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9.4 CALCULUS AND PARAMETRIC EQUATIONS 
 

The previous section discussed parametric equations, their graphs, and some of their uses for visualizing 

and analyzing information.  This section examines some of the ideas and techniques of calculus as they 

apply to parametric equations:  slope of a tangent line, speed, arc length, and area.  Slope, speed, and arc 

length were considered earlier (in optional parts of sections 2.5 and 5.2), and the presentation here is brief.  

The material on area is new and is a variation on the Riemann sum development of the integral.  This 

section ends with a presentation of some of the properties of the cycloid. 
 
Slope  (also see section 2.5) 
 

If  x(t)  and  y(t)  are differentiable functions of  t,  then the derivatives  dx/dt  and  dy/dt  measure the rates 

of change of  x  and  y  with respect to  t:  dx/dt  and  dy/dt  tell how fast each variable is changing.  The 

derivative  dy/dx  measures the slope of the line tangent to the parametric graph  (x(t), y(t) ).  To calculate  

dy/dx  we need to use the Chain Rule:  
 

 
dy
d t   =  

dy
dx  .  dx

d t   . 
 

Dividing each side of the Chain Rule by  
dx
dt    ,  we have  

dy
dx   =  

 dy/dt 
 dx/dt    . 

 
  
 Slope with Parametric Equations 
 

 If x(t)  and  y(t)  are differentiable functions of  t  and  
dx
d t   ≠ 0,   

 

 then  the slope of the line tangent to the parametric graph is   
dy
dx   =  

 dy/dt 
 dx/dt    . 

   
 
Example 1: The location of an object is given by the parametric equations  x(t) = t3 + 1 feet  and   

 y(t) = t2 + t  feet  at time  t  seconds. 

(a) Evaluate  x(t)  and  y(t)  at  t = –2, –1, 0, 1, and 2,  and then graph the path of the object for  –2 ≤ t ≤ 2. 

(b) Evaluate  dy/dx  for   t = –2, –1, 0, 1, and 2.  Do your calculated values for  dy/dx  agree with 

the shape of your graph in part (a)?  
 

Solution:  (a) When  t = –2,   

 x = (–2)3 + 1 = –7  and   

 y = (–2)2 + (–2) = 2.  The other values  for  x  

and  y  are given in Table 1. 

 The graph of  (x, y)  is shown in Fig. 1. 

t       x       y      dy/dx

–2      –7      2     –3/12= –1/4
–1        0      0      –1/3 
 0        1      0      undefined 
1        2      2      3/3 = 1
2        9      6      5/12

Table 1
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 (b) dy/dt = 2t + 1  and  dx/dt = 3t2   so  
dy
dx   =  

2t + 1
3t2

   .  When  t = –2,  
dy
dx   =  

–3
12   .  The other 

values for  dy/dx  are given in Table 1. 
 

Practice 1: Find the equation of the line tangent to the graph of the parametric equations in Example 1  

when  t = 3. 
 

An object can "visit" the same location more than 

once, and a parametric graph can go through the 

same point more than once. 
 

Example 2: Fig. 2  shows the  x  and  y  

coordinates of an object at time  t.  

 (a)  Sketch the parametric graph  (x(t), y(t)),  

  the position of the object at time  t. 

 (b) Give the coordinates of the object when  t = 1  and  t = 3. 

 (c) Find the slopes of the tangent lines to the parametric graph when t = 1  and  t = 3. 
 

Solution: (a) By reading the  x  and  y  values on the graphs in Fig. 2, we can plot points on the 

parametric graph.  The parametric graph is shown in Fig. 3. 

 (b) When  t = 1,  x = 2  and  y = 2 so the parametric graph goes through the point  (2,2).   

  When  t = 3, the parametric graph goes through the same point  (2,2). 
 

 (c) When  t = 1,  dy/dt ≈ –1  and  dx/dt ≈ +1  so  
dy
dx   =  

dy/dt
dx/dt   ≈ 

–1
+1   = –1.   

  When  t = 3, dy/dt ≈ +1  and  dx/dt ≈ +1  so  
dy
dx   ≈  

+1
+1   = +1.   

  These values agree with the appearance of the parametric graph in Fig. 3. 

 

 The object goes through the point  (2,2)  twice  (when t=1  and  t=3), but  

 it is traveling in a different direction each time.  
  

 

Practice 2: (a) Estimate the slopes of the lines tangent to the parametric graph when  t = 2  and t = 5. 

 (b) When does  y '(t) = 0  in Fig. 2? 

 (c) When does the parametric graph in Fig. 3  have a maximum?  A minimum? 

 (d) How are the maximum and minimum points on a parametric graph related to the 

derivatives of  x(t)  and  y(t)? 
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Speed 
 

If we know how fast an object is moving in the  x  direction ( dx/dt )  and how fast in the  y   

direction ( dy/dt ), it is straightforward to determine the speed of the object, how fast it is moving  

in the  xy –plane. 
 

If, during a short interval of time  ∆t,  the object's position changes  

∆x  in the  x  direction and  ∆y  in the  y  direction (Fig. 4), then the 

object has moved  (∆x)2 + (∆y)2   in  ∆t  time.  Then 
 

average speed =  
distance moved

 time change     =  
(∆x)2 + (∆y)2

∆t     
 

  =   ( 
∆x
∆t  )2

 + ( 
∆y
∆t  )2

    . 

 

If  x(t)  and  y(t)  are differentiable functions of  t,  and if we take the limit of the  average speed as  ∆t  

approaches 0, then 
 

 speed = 

 

lim
!t"0

{average speed}  = 

 

lim
!t"0

 !x
!t

# 
$ 
% 

& 
' 
( 
2

+ !y
!t

# 
$ 
% 

& 
' 
(   =   ( 

dx
d t )2

 + ( 
dy
d t )2

    . 

 
 
  Speed with Parametric Equations 
 
 If an object is located at  (x(t), y(t))  at time  t, and  x(t)  and  y(t)  are  

  differentiable functions of  t ,  
 

 then the speed of the object is     ( 
dx
d t )2

 + ( 
dy
d t )2

    . 

    
 

Example 3: At time  t  seconds an object is located at  ( cos(t) feet, sin(t) feet )  in the plane.  Sketch the 

path of the object and show that it is travelling at a constant speed. 
 

Solution: The object is moving in a circular path  (Fig. 5).  dx/dt = –sin(t) 

feet/second  and  dy/dt = cos(t) feet/second  so at all times the speed of 

the object is  
 

      ( 
dx
d t )2

 + ( 
dy
d t )2

   =   ( –sin(t) )2 + ( cos(t) )2    

 

  =   sin2(t) + cos2(t)   = 1  = 1 foot per second. 
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Practice 3: Is the object in Example 2 traveling faster when  t = 1  or when  t = 3?  When  t = 1  or 

when  t = 2? 

 
Arc Length  (also see section 5.2) 
 

In section 5.2 we approximated the total length  L  of a curve by 

partitioning the curve into small pieces (Fig. 6), approximating the length 

of each piece using the distance formula, and then adding the lengths of 

the pieces together to get   
 

 L ≈  ∑    ( ∆x )2 + ( ∆y )2    
 

  =  ∑    ( 
∆x
∆x )2 + ( 

∆y
∆x )2    ∆x  , a Riemann sum. 

 
As  ∆x  approaches  0, the Riemann sum approaches the definite integral 
 

 L = ⌡⌠
x = a

b
   1 + ( 

dy
dx )2   dx . 

 

A similar approach also works for parametric equations, but in this case we factor out a  ∆t  from the 

original summation: 
 

 L ≈  ∑    ( ∆x )2 + ( ∆y )2    =  ∑    ( 
∆x
∆t  )2 + ( 

∆y
∆t  )2    ∆t  (a Riemann sum)   

 

       ⎯⎯→  ⌡⌠
t = a

b
   ( 

dx
dt  )2 + ( 

dy
dt  )2   d t  as  ∆t → 0. 

 
 
 Arc Length with Parametric Equations 
 
 If x(t)  and  y(t)  are differentiable functions of  t   
 
 then the length of the parametric graph from  ( x(a), y(a) )  to  ( x(b), y(b) )  is  
 

   L =  ⌡⌠
t=a

t=b
   ( 

dx
dt  )2 + ( 

dy
dt  )2   dt   
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Example 4: Find the length of the cycloid 

 x = R( t – sin(t) )   y = R( 1 – cos(t) )   

 for  0 ≤ t ≤ 2π. (Fig. 7) 
 

Solution:     Since  dx/dt = R( 1 – cos(t) )  and  

dy/dt = R.sin(t) , 
 

L =  ⌡⌠
t=a

b
   ( 

dx
dt  )2 + ( 

dy
dt  )2   d t   =  

⌡⌠
t=0

2π
   ( R( 1 – cos(t) ) )2 + ( R.sin(t) )2   dt   

 

=   R ⌡⌠
t=0

2π
   1 – 2cos(t) + cos2(t) + sin2(t)    dt  =   R ⌡⌠

t=0

2π
   2 – 2.cos(t)    dt . 

 

By replacing  θ  with  t/2 in the formula  sin2(θ) =  
1 – cos(2θ)

2     we have    sin2(t/2) =  
1 – cos(t)

2      

so  2 – 2.cos(t)  =  4.sin2(t/2) ,  and the integral becomes 
 

L =   R ⌡⌠
t=0

2π
   2.sin( t/2 )  dt  =  2R{ – 2.cos( t/2 ) } |

2π

0
    = 2R { –2.cos(π) + 2.cos(0) } = 8R . 

The length of a cycloid arch is  8  times the radius of the rolling circle that generated the cycloid. 
 
 

Practice 4: Represent the length of the ellipse   x = 3.cos(t)   

  y = 2.sin(t)    for  for 0 ≤ t ≤ 2π  (Fig. 8).  as a definite 

 integral.  Use a calculator to approximate the value of  

 the integral. 
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Area 
 

When we first discussed area and developed the definite integral,  

we approximated the area of a positive function  y  (Fig. 9)  by 

partitioning the domain  a ≤ x ≤ b  into pieces of length  ∆x, finding 

the areas of the thin rectangles, and approximating the  

total area by adding the little areas together: 
 

 A  ≈  ∑   y ∆x   (a Riemann sum). 
 
As  ∆x  approached  0, the Riemann sum approached the definite 

integral     ⌡⌠
x=a

x=b
   y  dx . 

 
 

 
 

 

For parametric equations, the independent variable is  t  and the domain is 

an interval  [a, b]. 

If  x  is an increasing function of  t, then a partition of the  t–interval  [a, b]  

into pieces of length  ∆t  induces a partition along the  x–axis  (Fig. 10), 

and we can use the induced partition  

of the  x–axis  to approximate the total area by   
 

 A  ≈  ∑  y ∆x  =  ∑  y  
 ∆x 
 ∆t    ∆t   which approaches the definite 

 integral  A = ⌡⌠
t=a

t=b
   y .( 

dx
dt   ) dt    as  ∆t  approaches 0. 

 
 
 

 
 
 
 Area with Parametric Equations 
 

 If   y  and  dx/dt  do not change sign for  a ≤ t ≤ b,  
 

 then  the area between the graph  (x , y) and the x–axis is    A = |  ⌡⌠
t=a

t=b
   y .( 

dx
dt   ) dt  | .  
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The requirement that  y  not change sign for  a ≤ t ≤ b  is to prevent the parametric graph from being above 

the x–axis sometimes and below the x–axis sometimes.  The requirement that  dx/dt  not change sign for   

a ≤ t ≤ b  is  to prevent the graph from "turning around" (Fig. 11).  If either of those situations occurs, some 

of the area is evaluated as positive and some of the area is evaluated as negative. 

 

 

Example 5: Find the area of the ellipse  x = a.cos(t), y = b.sin(t)   

 (a,b > 0)  in the first quadrant  (Fig. 12). 
 

Solution:  The derivative  dx/dt = –a.sin(t), and in the first quadrant   

 0 ≤ t ≤ π/2.  Then the 
 

 area of the ellipse in first quadrant = |  ⌡⌠
t = a

b
   y .( 

dx
dt   ) dt  |   

 =   |  ⌡⌠
t = 0

π/2
   { b.sin(t) }.( –a.sin(t) ) dt  |   

 

 =   | –ab  ⌡⌠
t = 0

π/2
   sin2(t)  dt  |  =  ab  ⌡⌠

t=0

π/2
   sin2(t)  dt      ( replace sin2(t)  with  

1 – cos(2t)
2    ) 

 

 =  
1
2  ab ⌡⌠

t = 0

π/2
   1 – cos(2t)  d t  =  

1
2  ab { t – 

1
2  .sin(2t) } |

π/2

0
   =  

1
4  abπ . 

 The area of the whole ellipse is  4{  
1
4  abπ  }  =  πab .    

 If  a = b, the ellipse is a circle with radius  r = a = b, and its area is  πr2  as expected. 
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Practice 5: Let  x(t) = 4t – t2  and  y(t) = t  (Fig. 13). 

 (a) Represent the shaded area in Fig. 13 as an integral and evaluate the integral. 

 (b) Evaluate    ⌡⌠
t=0

t=3
   t.( 4 – 2t ) d t.  Does this value represent an area? 

 
 
 

 

 

Area under a Cycloid:  (Fig. 7)  For all  t ≥ 0,  x = R( t – sin(t) ) ≥ 0,  y = R( 1 – cos(t) ) ≥ 0 , and   

 dx/dt = R( 1 – cos(t) ) ≥ 0  so we can use the area formula.  Then 
 

area = |  ⌡⌠
t=a

b
   y .( 

dx
dt   ) dt  |  =   |  ⌡⌠

 t=0

2π
   { R( 1 – cos(t) ) }.( R(1 – cos(t) ) ) d t  |      

 

 =  R2  ⌡⌠
t=0

2π
   1 – 2.cos(t) + cos2(t)  dt      ( replace cos2(t)  with   

1 + cos(2t)
2     and integrate ) 

 

 =  R2 { t – 2.sin(t) + 
1
2  t + 

1
4  sin(2t) } |

2π

0
   =  R2 { 2π + π }  =  3π R2 . 

 The area under one arch of a cycloid is 3 times the area of the circle that generates the cycloid.  

 
Properties of the Cycloid 
 

Suppose you and a friend decide to have a contest to see who can build a slide that gets a person from point  

A  to point  B  (Fig. 14)  in the shortest time.  What shape should you make your slide –– a straight line, part 

of a circle, or something else?   Assuming that the slide is frictionless and that the only acceleration is due to 

gravity,  John Bernoulli showed that the shortest time  ("brachistochrone" for "brachi" = short  and  "chrone" 

= time)  path is a cycloid that starts at  A  that also goes through the point  B.  Fig. 15  shows the cycloid 

paths for  A  and  B as well as the cycloid paths for two other "finish" points,  C  and  D. 
 

 

 

 

 

 

 



9.4 Calculus with Parametric Equations  Contemporary Calculus 9 
 

 

Even before Bernoulli solved the brachistochrone problem, 

the astronomer (physicist, mathematician) Huygens was 

trying to design an accurate pendulum clock.  On a standard 

pendulum clock  (Fig. 16), the path of the bob is part of a 

circle, and the period of the swing depends on the 

displacement angle of the bob.  As friction slows the bob, 

the displacement angle gets smaller and the clock slows 

down.  Huygens designed a clock  (Fig. 17)  whose bob swung in a curve so that the period of the swing did 

not depend on the displacement angle.  The curve Huygens found to solve the same time ("tautochrone" for 

"tauto" = same and "chrone" = time) problem was the cycloid.  Beads strung on a wire in the shape of a 

cycloid (Fig. 18)  reach the bottom in the same amount of time, no matter where along the wire (except the 

bottom point) they are released. 

 

 

 

The brachistochane and tautochrone problems are examples from a field of mathematics called the Calculus 

of Variations.  Typical optimization problems in calculus involve finding a point or number that maximizes 

or minimizes some quantity.  Typical optimization problems in the Calculus of Variations involve finding 

the curve or function that maximizes or minimizes some quantity.  For example, what curve or shape with a 

given length encloses the greatest area?  (Answer: a circle)  Modern applications of Calculus of Variations 

include finding routes for airliners and ships to minimize travel time or fuel consumption depending on 

prevailing winds or currents. 
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PROBLEMS 
 
Slope 
 
For problems 1–8,  (a) sketch the parametric graph  (x,y) ,   

(b) find the slope of the line tangent to the parametric graph at the given values of t, and  

(c) find the points  (x,y)  at which  dy/dx  is either  0  or  undefined. 
 
1. x(t) = t – t2 , y(t) = 2t + 1     at  t = 0, 1, and 2 . 
 
2. x(t) = t3 + t , y(t) = t2     at  t = 0, 1, and 2. 
 
3. x(t) = 1 + cos(t) , y(t) = 2 + sin(t)     at  t = 0, π/4, and π/2 . 
 
4. x(t) = 1 + 3.cos(t) , y(t) = 2 + 2.sin(t)     at  t = 0, π/4, π/2, and π. 
 
5. x(t) = sin(t) , y(t) = cos(t)     at  t = 0, π/4, π/2, and 17.3 . 
 
6. x(t) = 3 + sin(t) , y(t) = 2 + sin(t)  at  t = 0, π/4, π/2, and 17.3 .  
 
7. x(t) = ln( t ) , y(t) = 1 – t2     at  t = 1, 2, and e . 
 
8. x(t) = arctan( t ) , y(t) = et     at  t = 0, 1, and 2 .  

 

In problems 9–12, the graphs of  x(t)  and  y(t)  are given.   

Use this graphical information to estimate  

(a) the slope of the line tangent to the parametric graph  

 at  t = 0, 1, 2, and 3 , and  

(b) the points  (x,y)  at which  dy/dx  is either  0  or  undefined. 
 
9. x(t)  and  y(t)  in Fig. 19.  
 
10. x(t)  and  y(t)  in Fig. 20.  
 
11. x(t)  and  y(t)  in Fig. 21.  
 
12. x(t)  and  y(t)  in Fig. 22.  

 
Speed 

For problems 13– 20,  the locations  x(t)  and  y(t)  (in feet)   

of an object are given at time  t  seconds.  Find the speed of  

the object at the given times. 
 
13. x(t) = t – t2 , y(t) = 2t + 1     at  t = 0, 1, and 2 . 
 
14. x(t) = t3 + t , y(t) = t2     at  t = 0, 1, and 2. 
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15. x(t) = 1 + cos(t) , y(t) = 2 + sin(t) at t = 0, π/4, π/2, and π . 
 
16. x(t) = 1 + 3.cos(t) , y(t) = 2 + 2.sin(t) at t = 0, π/4, π/2, and π. 
 
17. x  and  y  in Fig. 19  at  t = 0, 1, 2, 3, and 4. 
 
18. x  and  y  in Fig. 20  at  t = 0, 1, 2, and 3. 
 
19. x  and  y  in Fig. 21  at  t = 0, 1, 2, and 3. 
 
20. x  and  y  in Fig. 22  at  t = 0, 1, 2, and 3. 
 
21. At time  t  seconds an object is located at the point  x(t) = R.( t – sin(t) ) ,  y(t) = R.( 1 – cos(t) )   (in feet). 

 (a) Find the speed of the object at time  t.   (b)  At what time is the object traveling fastest?   

 (c) Where is the object on the cycloid when it is traveling fastest? 
  
22. At time  t  seconds an object is located at the point  x(t) = 5.cos(t) ,  y(t) = 2.sin(t)  (in feet). 

 (a) Find the speed of the object at time  t.   (b)  At what time is the object traveling fastest?   

 (c) Where is the object on the ellipse when it is traveling fastest? 

 
Arc Length 

For problems 23–28,  (a)  represent the arc length of each parametric function as a definite integral, and 

(b)  evaluate the integral  (if necessary, use your calculator’s fnInt() feature to evaluate the integral). 
 
23. x(t) = t – t2 , y(t) = 2t + 1     for  t = 0  to  2 . 
 
24. x(t) = t3 + t , y(t) = t2     for  t = 0  to  2 . 
 
25. x(t) = 1 + cos(t) , y(t) = 2 + sin(t)      for  t = 0  to  π . 
 
26.  x(t) = 1 + 3.cos(t) , y(t) = 2 + 2.sin(t)    for  t = 0  to  π . 
 
27. x  and  y  in Fig. 23   for  t = 1  to  3. 
 
28. x  and  y  in Fig. 22   for  t = 0  to  2. 

 
Area 

For problems 29–34,  (a)  represent the area of each region as a definite integral, and 

(b)  evaluate the integral  (if necessary, use your calculator’s fnInt()  feature to evaluate the integral). 
 
29. x(t) = t2, y(t) = 4t2 – t4  for  0 ≤ t ≤ 2. 
 
30. x(t) = 1 + sin(t), y(t) = 2 + sin(t)  for  0 ≤ t ≤ π. 
 
31. x(t) = t2, y(t) = 1 + cos(t)  for  0 ≤ t ≤ 2. 
 
32. x(t) = cos(t), y(t) = 2 – sin(t)  for  0 ≤ t ≤ π/2. 
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33. "Cycloid" with a square wheel:  Find the area under one "arch" of the path of a point on the corner of a 

"rolling" square that has sides of length  R.  (This problem does not require calculus.)   
 

34. The region bounded between the  x–axis and the curate cycloid  x(t) = R. t – r.sin(t),  y(t) = R – r.cos(t)  

for  0 ≤ t ≤ 2π. 

 

 
Section 9.4 PRACTICE  Answers 
 

Practice 1: 
dy
dt    =  2t + 1,  so  when  t = 3,  

dy
dt   = 7.  

dx
dt    =  3t2 , so when  t = 3,  

dx
dt    = 27 . 

   

  Finally,  
dy
dx   =  

dy/dt
dx/dt   so  when  t = 3,  

dy
dx   =  

7
27   . 

 

  When  t = 3, x = 28 and y = 12 so the equation of the tangent line is  y – 12 =  
7
27 (x – 28) . 

 
Practice 2: (a) When  t = 2,  dy/dx ≈ 0.  When  t = 5, dy/dx ≈ –1 . 

  (b) In Fig. 2, 
dy
dt    = 0  when  t ≈ 2  and  t ≈ 4. 

  (c) In Fig. 3, a minimum occurs when  t ≈ 2  and a maximum when  t ≈ 4. 

  (d) If the parametric graph has a maximum or minimum at  t = t*, then  dy/dt  is  

   either  0  or  undefined when  t = t*. 
 
 

Practice 3: When  t = 1,  speed =   (dx/dt)2 + (dy/dt)2   ≈   (1)2 + (–1)2   =  2   ≈  1.4  ft/sec. 

  When  t = 2,  speed =   (dx/dt)2 + (dy/dt)2   ≈   (–1)2 + (0)2   =  1   =  1  ft/sec. 

  When  t = 3,  speed =   (dx/dt)2 + (dy/dt)2   ≈   (1)2 + (1)2   =  2   ≈  1.4  ft/sec. 
 
 

Practice 4: Length  =  ⌡⌠
t=0

2π
   (–3 sin(t) )2  +  (2 cos(t) )2    dt   

  ≈  15.87  (using my calculator’s fnInt()  feature ) 
 
 

Practice 5: (a) A =  ⌡⌠
t=0

2
   t.(4 – 2t)  dt  =  2.t2 – 

2
3  t3 |2

0
  =  { 8 –  

16
3   } – { 0 – 0 }  =  

8
3  . 

 

  (b) ⌡⌠
t=0

3
   t.(4 – 2t)  dt  =  2.t2 – 

2
3  t3 |3

0
  =  { 18 – 18 } – { 0 – 0 } = 0.   

  This integral represents  {shaded area in Fig. 13 } – { area from  t = 2  to  t = 3 }. 


