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9.4 
1
2    BEZIER CURVES ––  Getting the shape you want 

 

Historically, parametric equations were often used to model the motion of objects, and that is the approach 

we have seen so far.  But more recently, as computers became more common in design work and 

manufacturing, a need arose to efficiently find formulas for shapes such as airplane wings and automobile 

bodies and even letters of the alphabet that designers or artists had created.   
 

One simple but inefficient method for describing and storing the shape of a curve is to measure the location 

and save the coordinates of hundreds or thousands of points along the curve.  This result is called a 

"bitmap" of the shape.  However, bitmaps typically require a large 

amount of computer memory, and when the bitmap is reconverted 

from stored coordinates back into a graphic image, originally 

smooth curves often appear jagged (Fig. 1).  Also, when these 

bitmapped shapes are stretched or rotated, the new location of every 

one of the points must be calculated, a relatively slow process. 
 

A second method, still simple but more efficient than bitmaps, is to store fewer points along the curve, but to 

automatically connect consecutive points with line segments (Fig. 2).  Less computer memory is required since 

fewer coordinates are stored, and stretches and rotations are calculated more quickly since the new locations of 

fewer points are needed.  This method is commonly 

used in computer graphics to store and redraw surfaces   

(Fig. 3).  Sometimes instead of saving the coordinates 

of each point, a "vector" is used to describe how to get 

to the next point from the previous point, and the  

result is a "vector map" of the curve.  The major 

drawback of this method is that the stored and redrawn 

curve consists of straight segments and corners even  

though the original curve may have been smooth. 
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The primary building block for curves and surfaces represented as line segments is the line segment given 

by parametric equations. 
 

Example 1: Show that the parametric equations   
  x(t) = (1 – t).x0 + t.x1   and 

  y(t) = (1 – t).y0 + t.y1   

 for  0 ≤ t ≤ 1  go through the points   P0 = (x0, y0)   

 and  P1 = (x1, y1)    (Fig. 4)  and that the slope is   

  
d y
d x   =   

y1 – y0
x1 – x0

    

 for all values of  t between  0  and  1. 
 We typically abbreviate the pair of parametric equations as  P(t) = (1 – t).P0 + t.P1 . 
 
Solution: x(0) = (1 – 0).x0 + 0.x1 = x0  and  y(0) = (1 – 0).y0 + 0.y1 = y0   so  P(0) = P0 . 

 x(1) = (1 – 1).x0 + 1.x1 = x1  and  y(1) = (1 – 1).y0 + 1.y1 = y1  so  P(1) = P1 .   
 

 
d y(t)

d t    =  – y0 + y1   and  
d x(t)

d t    =  – x0 + x1   
 

 so  
d y
d x   =  

 dy/dt 
dx/dt    =  

y1 – y0
x1 – x0

   , the slope of the line segment from  P0 to P1 . 

 
Practice 1: Use the pattern of Example 1 to write parametric equations for the line segments that  

 (a)  connect  (1,2) to (5, 4),  (b)  connect  (5, 4) to (1, 2), and (c)  connect (6, –2)  to  (3, 1). 
 

Bezier Curves 
 

One solution to the problem of efficiently saving and redrawing a smooth curve was independently 

developed in the 1960s by two French automobile engineers,  Pierre Bezier (pronounced "bez–ee–ay") who 

worked for Renault automobile company and  P. de Casteljau who worked for Citroen.  Originally, the 

solutions were considered industrial secrets, but Bezier's work was eventually published first.  The curves 

that result using Bezier's method are called Bezier curves.  The method of Bezier curves allow us to 

efficiently store information about smooth (and not–so–smooth) shapes and to quickly stretch, rotate and 

distort these shapes.  Bezier curves are now commonly used in computer–aided design work and in most 

computer drawing programs.  They are also used to specify the shapes of letters of the alphabet in different 

fonts.  By using this method, a computer and a laser printer can have many different fonts in many different 

sizes available without using a large amount of memory.  (Bezier curves were used to produce most of the 

graphs in this book.) 
 

Here we define Bezier curves and examine some of their properties.  At the end of this section some 

optional material describes the mathematical construction of Bezier curves. 
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 Definition:  Bezier Curve 
 
 The Bezier curve  B(t)  defined for the four points  P0, P1, P2,  

 and P3  (Fig. 5)  is   
 

 B(t) = (1 – t)3.P0 + 3(1 – t)2.t.P1 + 3(1 – t).t2.P2 + t3.P3    

   for  0 ≤ t ≤ 1: 
 
 x(t) = (1 – t)3.x0 + 3(1 – t)2.t.x1 + 3(1 – t).t2.x2 + t3.x3   and   

 y(t) = (1 – t)3.y0 + 3(1 – t)2.t.y1 + 3(1 – t).t2.y2 + t3.y3  . 
    
 
The four points P0, P1, P2, and P3 are called control points for the Bezier curve.  Fig. 6  shows Bezier 

curves for several sets of control points.  The dotted lines connecting the control points in Fig. 6  are  

shown to help illustrate the relationship between the graph of  B(t)  and the 

control points. 
 
 
Example 2: Plot the points  P0 = (0,3), P1 = (1,5),  P2 = (3,–1),  and  

 P3 = (4,0), and determine the equation of the Bezier curve for  

 these control points.  Then graph the Bezier curve. 
 

Solution:    

 x(t) = (1 – t)3.0 + 3(1 – t)2.t.1 + 3(1 – t).t2.3 + t3.4  = –2t3 + 3t2 + 3t . 

 y(t) = (1 – t)3.3 + 3(1 – t)2.t.5 + 3(1 – t).t2.(–1) + t3.0   

 =  15t3 – 24t2 + 6t + 3 .  

 The control points and the graph of  B(t) = ( x(t), y(t) )  are shown in Fig. 7. 
 
 
Practice 2: Plot the points  P0 = (0, 4),  

 P1 = (1, 2),  P2 = (4, 2),  and  

 P3 = (4, 4),  and determine the equation of  

 the Bezier curve for these control points.   

 Then graph the Bezier curve. 
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Properties of Bezier Curves 
 
Bezier curves have a number of properties that make them particularly useful for design work, and some of  

them are stated below.  These properties are verified at the end of this section. 
 
(1) B(0) = P0  and  B(1) = P3  so the Bezier curve goes through the points  P0  and  P3 . 
 

This property guarantees that  B(t)  goes through specified points.  If we want two Bezier  

curves to fit together, it is important that the value at the end of one curve matches the starting 

value of the next curve.  This property guarantees that we can control the values of the Bezier 
curves at their endpoints by choosing appropriate values for the control points  P0  and  P3 . 

 
(2) B(t) is a cubic polynomial. 

 
This is an important property because it guarantees that  B(t)  is continuous and differentiable at  

each point so its graph is connected and smooth at each point.  It also guarantees that the graph  

of  B(t) does not "wiggle"  too much between control points. 
 

(3) B '(0) = slope of the line segment from  P0  to  P1;  B '(1) = slope of the line segment from  P2 to P3. 
 

This is an important property because it means we can match the ending slope of one curve with  

the starting slope of the next curve to result in a smooth connection.  We can see in Fig. 6 that the 
dotted line from P0 to P1  is tangent to the graph of  B(t)  at the point  P0.  

 
(4) For  0 ≤ t ≤ 1, the graph of  B(t)  is in the region whose corners are the control points. 
 

Visually, property (4) means that if we put a rubber band around  
the four control points  P0, P1, P2, and P3 (Fig. 8), then the  

graph of  B(t)  will be inside the rubber banded region.  This is  

an important property of Bezier curves because it guarantees that  

the graph of  B(t)  does not get too far from the four control points. 
 

Example 3: Find a formula for a Bezier curve that goes through the  

 points  (1, 1) and (0,0) and is shaped like an "S." 
 

Solution: Since we want the curve to begin at the point  (1,1) and end  
 at (0,0) we can put  P0 = (1,1)  and  P3 = (0,0).  A little experimentation with 

values for  P1 and P2 indicates that  P1 = (–1, 2)  and   

 P2 = (2, –1)  gives a mediocre  "S"  shape  (Fig. 9).  Then the formula for  

B(t)  is  
 

 B(t) = (1 – t)3.P0 + 3(1 – t)2.t.P1 + 3(1 – t).t2.P2 + t3.P3    

 for  0 ≤ t ≤ 1 ,  and 
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 x(t) = (1 – t)3.x0 + 3(1 – t)2.t.x1 + 3(1 – t).t2.x2 + t3.x3 = (1–t)3.1 + 3(1–t)2.t.(–1) + 3(1–t).t2.2 + t3.0  

  and   
 y(t) = (1 – t)3.y0 + 3(1 – t)2.t.y1 + 3(1 – t).t2.y2 + t3.y3 = (1–t)3.1 + 3(1–t)2.t.2 + 3(1–t).t2.(–1) + t3.0   
 
 Certainly other values of  P1 and P2 can give similar shapes. 
 

Practice 3: Find a formula for a Bezier curve that goes through the points  (0, 0) and (0,1) and is shaped like 

a "C." 
 

Example 4: Find a formula for a Bezier curve that goes through the point  (0, 5)  with a slope of  2  and 

through the point  (6, 1)  with a slope of  3. 
 

Solution: Since we want to curve to begin at  (0,5) and end at (6,1), we put   
 P0 = (0,5)  and  P3 = (6,1).  To get the slopes we need to pick  P1  so the  

 slope of the line segment from  P0 to P1  is  2:  going  "over 1 and up 2"  

 to get P1 = (1,7) works fine as do several other points.  Similarly, to get  

 the right slope at  P3  we can  go "back 1 and down 3"  to get  P2 = (5, –2).  The 

Bezier curve for  P0 = (0,5), P1 = (1,7), P2 = (5,–2), and  P3 = (6,1)  is 
  

 x(t) = (1–t)3.0 + 3(1–t)2.t.1 + 3(1–t).t2.5 + t3.6 =   –6t3 + 9t2 + 3t  and   

 y(t) = (1–t)3.5 + 3(1–t)2.t.7 + 3(1–t).t2.(–2) + t3.1 = 23t3 – 33t2 + 6t + 5. 

 The graph of this B(t) is shown in Fig. 10. 
 
 Keeping the previous values of  P0 , P1 and P3 ,  we could pick  P2 by going 

"over 1 and up 3"  to  P2 = (7,4), and the graph of the B(t) for this choice of  P2  

is shown in Fig. 11.  The graph for  B(t)  when  P1 = (2,9)  and  P2 = (5.5, –0.5)  

is shown in Fig. 12.  These, and other choices of  P1 and P2 satisfy the conditions 

specified in the problem:  the choice of which one you use depends on the other 

properties of the shape that you want the curve to have. 
 

Practice 4: Find a formula for a Bezier curve that goes through the point   

 (1, 3)  with a slope of  –2  and through the point  (5, 3)  with  

 a slope of  –1. 
 

Example 5: Find formulas for a pair of Bezier curves so that the first starts at  

 the point  A = (0,3) with slope 2, the second ends at the point  

 C = (7,2) with slope 1, and the curves connect at the point   

 B = (4,6) with slope 0. 
Solution: For the first Bezier curve  B(t)  take  P0 = A = (0,3), P1 = (1,5)  (to get the slope 2),  
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 P3 = B = (4,6), and P2 = (3,6)  (to get the slope 0 at the connecting point).  Then,  

 for 0 ≤ t ≤ 1,  x(t) = (1 – t)3.0 + 3(1 – t)2.t.1 + 3(1 – t).t2.3 + t3.4  and 

  y(t) = (1 – t)3.3 + 3(1 – t)2.t.5 + 3(1 – t).t2.6 + t3.6 . 
For the second Bezier curve    C(t)  take  P0 = B = (4,6), P1 = (5,6)  (to get the slope 0 at  

 the connecting point),  P3 = C = (7,2), and P2 = (6,1)  (to get the slope 1).  Then,  

 for 0 ≤ t ≤ 1,  x(t) = (1 – t)3.4 + 3(1 – t)2.t.5 + 3(1 – t).t2.6 + t3.7  and 

  y(t) = (1 – t)3.6 + 3(1 – t)2.t.6 + 3(1 – t).t2.1 + t3.2 . 
 

 Fig. 13 shows the graphs of  B(t)  and   

 C(t)  and illustrates how they connect, 

continuously and smoothly, at the  

 common point  (4, 6). 

 

Using Bezier Curves 
 
In practice, Bezier curves are usually used in  

computer design or manufacturing programs, and  

the user of Bezier curves does not have to know the mathematics behind them.  But the program creator does! 
 

Typically a designer sketches a crude shape for an object and then moves certain points to locations specified by 

the plans.  Sometimes the designer adds additional points along the curve to "fix" the location of the curve.  
These "fixed" points along the curve become the endpoints  P0  and  P3  for each of the sections of the curve 

that will be described by a Bezier formula.  Then, for each section of the curve, the designer visually 
experiments with different locations of the interior control points  P1 and  P2  to get the shape "just right."  

Meanwhile, the computer program adjusts the formulas for the Bezier curves based on the current locations of 

the control points for each section, and, when the design is complete, saves the locations of the control points. 
 

You may never need to calculate the formulas for Bezier curves 

(outside of a mathematics class), but if you do any computer–aided 

design work you will certainly be using these curves.  And the ideas 

and formulas for Bezier curves in two dimensions extend very easily 

and naturally to describe paths in three dimensions such as the route of 

a highway exit ramp  (Fig. 14)  or the path of a hydraulic hose for the 

landing gear of an airplane. 

 



9.4.5  Bezier Curves Contemporary Calculus 7 

Mathematical Construction of Bezier Curves & Verifications of Their Properties 
 
In order to use and program Bezier curves we don't need to know where the formulas came from, but their  

construction is a beautiful piecing–together of simple geometric ideas. 

 
The first idea is the parametric representation of a line segment from point   
 PA to PB  as  L(t) = (1 – t).PA + t.PB  for  0 ≤ t ≤ 1.   
 
This parametric pattern for a line is used in the construction of a Bezier curve. 
 

When  t = 0, the point is  L(0) = PA.  When  t = 1,  L(1) = PB.  When   

t = 0.5,  L(0.5) is the midpoint of the line from PA to PB (Fig. 15). When   

t = 0.2,  L(0.2)  is  20% of the way along the line  L  from  PA  to  PB. 

 

To construct the Bezier curve for the four control points  P0, P1, P2, and 

P3  we start by fixing a value of  t  between  0  and  1.  Then we find the 

point  L0(t) along the parametric line from  P0  to  P1,  the point  L1(t)  

along the parametric line from  P1 to P2, and the point  L2(t) along the 

parametric line   from  P2  to P3  (Fig. 16): 
 

 L0(t) = (1–t).P0 + t.P1,  

 L1(t) = (1–t).P1 + t.P2,  

 L2(t) = (1–t).P2 + t.P3 .  
 
For the fixed value of t,  we then find the point  M0(t)  along the parametric  

line  from the point  L0(t)  to the point  L1(t), and the point  M1(t)  along the 

parametric line from the point  L1(t)  to the point  L2(t)  (Fig. 17): 
 

 M0(t) =  (1 – t).L0(t) + t.L1(t)        

 M1(t) =  (1 – t).L1(t) + t.L2(t) . 
 
For the same fixed value of t, we finally find the point  B(t) along the  
parametric line from the point  M0(t)  to the point  M1(t)  (Fig. 18): 
 

 B(t) =  (1 – t).M0(t) + t.M1(t) . 
 
As the variable  t  takes on different values between  0  and  1,  the points   
L0(t) , L1(t) , and  L2(t)  move along the lines connecting  P0, P1, P2, and 

P3  .  Similarly, the points    M0(t)  and  M1(t)  move along the lines 

connecting  L0(t) , L1(t) , and  L2(t),  and  the point  B(t)  moves along the 

line connecting  M0(t)  and  M1(t).  It is all quite dynamic. 
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Fig. 19  shows these points and lines for several values of  t  between 0  and  1.  

 

We can use the previous geometric construction to obtain the formula for   

B(t)  given in the definition of Bezier curves by working backwards from   
B(t) =  (1 – t).M0(t) + t.M1(t) : 
 

     B(t) =  (1 – t).M0 + t.M1  

 =  (1 – t).{ (1 – t).L0 + t.L1} + t.{ (1 – t).L1 + t.L2}      replacing  M0  and  M1 in terms  

 of  L0 , L1  and  L2   

 =  (1 – t)2.L0 + 2(1 – t).t.L1  +  t2.L2   simplifying 

 =  (1 – t)2.{ (1 – t).P0 + t.P1 } + 2(1 – t).t.{ (1 – t).P1 + t.P2 }  +  t2.{ (1 – t).P2 + t.P3 }  

 replacing  L0, L1  and  L2   in terms of  P0 , P1 , P2  and  P3   

 =  (1 – t)3.P0 + 3(1 – t)2.t.P1 + 3(1 – t).t2.P2 + t3.P3  simplifying  

   
Verifications of Properties (1) – (4) 
 
Property (1) is easy to verify by evaluating  B(0)  and  B(1):  
 B(0) = (1 – 0)3.P0 + 3(1 – 0)2.0.P1 + 3(1 – 0).t2.P2 + 03.P3  = P0 .  Similarly, 

 B(1) = (1 – 1)3.P0 + 3(1 – 1)2.1.P1 + 3(1 – 1).12.P2 + 13.P3  = P3 . 
 
Property (2) is clear from the defining formula for  B(t), or we can expand the powers of  1 – t   

 and  t  and collect the similar terms to rewrite  B(t)  as 
 B(t) =  (–P0 + 3P1 – 3P2 + P3).t3 + (3P0 – 6P1 + 3P2).t2 + (–3P0 + 3P1).t + ( P0 ). 
 
Property (3) can be verified using the rewritten form from Property 2,  
 x(t) =  (–x0 + 3x1 – 3x2 + x3).t3 + (3x0 – 6x1 + 3x2).t2 + (–3x0 + 3x1).t + ( x0 )  and 

 y(t) =  (–y0 + 3y1 – 3y2 + y3).t3 + (3y0 – 6y1 + 3y2).t2 + (–3y0 + 3y1).t + ( y0 ).   
 

 Then 
d x(t)

d t     = 3(–x0 + 3x1 – 3x2 + x3).t2 + 2(3x0 – 6x1 + 3x2).t + (–3x0 + 3x1)  and 

 
d y(t)

d t     = 3(–y0 + 3y1 – 3y2 + y3).t2 + 2(3y0 – 6y1 + 3y2).t + (–3y0 + 3y1) . 
 

 When  t = 0,   
d x(t)

d t     =  –3x0 + 3x1  = –3(x1 – x0)  and     
d x(t)

d t     = –3(y1 – y0)   so 
 

 
d B(t)

d t    =  
d y(t)/dt
d x(t)/dt   =  

–3(y1 – y0)
–3(x1 – x0)   =    

y1 – y0
x1 – x0

   =  slope of the line from P0  to  P1. 
 
 The verification that  B '(1) equals the slope of the line segment from  P2 to P3 is similar: 

 evaluate  x '(1), y '(1)  and  B '(1) =  
y '(1)
x '(1)   . 
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We will not verify Property (4) here, but it follows from the fact that each point on the Bezier curve is a 

"weighted average" of the four control points.  For 0 ≤ t ≤ 1, each of the coefficients  (1–t)3, 3(1–t)2.t, 
3(1–t).t2 and  t3  is between (or equal to) 0 and 1, and they always add up to  1  (just expand the 

powers and add them to check this statement). 

 

Problems 
 
In problems 1 – 6, pairs of points, PA  and  PB , are given.   In each problem  (a)  sketch the line segment   L  

from  PA  and  PB ,  and  (b)  plot the locations of the points  L(0.2), L(0.5), and L(0.9)  on the line segment in 

part (a).  Finally,  (c)  determine the equation of the line segment  L(t)  from  PA  and  PB and graph it. 
 
1. PA  and  PB  are given in Fig. 20. 2. PA  and  PB  are given in Fig. 21.  
 
3. PA  and  PB  are given in Fig. 22. 4. PA  and  PB  are given in Fig. 23. 
 

 
 
5. PA  =  (1, 4)  and  PB  =  (5, 1) . 6. PA  =  (8, 5)  and  PB  =  (4, 3) . 
 
7. Show that the parametric equations for the line segment given in Example 1,  
  x(t) = (1 – t).x0 + t.x1 and  y(t) = (1 – t).y0 + t.y1  for  0 ≤ t ≤ 1 , 

 is equivalent to the parametric equations   
  x(t) = x0 + t.∆x and  y(t) = y0 + t.∆y  for  0 ≤ t ≤ 1  where  ∆x = x1 – x0    and  ∆y = y1 – y0  . 
 

In problems 8 – 13, find the parametric equations for a Bezier curve with the given control points or the given 

properties. 
 
8. P0 = (1, 0),  P1 = (2, 3), P2 = (5, 2), P3 = (6, 3)  9. P0 = (0, 5),  P1 = (2, 3), P2 = (1, 4), P3 = (4, 2) 
 
10. P0 = (5, 1),  P1 = (3, 3), P2 = (3, 5), P3 = (2, 1)  11. P0 = (6, 5),  P1 = (6, 3), P2 = (2, 5), P3 = (2, 0) 
 
12. P0 = (0, 1), P3 = (4, 1) and  B '(0) = 1, B '(1) = –3 13. P0 = (5, 1),  P3 = (1, 3)  and  B '(0) = 2, B '(1) = 3 
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In problems 14 – 17, sets of control points  P0,  P1, P2, and P3  are shown.  Sketch a reasonable Bezier curve for the 

given control points. 
 
14. P0,  P1, P2, and P3  are given in Fig. 24. 15. P0,  P1, P2, and P3  are given in Fig. 25. 
 
16. P0,  P1, P2, and P3  are given in Fig. 26. 17. P0,  P1, P2, and P3  are given in Fig. 27. 

 

 

 
In problems 18 – 21, sets of control points  P0,  P1, P2, and P3  are shown as well as a curve  C(t).  For each problem 

explain why we can be certain that  C(t)  is NOT the Bezier curve for the given control points  (state  

which property or properties of Bezier curves  C(t)  does not have). 
 
18. P0,  P1, P2, and P3  are given in Fig. 28. 19. P0,  P1, P2, and P3  are given in Fig. 29. 
 
20. P0,  P1, P2, and P3  are given in Fig. 30. 21. P0,  P1, P2, and P3  are given in Fig. 31. 
 

 
 
In problems  22 – 23, find a pair of Bezier curves that satisfy the given conditions. 
 
22. B(0) = (0, 5), B '(0) = 2, B(1) = C(0) = (3, 1), B '(1) = C '(0) = 2, C(1) = (6, 2), and  C '(1) = 4. 
 
23. B(0) = (0, 5), B '(0) = 2, B(1) = C(0) = (3, 1), B '(1) = C '(0) = 2, C(1) = (6, 2), and  C '(1) = 4 
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Some Applications of Bezier Curves 
 

The following Applications illustrate just a few of the wide variety of design applications of Bezier curves.  

This combination of differentiation and algebra is very powerful. 
 
Applications 
 

For each of the following applications, write the equation of a Bezier curve  B(t) that satisfies the 

requirements of the application, and then use your calculator/computer to graph B(t).   
(Typically in these applications, the starting and ending points, P0  and  P3,  are specified, but several 

choices of the control points  P1  and  P2  meet the requirements of the application.  Select  P1  and  P2  so 

the resulting graph of  B(t) satisfies the requirements of the application and is also "visually pleasing.") 
 

1. You have been hired to design an escalator for a shopping 

mall, and the design requirements are that the entrance and 

exit of the escalator must be horizontal  (Fig. 32), the total 

rise is 20 feet, and the total run is 30 feet.   

 (a) Find the equation of a Bezier curve  B(t) that meets  

  these design requirements and graph it.   

  (Suggestion:  Place the origin at the lower left end of  

  the escalator.) 
 

 (b) In practice, the middle section of an escalator is straight, 

   and each end consists of a curved section (a Bezier curve) that  

  smoothly converts our horizontal motion to motion along  

  the straight section and then to horizontal motion again for  

  our exit.  Find the equation of a Bezier curve that models the  

  curve at the entrance to the up escalator  (Fig. 33), and the 

equation of the straight line section. 

 

2. To design the exit ramp on a highway  (Fig. 34), you need to find the  

 equation of a Bezier curve so that at the beginning of the exit the elevation is 20 feet with a slope  

 of –0.05 (about 3°),  and 600 feet later, measured horizontally, the elevation is  0 feet and the ramp  

 is horizontal. 
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3. Find a Bezier curve that describes the final 60 feet 

   of the ski jump shown in Fig. 35.   

 

4. Find a Bezier curve that describes the left half of  

 the arch shown in Fig. 36.   

 

5. Find two Bezier curves B(t)  and  C(t)  that describe the 

pieces of the curve for the top half of the hull of the 

Concordia Yawl that is 40 feet long, has a beam of 10 

feet, and a transom width of 2 feet (Fig. 37).   

 
 

 

 

A  

 

 

 Final Note: The examples and applications given here have consisted of only one or two Bezier 

curves, and they are intended only as an introduction to the ideas and techniques of fitting Bezier 

curves to particular situations.  But these ideas extend very nicely to curves that require pieces of 

several different Bezier curves for a good fit  (Fig. 38)  and even to curves and surfaces in three 

dimensions.  Unfortunately, the systems of equations tend to grow very large for these extended 

applications. 
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Practice Answers 
 
Practice 1: (a) x(t) = (1 – t).x0 + t.x1  = (1 – t).1 + t.5 = 1 + 4t ,   

  y(t) = (1 – t).y0 + t.y1  = (1 – t).2 + t.4 = 2 + 2t. 

 (b) x(t) = 5 – 4t,  y(t) = 4 – 2t 

 (c)      x(t) = 6 – 3t,  y(t) = –2 + 3t 
 
Practice 2: P0 = (0, 4), P1 = (1, 2),  P2 = (4, 2),  and P3 = (4, 4).  Then 

x(t) = (1 – t)3.0 + 3(1 – t)2.t.1 + 3(1 – t).t2.4 + t3.4  = –5t3 + 6t2 + 3t  . 

y(t) = (1 – t)3.4 + 3(1 – t)2.t.2 + 3(1 – t).t2.2 + t3.4  = 6t2 – 6t + 4.   

The control points and the graph of  B(t) = ( x(t), y(t) )  are shown in Fig. 39. 
 
 
 

 
Practice 3: Take  P0 = (0, 0)  and P3 = (0, 1)  to get the correct endpoints.   

 Take   P1 = (–1, –1)  and P2 = (–1, 2)  to get a  "C"  shape.   Then 

  x(t) = (1 – t)3.0 + 3(1 – t)2.t.(–1) + 3(1 – t).t2.(–1) + t3.0   

  y(t) = (1 – t)3.0 + 3(1 – t)2.t.(–1) + 3(1 – t).t2.2 + t3.1 .  

  The control points and the graph of  B(t) = ( x(t), y(t) )  are shown in Fig. 40. 
 
Practice 4: Take  P0 = (1, 3)  and P3 = (5, 3)  to get the correct endpoints.   

 Take   P1 = (2, 1)  and P2 = (4, 4)  to get the correct slopes.  Then 

  x(t) = (1 – t)3.1 + 3(1 – t)2.t.2 + 3(1 – t).t2.4 + t3.5   

  y(t) = (1 – t)3.3 + 3(1 – t)2.t.1 + 3(1 – t).t2.4 + t3.3 .  

 

  The control points and the graph of   

  B(t) = ( x(t), y(t) )  are shown in Fig. 41. 

 
  Other choices for P1  and  P2  can also yield correct slopes, and then we 

have different formulas for  x(t) and y(t) 

 

 

 
 
 

 


