6

2 + cos(θ)   at  A(2, 0), B(3, π/2), and  C( 
24 – 6 2

7   , π/4) ≈ (2.216, π/4). 

 

9. Graph  r = 1 + 2.cos(θ)  for  0 ≤ θ ≤ 2π, and show that the graph goes through the origin when  

θ = 2π/3  and  θ = 4π/3.  Calculate  dy/dx  when  θ = 2π/3  and  θ = 4π/3.  How can a curve have two 

different tangent lines (and slopes) when it goes through the origin? 
 

10. Graph the cardiod  r = 1 + sin(θ)  for  0 ≤ θ ≤ 2π. 

 (a) At what points on the cardioid does  dx/dθ  = 0? (b) At what points on the cardiod does  dy/dθ  = 0? 

 (c) At what points on the cardioid does  dr/dθ  = 0? (d) At what points on the cardiod does  dy/dx  = 0? 
 
11. Show that if a polar coordinate graph goes through the origin when the angle is  

! 

"0   (and if  dr/dθ 

exists and does not equal 0  there),  then the slope of the tangent line at the origin is  tan(

! 

"0 ).   

 (Suggestion:  Evaluate formula (2)  for  dy/dx  at the point  (0,  

! 

"0 ). ) 
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Areas 
 

In problems  12–20, represent each area as a definite integral.  Then evaluate the 

integral exactly or using Simpson's rule (with n = 100). 
 
12. The area of the shaded region in Fig. 19. 
 
13. The area of the shaded region in Fig. 20. 
 
14. The area of the shaded region in Fig. 21. 
 

15. The area in the first quadrant outside the circle  r = 1  and inside the cardiod  

r = 1 + cos(θ). 
 
16. The region in the second quadrant bounded by  r = θ and  r = θ2 .  
 
17. The area inside one "petal" of the graph of (a) r = sin(3θ)  and (b) r = sin(5θ). 
 
18. The area (a) inside the "peanut"  r = 1.5 + cos(2θ) and (b) inside  r = a + cos(2θ)   

(a > 1). 
 
19. The area inside the circle  r = 4.sin(θ). 
 
20. The area of the shaded region in Fig. 22.  
 
 
 

21. Goat and Square Silo:  (This problem does not require calculus.)   

 One end of a 40 foot long rope is attached to the middle of a wall of a 20 foot 

square silo, and the other end is tied to a goat  (Fig. 23).   

 (a) Sketch the region that the goat can reach.     

 (b)  Find the area of the region that the goat can reach.  

 (c) Can the goat reach more area if the rope is tied to the 

  corner of the silo? 
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22. Goat and Round Silo:  One end of a 10π  foot long rope is attached to  

 the wall of a round silo that has a radius of 10 feet, and the other end   

 is tied to a goat  (Fig. 24).   

 (a) Sketch the region the goat can reach. 

(b) Justify that the area of the region in Fig. 25 as the goat goes  

 around the silo from having  θ feet of rope taut against the silo to 

having  θ + ∆θ   feet taut against the silo is approximately   

   
1
2 ( 10π – 10.θ ) 2 ∆θ.     

 (c) Use the result from part (b)  to help calculate  

  the area of the region that the goat can reach. 

 
Arc Lengths  
 

In problems  23–29, represent the length of each curve as a definite 

integral.  Then evaluate the integral exactly or using your 

calculator. 
 
23. The length of the spiral  r = θ  from  θ = 0  to  θ = 2π. 
 
24. The length of the spiral  r = θ  from  θ = 2π  to  θ = 4π. 
 
25. The length of the cardiod  r = 1 + cos(θ). 
 
26. The length of  r = 4.sin(θ)  from  θ = 0  to  θ = π. 
 
27. The length of the circle  r = 5  from  θ = 0  to  θ = 2π. 
 
28. The length of the "peanut"  r = 1.2 + cos(2θ). 
 
29. The length (a) of one "petal" of the graph of  r = sin(3θ)  and (b) of one "petal" of   r = sin(5θ). 
 

30. Assume that  r  is a differentiable function of  θ.  Verify that  { 
dx
dθ  }2 + { 

dy
dθ  }2 =  { r }2 + { 

d r
dθ  }2    

 by replacing x  with  r.cos(θ)  and  y with  r.sin(θ)  in the left side of the equation, differentiating, and 

then simplifying the result to obtain the right side of the equation. 
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Section 9.2 PRACTICE  Answers 
 

Practice 1:  The values are shown in Fig. 26. 

 

 

 

Practice 2: r = 1 – sin(θ)  and  r ' = – cos(θ). 
 

   
dy
dx    =   

  
dy
dθ  

  
dx
dθ  

    =   
 r.cos(θ) + r '.sin(θ) 
 –r.sin(θ) + r '.cos(θ) 

     

 

   =   
( 1 – sin(θ) ).cos(θ) + ( – cos(θ) ).sin(θ)
– ( 1 – sin(θ) ).sin(θ) + (– cos(θ) ).cos(θ)

    =   
cos(θ) – 2.sin(θ).cos(θ)

–sin(θ) + sin2(θ) – cos2(θ)
   . 

 

 When  θ = 0,  
dy
dx   =  

1 – 0
–0 + 0 – 1   =  – 1  .   

 

 When  θ = 
π
4  ,  

dy
dx   =  

( 1/ 2 ) – 2( 1/ 2 )( 1/ 2 )
–( 1/ 2 ) + ( 1/ 2 )2 – ( 1/ 2 )2

   = 
 1/ 2 – 1

– 1/ 2  + 
1
2 – 

1
2
   = 2  – 1  ≈ 0.414 . 

 

 When  θ = 
π
2  ,  

dy
dx   =  

0 – 0
–1 + 1 – 0   which is undefined.  Why does this result make sense in terms  

  of the graph of  the cardioid  r = 1 – sin(θ) ? 

  
Practice 3: One "petal" of the rose  r = sin(3θ)  is swept out as  θ  goes from  0  to  π/3  (see Fig. 10) so 

the endpoints of the area integral are  0  and  π/3. 

 

 area =    ⌡⌠

θ=α

β

 
1
2 r2(θ) dθ   =    ⌡⌠

θ=0

π/3

 
1
2 { sin(3θ) }2 dθ         (then using integral table entry #13)  

 

  =  
1
2  { 

1
2  θ – 

1
4(3)  sin(2.3θ) } |π/3

0
  =  

1
2  { [ 

π
6  – 

1
12 (0)  ] – [ 0 – 0 ] } =  

π
12   ≈  0.262 . 

Practice 4: The area we want in Fig. 13  is   

 

 {area of circle} – {area of cardioid from Example 3}  =  π(2)2 – 
3
2  π =  

5
2  π  ≈  7.85 . 

 

Fig. 26

d r

d ! 

d x

d ! 

d y

d ! 

d y

d x 
Point

A

B

C

D

0

+
–

+ + +
– 0

– – –
– –

+
+ +

 


